最新北师大版高一数学必修2全册完整课件
合集下载
北师大版()高中数学必修第二册课件ppt(22份)
课堂篇探究学习
探究一
探究二
探究三
探究四
当堂检测
反思感悟 利用正切函数图象解决不等式的解决方法
解决此类问题,一般根据函数的图象利用数形结合直接写出自变量
的取值范围,但要注意是否包含端点值,切记正切函数的最小正周
期为π.
课堂篇探究学习
探究一
探究二
探究三
探究四
当堂检测
变式训练 2(1)求满足- 3<tan x≤1 的 x 的集合;
7.3
正切函数的图象与性质
-1-
课标阐释
1.能够正确画出正切函数的图象.(数学抽象)
2.会通过正切函数的图象研究其性质.(逻辑推理)
3.能运用正切函数图象与性质解决问题.(数学运算)
思维脉络
课前篇自主预习
激趣诱思
知识点拨
正切函数在实际测量中的应用是十分广泛的,例如,测量山的高度、
测量池塘的宽度都需要利用正切函数进行解决.同学们,你能够类
2
是全体实数.
2.正切函数 y=tan x 的最小正周期是 π.一般地,函数
π
y=Atan(ωx+φ)(A>0,ω>0)的最小正周期是 T= .若不知 ω 正负,则该
π
函数的最小正周期为 T= .
||
3.正切函数无单调递减区间,在每一个单调区间内都是单调递增的,
并且每个单调区间均为开区间,不能写成闭区间.
1
tan
答案-5
(- )
=- tan α+
1
tan
=-5.
.
2π
=-tan 5 ,
3π
>tan -
12π
5
新教材2023版高中数学北师大版必修第二册:正切函数的诱导公式课件
2.tan 660°的值为( )
A.-
3 3
3 B. 3
C.- 3 D. 3
解析:tan 660°=tan(180°×3+120°)=tan 120°=-tan 60°=- 3. 答案:C
3.下列各式成立的是( ) A.tan(π+α)=-tan α B.tan(π-α)=tan α C.tan(-α)=-tan α D.tan(2π-α)=tan α
(2)tan56π+α=tanπ-π6-α=-tanπ6-α=-
3 3.
答案:(1)- 3
(2)-
3 3
方法归纳 给值求值时,要注意分析已知角与未知角之间的内在关系,选择 恰当的诱导公式求值.
跟踪训练 2 (1)若 tan-α-43π=-5,则 tanπ3+α等于(
)
A.5 B.-5
C.25 D.与 α 的值有关
域为xx≠kπ+4π,k∈Z
.
答案:xx≠kπ+4π,k∈Z
题型一 求函数的定义域——师生共研 例 1 (1)函数 y=ta1n x的定义域为( D )
A.{x|x≠0}
B.{x|x≠kπ,k∈Z}
C.xx≠kπ+π2,k∈Z
D.xx≠k2π,k∈Z
(2)函数 y=lg(
3-tan x)的定义域为__x_k_π_-__π2_<_x_<_k_π_+__π3_,__k.∈Z
(2)求值:tanta-n 23205°°-+ttaann7-504°5°.
解析:(1)因为 tan-α-43π=-tanα+43π=-5, 所以 tanα+43π=5, 即 tanα+3π+π=5,故 tanα+3π=5. (2)∵tan 225°=tan(180°+45°)=tan 45°=1,
北师大版()高中数学必修第二册课件ppt(22份)
π
y=-2sin 2- +1 的图象.
6
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟 正、余弦函数图象的变换方法
1.对函数y=Asin(ωx+φ)+b(A>0,ω>0,φ≠0,b≠0),其图象的基本变换有
四种.(1)振幅变换(纵向伸缩变换):是由A的变化引起的.当A>1时其
函数图象上每个点的纵坐标伸长;当A<1时其函数图象上每个点的
得到y=Asin(ωx+φ)(A>0,ω>0,x∈R)的图象.
名师点析由y=sin x变换得到y=Asin(ωx+φ)(A>0,ω>0)的方法
(1)先平移后伸缩:
课前篇自主预习
激趣诱思
知识点拨
(2)先伸缩后平移:
课前篇自主预习
由 y=sin x 的图象得到函数 y=3sin 2x-3 的图象?
2.会用“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的图象,明确A,ω,φ
的物理意义.(数学抽象)
3.掌握研究函数y=Asin(ωx+φ)(A>0,ω>0)的性质的基本方法,会研
究其性质.(数学运算)
思维脉络
课前篇自主预习
激趣诱思
知识点拨
电流强度 I(A)随时间 t(s)变化的关系式是 I=Asin(ωt+φ) A>0,
列表如下:
课前篇自主预习
激趣诱思
知识点拨
这五个点为
π-2
2
P1 - ,0 ,P2
, ,P3
π-
,0 ,P4
y=-2sin 2- +1 的图象.
6
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟 正、余弦函数图象的变换方法
1.对函数y=Asin(ωx+φ)+b(A>0,ω>0,φ≠0,b≠0),其图象的基本变换有
四种.(1)振幅变换(纵向伸缩变换):是由A的变化引起的.当A>1时其
函数图象上每个点的纵坐标伸长;当A<1时其函数图象上每个点的
得到y=Asin(ωx+φ)(A>0,ω>0,x∈R)的图象.
名师点析由y=sin x变换得到y=Asin(ωx+φ)(A>0,ω>0)的方法
(1)先平移后伸缩:
课前篇自主预习
激趣诱思
知识点拨
(2)先伸缩后平移:
课前篇自主预习
由 y=sin x 的图象得到函数 y=3sin 2x-3 的图象?
2.会用“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的图象,明确A,ω,φ
的物理意义.(数学抽象)
3.掌握研究函数y=Asin(ωx+φ)(A>0,ω>0)的性质的基本方法,会研
究其性质.(数学运算)
思维脉络
课前篇自主预习
激趣诱思
知识点拨
电流强度 I(A)随时间 t(s)变化的关系式是 I=Asin(ωt+φ) A>0,
列表如下:
课前篇自主预习
激趣诱思
知识点拨
这五个点为
π-2
2
P1 - ,0 ,P2
, ,P3
π-
,0 ,P4
新教材2023版高中数学北师大版必修第二册:棱柱棱锥和棱台课件
上底面:原棱锥的___截__面___; 下底面:原棱锥的_底__面_____.
侧面:其余各面 侧棱:相邻两个侧面的公共 边. 高:上底面、下底面之间的距 离. 斜高:正棱台各侧面都是
__全__等____的等腰梯形,这些等
腰梯形的高都相等.
状元随笔 对于多面体概念的理解,注意以下两个方面
(1)多面体是由平面多边形围成的.围成一个多面体至少要四个 面.一个多A、B 均为真命题;对于 C,一个图形要成为空间几何体,则 它至少需有 4 个顶点,3 个顶点只能构成平面图形,当有 4 个顶点时,可 围成 4 个面,所以一个多面体至少应有 4 个面,而且这样的面必是三角形, 故 C 也是真命题;对于 D,只有当截面与底面平行时才对.
答案:ABC
2.下列命题中正确的是________(填序号). ①有两个面平行,其余各面都是四边形的几何体叫棱柱; ②棱柱的一对互相平行的平面均可看作底面; ③三棱锥的任何一个面都可看作底面; ④棱台各侧棱的延长线交于一点.
高:过上底面上一点 O1 作下
底面的垂线,这点和垂足 O
间的距离__O__O_1___.
棱锥
有一个面是多__边__形___, 其余各面都是有一个 公共顶点的 __三__角__形__,由这些面 所围成的几何体叫作 棱锥. 正棱锥:底面是 _正_多__边__形__,且它的顶 点过底面___中__心___且 与底面垂直的直线 上.
解析:对于①,还可能是棱台;对于②,只要看一个正六棱柱模型即 知是错的;对于③,显然是正确的;④显然符合定义.故填③④.
把平行四边形的锐角画成__4_5_°____,横边长画成邻边长的 ___两__倍___.为了增强立体感,把被遮挡部分画成__虚__线____ 或__不__画____. (1)一个希腊字母:如 α,β,γ 等; (2)两个大写英文字母:表示平面的平行四边形的相对的两 个顶点; (3)四个大写英文字母:表示平面的平行四边形的四个顶点
2024-2025学年高一数学必修第二册(北师版)教学课件第一章-§7正切函数
17
.
5
6
= .
∵ - 2 < 6 < 4 < 2 ,且=tan x在区间 − 2 , 2 上单调递增,∴ 6 < 4 ,即tan −
11
4
>tan −
17
6
.
高中数学
必修第二册
北师大版
<3>求单调区间
例5
求函数=tan
解:=tan
π
3
π
3
− 2 的单调递减区间.
(2)原式=tan ·
−2tan
3
3
2
2
+ 3×
= −tan2 = tan .
3
1
4
=
+1=
.
3
3
3
高中数学
必修第二册
北师大版
跟踪训练
求值:
tan
1+tan
π
π
π
7
2
−tan
4
3
4
− 3 ·tan
π
π.
−4
π
π
π−π3
−tan 4 +tan 3
=
π =
π+π3 tan π4
1+tan 3
(2)角 ≠ π +
π
2
sin
,这是同角三角函数的基本关系.
cos
的正弦、余弦、正切之间的关系为tan =
(3)由正切函数的定义域可知,角的终边不能在轴上.
高中数学
必修第二册
北师大版
二、正切函数的诱导公式
正切函数的诱导公式可由正弦函数、余弦函数相应的诱导公式得到:
北师大版()高中数学必修第二册课件ppt(22份)
解在平面内任取一点 O,作向量=a,=b,则向量 a-b=,再作向
量=c,则向量=a-b-c.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
向量的减法运算
例2化简下列各式:
(1)( + )+(- − );
(2) − − .
解(1)原式= + + + =( + )+( + )= +
起点相同时,可以考虑用减法.
事实上任意一个非零向量一定可以表示为两个不共线向量的和,即
= + 以及 = − (M,N 是同一平面内任意一点).
课堂篇探究学习
探究一Biblioteka 探究二探究三探究四
探究五
当堂检测
变式训练4如图,解答下列各题:
(1)用 a,d,e 表示;
(2)用 b,c 表示;
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
变式训练 3 已知△ABC 的三个顶点 A,B,C 及平面内一点 P 满足 +
= ,则下列结论正确的是(
A.点P在△ABC的内部
B.点P在△ABC的边AB上
C.点P在AB边所在直线上
D.点P在△ABC的外部
)
解析由 + = ,可得 = − = ,
(1)两个相等向量之差等于0.(
)
(2)两个相反向量之差等于0.(
)
(3)两个向量的差仍是一个向量.(
)
(4)向量的减法实质上是向量的加法的逆运算.(
答案(1)√ (2)× (3)√ (4)√
北师大版()高中数学必修第二册ppt(22份)
图时要注意这种有界性.
3.在利用图象研究方程根的个数时,作图要精确,特别注意图象所经
过的某些关键点是否包含.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
探究六
当堂检测
1
变式训练 3 判断方程 sin x=-2,x∈[0,2π]根的个数.
1
解画出 y=sin x 和 y=-2在区间[0,2π]上的图象,如图所示.由图象可知
(1)列表:
x
0
y=sin x
y=Asin x+b
0
b
2
1
A+b
0
b
(2)描点:在平面直角坐标系中描出(0,b),
3π
2
3
2
π
-1
-A+b
π
2
, + ,(π,b),
,- + ,(2π,b)五个点.
(3)连线:用光滑的曲线将描出的五个点顺次连接起来.
2π
0
b
课堂篇探究学习
探究一
探究二
3
(1)y=
1-2sin
;
(2)y= 2sin + 1.
1
解(1)要使函数式有意义,需 1-2sin x≠0,即 sin x≠2,而在[0,2π]上有
π
1
5π
1
sin 6 = 2,sin 6 = 2,故该函数的定义域为
π
5π
x x≠6 +2kπ,且 x≠ +2kπ,k∈Z .
6
1
π 3π
2
2
(2)由题意知 2sin x+1≥0,sin x≥- .因为在一个周期 - ,
3.在利用图象研究方程根的个数时,作图要精确,特别注意图象所经
过的某些关键点是否包含.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
探究六
当堂检测
1
变式训练 3 判断方程 sin x=-2,x∈[0,2π]根的个数.
1
解画出 y=sin x 和 y=-2在区间[0,2π]上的图象,如图所示.由图象可知
(1)列表:
x
0
y=sin x
y=Asin x+b
0
b
2
1
A+b
0
b
(2)描点:在平面直角坐标系中描出(0,b),
3π
2
3
2
π
-1
-A+b
π
2
, + ,(π,b),
,- + ,(2π,b)五个点.
(3)连线:用光滑的曲线将描出的五个点顺次连接起来.
2π
0
b
课堂篇探究学习
探究一
探究二
3
(1)y=
1-2sin
;
(2)y= 2sin + 1.
1
解(1)要使函数式有意义,需 1-2sin x≠0,即 sin x≠2,而在[0,2π]上有
π
1
5π
1
sin 6 = 2,sin 6 = 2,故该函数的定义域为
π
5π
x x≠6 +2kπ,且 x≠ +2kπ,k∈Z .
6
1
π 3π
2
2
(2)由题意知 2sin x+1≥0,sin x≥- .因为在一个周期 - ,
2020最新北师大版高一数学必修第二册(2020版)电子课本课件【全册】
第一章 三角函数
2020最新北师大版高一数学必修第 二册(2020版) 第二册(2020版)电子课本课件【
全册】目录
0002页 0004页 0006页 0008页 0010页 0012页 0014页 0016页 0018页 0020页 0022页 0024页 0026页 0028页 0030页 0032页 0034页
第一章 三角函数 2 任意角 2.2 象限角及其表示 3.1 弧度概念. 4 正弦函数和余弦函数的概念及其性质 4.2 单位圆与正弦函数、余弦函数的基本性质 4.4 诱导公式与旋转 5.1 正弦函数的图象与性质再认识 6 函数y=Asin(wx+φ)性质与图象 6.2 探究φ对y=sin(x+φ)的图象的影响 7 正切函数 7.2 正切函数的诱导公式 8 三角函数的简单应用 1 从位移、速度、力到向量 1.2 向量的基本关系 2.1 向量的加法 3.1 向量的数乘运算
最新北师大版高一数学必修2全册课件【完整版】
最新北师大版高一数学必修2全 册课件【完整版】目录
0002页 0068页 0111页 0120页 0181页 0247页 0302页 0355页 0412页 0438页 0509页 0556页 0600页 0616页 0640页 0688页 0710页
第一章 立体几何初步 1.1简单旋转体 习题1—1 习题1—2 3.1简单组合体的三视图 习题1—3 4.1空间图形基本关系的认识 习题1—4 5.2平行关系的性质 6.垂直关系 6.2垂直关系的性质 7.简单几何体的面积和体积 7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积 习题1—7 课题学习 正方体截面的形状 复习题一 1.直线与直线的方程
第一章 立体几何初步
最新北师大版高一数学必修2全册 课件【完整版】
1.简单几何体
最新北师大版高一数学必修2全册 课件【完整版】
1.1简单旋转体
最新北师大版高一数学必修2全册 课件【完整版】
1.2简单多面体
最新北师大版高一数学必修2全册 ห้องสมุดไป่ตู้件【完整版】
习题1—1
最新北师大版高一数学必修2全册 课件【完整版】
0002页 0068页 0111页 0120页 0181页 0247页 0302页 0355页 0412页 0438页 0509页 0556页 0600页 0616页 0640页 0688页 0710页
第一章 立体几何初步 1.1简单旋转体 习题1—1 习题1—2 3.1简单组合体的三视图 习题1—3 4.1空间图形基本关系的认识 习题1—4 5.2平行关系的性质 6.垂直关系 6.2垂直关系的性质 7.简单几何体的面积和体积 7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积 习题1—7 课题学习 正方体截面的形状 复习题一 1.直线与直线的方程
第一章 立体几何初步
最新北师大版高一数学必修2全册 课件【完整版】
1.简单几何体
最新北师大版高一数学必修2全册 课件【完整版】
1.1简单旋转体
最新北师大版高一数学必修2全册 课件【完整版】
1.2简单多面体
最新北师大版高一数学必修2全册 ห้องสมุดไป่ตู้件【完整版】
习题1—1
最新北师大版高一数学必修2全册 课件【完整版】
北师大版()高中数学必修第二册课件ppt(22份)
1
1
DM=2MC,BN=2BC,则 ·=
.
解析以 A 为原点,AB,AD 所在直线分别为 x 轴、y 轴建立平面直角坐
标系(图略),则 A(0,0),M(1,2),N(3,1),所以=(1,2),=(3,1),所以
·=1×3+2×1=5.
答案5
课堂篇探究学习
探究一
探究二
探究三
)
课堂篇探究学习
探究一
探究二
探究三
利用坐标运算解决模的问题
例3已知向量a=(1,2),b=(3,-1).
(1)求|a-2b|;
(2)求与a垂直的单位向量;
(3)求与b平行的单位向量.
当堂检测
课堂篇探究学习
探究一
探究二
探究三
当堂检测
解(1)因为 a=(1,2),b=(3,-1),
所以 a-2b=(-5,4),
|a|= 2 + 2 .
2.与已知向量垂直或平行的单位向量
(1)与向量(x0,y0)平行的单位向量是±
(2)与向量(x0,y0)垂直的单位向量是±
1
02 +02
1
02 +02
·
(x0,y0);
·
(-y0,x0).
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练 2 若向量 a=(2x-1,3-x),b=(1-x,2x-1),则|a+b|的最小值为
|c+td|= (2 + 4)2 + (-3)2 = √5 2 + 10 + 25,
5+5
√2
因此可得 =
,解得
2
1
DM=2MC,BN=2BC,则 ·=
.
解析以 A 为原点,AB,AD 所在直线分别为 x 轴、y 轴建立平面直角坐
标系(图略),则 A(0,0),M(1,2),N(3,1),所以=(1,2),=(3,1),所以
·=1×3+2×1=5.
答案5
课堂篇探究学习
探究一
探究二
探究三
)
课堂篇探究学习
探究一
探究二
探究三
利用坐标运算解决模的问题
例3已知向量a=(1,2),b=(3,-1).
(1)求|a-2b|;
(2)求与a垂直的单位向量;
(3)求与b平行的单位向量.
当堂检测
课堂篇探究学习
探究一
探究二
探究三
当堂检测
解(1)因为 a=(1,2),b=(3,-1),
所以 a-2b=(-5,4),
|a|= 2 + 2 .
2.与已知向量垂直或平行的单位向量
(1)与向量(x0,y0)平行的单位向量是±
(2)与向量(x0,y0)垂直的单位向量是±
1
02 +02
1
02 +02
·
(x0,y0);
·
(-y0,x0).
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练 2 若向量 a=(2x-1,3-x),b=(1-x,2x-1),则|a+b|的最小值为
|c+td|= (2 + 4)2 + (-3)2 = √5 2 + 10 + 25,
5+5
√2
因此可得 =
,解得
2
最新北师大版高一数学必修2电子课本课件【全册】
最新北师大版高一数学必修2电 子课本课件【全册】目录
0002页 0061页 0085页 0094页 0140页 0170页 0213页 0227页 0262页 0264页 0317页 0367页 0369页 0394页 0452页 0454页 0524页
第一章 立体几何初步 1.1简单旋转体 习题1—1 习题1—2 3.1简单组合体的三视图 习题1—3 4.1空间图形基本关系的认识 习题1—4 5.1平行关系的判定 习题1-5 6.1垂直关系的判定 习题1—6 7.1简单几何体的侧面积 7.3球的表面积和体积 阅读材料 蜜蜂是对的 本章小结 第二章 解析几何初步
Hale Waihona Puke 第一章 立体几何初步最新北师大版高一数学必修2电子 课本课件【全册】
1.简单几何体
最新北师大版高一数学必修2电子 课本课件【全册】
1.1简单旋转体
最新北师大版高一数学必修2电子 课本课件【全册】
0002页 0061页 0085页 0094页 0140页 0170页 0213页 0227页 0262页 0264页 0317页 0367页 0369页 0394页 0452页 0454页 0524页
第一章 立体几何初步 1.1简单旋转体 习题1—1 习题1—2 3.1简单组合体的三视图 习题1—3 4.1空间图形基本关系的认识 习题1—4 5.1平行关系的判定 习题1-5 6.1垂直关系的判定 习题1—6 7.1简单几何体的侧面积 7.3球的表面积和体积 阅读材料 蜜蜂是对的 本章小结 第二章 解析几何初步
Hale Waihona Puke 第一章 立体几何初步最新北师大版高一数学必修2电子 课本课件【全册】
1.简单几何体
最新北师大版高一数学必修2电子 课本课件【全册】
1.1简单旋转体
最新北师大版高一数学必修2电子 课本课件【全册】
高中数学北师大版必修2《第2章22.2圆的一般方程》课件
20
【例 3】 已知△ABC 的边 AB 长为 2a,若 BC 的中线为定长 m, 求顶点 C 的轨迹方程.(轨迹方程是动点坐标所满足的方程)
[思路探究] 设出动点坐标(x,y),根据已知找出动点(x,y)满足 的条件,从而求出轨迹方程.
21
[解] 如图,以直线 AB 为 x 轴,线段 AB 的中 垂线为 y 轴建立坐标系,则 A(-a,0),B(a,0),
5
1.圆 x2+y2-4x-1=0 的圆心坐标及半径分别为( )
A.(2,0),5
B.(2,0), 5
C.(0,2), 5
D.(2,2),5
6
B [x2+y2-4x-1=0 可化为(x-2)2+y2=5, ∴圆心为(2,0),半径 r= 5.]
7
2.如果 x2+y2-2x+y+k=0 是圆的方程,则实数 k 的取值范围 是________.
→ 得到圆的方程
16
[ 解 ] 设 圆 的 方 程 为 x2 + y2 + Dx + Ey + F = 0 , 则 圆 心 是 -D2 ,-E2,由题意知,
-D2 =-E2, 2-D+E+F=0, 10+3D-E+F=0, 解得 D=E=-4,F=-2, 即所求圆的一般方程是 x2+y2-4x-4y-2=0.
()
A.m≤2
B.m<12 C.m<2
D
D2+E2-4F>0,得(-1)2+12-4m>0,即
1 m<2.]
34
4.已知圆 x2+y2=4 上一点为 A(2,0),B(1,1)为圆内一点,P,Q 为圆上的动点.
(1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求 PQ 中点的轨迹方程.
-∞,45 [若方程 x2+y2-2x+y+k=0 表示圆,则(-2)2+12 -4k>0.
【例 3】 已知△ABC 的边 AB 长为 2a,若 BC 的中线为定长 m, 求顶点 C 的轨迹方程.(轨迹方程是动点坐标所满足的方程)
[思路探究] 设出动点坐标(x,y),根据已知找出动点(x,y)满足 的条件,从而求出轨迹方程.
21
[解] 如图,以直线 AB 为 x 轴,线段 AB 的中 垂线为 y 轴建立坐标系,则 A(-a,0),B(a,0),
5
1.圆 x2+y2-4x-1=0 的圆心坐标及半径分别为( )
A.(2,0),5
B.(2,0), 5
C.(0,2), 5
D.(2,2),5
6
B [x2+y2-4x-1=0 可化为(x-2)2+y2=5, ∴圆心为(2,0),半径 r= 5.]
7
2.如果 x2+y2-2x+y+k=0 是圆的方程,则实数 k 的取值范围 是________.
→ 得到圆的方程
16
[ 解 ] 设 圆 的 方 程 为 x2 + y2 + Dx + Ey + F = 0 , 则 圆 心 是 -D2 ,-E2,由题意知,
-D2 =-E2, 2-D+E+F=0, 10+3D-E+F=0, 解得 D=E=-4,F=-2, 即所求圆的一般方程是 x2+y2-4x-4y-2=0.
()
A.m≤2
B.m<12 C.m<2
D
D2+E2-4F>0,得(-1)2+12-4m>0,即
1 m<2.]
34
4.已知圆 x2+y2=4 上一点为 A(2,0),B(1,1)为圆内一点,P,Q 为圆上的动点.
(1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求 PQ 中点的轨迹方程.
-∞,45 [若方程 x2+y2-2x+y+k=0 表示圆,则(-2)2+12 -4k>0.
北师大版必修二数学全册教学课件
探究点4 棱锥
1.定义:有一个面是多边形,其余各面是有一个公
共顶点的三角形,这些面围成的几何体叫作棱锥.顶点
这个多边形面叫作棱锥的底面. 有公共顶点的各个三角形叫作
S 侧面
棱锥的侧面. 各侧面的公共顶点
叫作棱锥的顶点.
侧棱
D
相邻侧面的公共边叫作
C
棱锥的侧棱.
A底面
B
思考:把“有一个公共顶点”去掉还是棱锥吗?
A 半径
O
B
球 心
5.连接_球__面__上两点并且过_球__心__的线段叫作球的
直径.
旋转体的相关概念 旋转面:一条_平__面__曲__线__绕着它所在的平面内的 一条_定__直__线__旋转所形成的曲面. 旋转体:_封__闭__的旋转面围成的几何体. 【提示】球面是旋转面,球体是旋转体.
探究点2 圆柱、圆锥、圆台
探究点1 球 地球,西瓜,以及足球,篮球等都给我们球的形象.
NBA
点击播放
球的相关概念
1.以半圆的_直__径__所__在__的__直__线__为旋转轴,将半圆旋
转所形成的曲面叫作球面.
2._球__面__所围成的几何体叫作球体, 简称球. 3.半圆的_圆__心__叫作球心. 4.连接球心和_球__面__上__任__意__一__点__的 线段叫作球的半径.
轴
(一)圆柱
1.以矩形的一边所在的直线为旋
O′
转轴,其余各边旋转而形成的曲
面所围成的几何体叫作圆柱.
2.旋转轴叫作圆柱的轴. 母线
3.垂直于旋转轴的边旋转而成
侧面
的圆面叫作圆柱的底面. 4.不垂直于旋转轴的边旋转而成 的曲面叫作圆柱的侧面.
O 底面
5.无论转到什么位置不垂直于旋转轴的边都叫作侧面的
北师大版()高中数学必修第二册课件ppt(22份)
π
π
6
2
函数 f(x)的对称中心的横坐标满足 2x+ =kπ(k∈Z),解得 x=- +
3
∈Z).故选 A.
答案A
(k
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
正、余弦函数的单调性
例 4 求函数 y=sin
解 y=sin
π
π
3
-2x 的单调递减区间.
π
π
π
π
π
-2x =-sin 2x-3 ,故由 2kπ-2 ≤2x-3 ≤2kπ+2 ,解得 kπ3
φ=- +kπ(k∈Z).
6
2π
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
反思感悟 正、余弦函数图象的对称轴和对称中心的求解方法
求正、余弦函数图象的对称轴及对称中心,须先把所给正、余弦函
数式化为y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,再把(ωx+φ)整体看
成一个变量.若求f(x)=Asin(ωx+φ)(ω≠0)图象的对称轴,则只需令
π
ωx+φ= +kπ(k∈Z),求x.若求f(x)=Asin(ωx+φ)(ω≠0)图象的对称中
2
心的横坐标,则只需令ωx+φ=kπ(k∈Z),求x.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
π
变式训练 3 已知函数 f(x)=sin ωx+ 3 (ω>0)的最小正周期为 π,则该
π
6
2
函数 f(x)的对称中心的横坐标满足 2x+ =kπ(k∈Z),解得 x=- +
3
∈Z).故选 A.
答案A
(k
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
正、余弦函数的单调性
例 4 求函数 y=sin
解 y=sin
π
π
3
-2x 的单调递减区间.
π
π
π
π
π
-2x =-sin 2x-3 ,故由 2kπ-2 ≤2x-3 ≤2kπ+2 ,解得 kπ3
φ=- +kπ(k∈Z).
6
2π
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
反思感悟 正、余弦函数图象的对称轴和对称中心的求解方法
求正、余弦函数图象的对称轴及对称中心,须先把所给正、余弦函
数式化为y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,再把(ωx+φ)整体看
成一个变量.若求f(x)=Asin(ωx+φ)(ω≠0)图象的对称轴,则只需令
π
ωx+φ= +kπ(k∈Z),求x.若求f(x)=Asin(ωx+φ)(ω≠0)图象的对称中
2
心的横坐标,则只需令ωx+φ=kπ(k∈Z),求x.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
π
变式训练 3 已知函数 f(x)=sin ωx+ 3 (ω>0)的最小正周期为 π,则该
高中数学北师大版必修2课件:第一章立体几何初步1.7.3球
∴OM= (√2)2 + 1 = √3,即球的半径为√3,
4
∴V=3π(√3)3=4√3π.
探究一
探究二
探究三
易错辨析
(2)由题知△SAC,△SAB,△SBC均为直角三角形,O是SC的中点,如图
所示.
1
3
3
所以 OB=OA=2SC=OS=OC=2,即球 O 的半径为2,
所以球 O 的表面积为 S=4π×
内注入水并且放入一个半径为 3√225 的铁球,这时水面恰好和球面
相切,问将球从圆锥内取出后,圆锥内水面的高是多少?
分析:设球未取出时的水面高度和取出后的水面高度,则水面降
落,减少的体积就是球的体积,建立一个关系式来解决.
探究一
探究二
探究三
易错辨析
解:设△PAB所在平面为轴截面,AB为水平面,设球未取出时,水面
答案:(1)4√3π (2)9π
3 2
2
=9π.
探究一
探究二
探究三
易错辨析
反思感悟1.计算球的表面积和体积关键是计算球的半径,而计算
半径的关键是寻找球心的位置.
2.当球的半径增加为本来的2倍时,球的表面积增加为本来的4倍,
球的体积增加为本来的8倍.
3.注意公式的“双向”应用,也就是说当知道球的表面积或体积时,
4
解析:球的半径为 3,S 球=4π×32=36π;V 球= π×33=36π.
3
答案:D
名师点拨1.球的表面积与体积由它的半径唯一确定,因此求球的
表面积、体积的关键是求出球的半径.
2.球的表面不像柱体、锥体和台体那样可以展开在一个平面上,
即使是球面上任意小的一块,也不能展开在一个平面上,因此球的
北师大版高中数学必修2《圆的标准方程》参考课件
5. 圆的方程的求法: ①代入法 ②待定系数法
例1(1)已知两点P1(4, 9)和P2(6, 3),求以P1P2 为直径的圆的方程.
(x 5)2 + ( y 6)2 = 10
(2) 判断点M(6, 9)、N(3, 3)、Q(5, 3)是在圆 上,在圆内,还是在圆外.
M在圆上,N在圆外,Q在圆内.
(3) 经过点P(5,1),且圆心在C(8, 3). (x 8)2 + ( y + 3)2 = 25
例3 求圆心在C(1, 2),半径为 2 5 的圆 被x 轴所截得的弦长 .
法1(方程法) 圆的方程为 (x 1)2 + ( y + 2)2 = 20,
令y = 0,x 1 = 4,可得弦长为8.
《圆的标准方程》
问题: (1) 求到点C(1, 2)距离为2的点的轨迹方程. (x 1)2 + ( y 2)2 = 4
(2) 方程(x 1)2 + ( y 2)2 = 4表示的曲线是 什么?
以点C(1, 2)为圆心, 2为半径的圆.
1.圆的定义: 平面内与定点的距离等于定长的点的集
合(轨迹)叫做圆. 2.圆的标准方程:
约为3.86m
0.01m).
例5 已知圆的方程x2 + y2 = r2,求经过 圆上一点M(x0,y0)的切线方程.
一般地,过圆(x a)2 + ( y b)2 = r2上一点 M(x0,y0)的切线方程为 (x0 a)(x a) + ( y0 b)( y b) = r2.
小结:
本课研究了圆的标准方程推导过程,对于 这个方程必须熟记并能灵活应用. 从三道例题 的解题过程,我们不仅仅要理解和掌握解题的 思想方法,也要学会从中发现和总结出规律性 的内在联系.
北师大版()高中数学必修第二册课件ppt(22份)
(2)已知平面上三个点 A(4,6),B(7,5),C(1,8),求, , + , −
1
,2 + .
2
课堂篇探究学习
探究一
探究二
探究三
当堂检测
解(1)因为 a=(1,2),b=(3,-4),c=(-2,6),
所以 a+3b=(1,2)+3(3,-4)=(1,2)+(9,-12)=(10,-10),
a-2b=(2,3)-2(-1,2)=(4,-1).
又因为ma+4b与a-2b共线,所以有(2m-4)×(-1)-4×(3m+8)=0,解得
m=-2.故选D.
答案D
4.已知a=(1,2),b=(1,0),c=(3,4),则当(a+λb)∥c时,λ=
.
1
解析 a+λb=(1+λ,2),由(a+λb)∥c,得(1+λ)×4=3×2,解得 λ=2.
D.(-6,-10)
)
解析 = + = − =(-2,-4),故选 A.
答案A
课堂篇探究学习
探究一
探究二
探究三
当堂检测
3.已知向量a=(2,3),b=(-1,2),若ma+4b与a-2b共线,则m的值为(
1
A.2
B.2
1
C.-2
D.-2
解析由已知得ma+4b=m(2,3)+4(-1,2)=(2m-4,3m+8),
(2)解ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4).
因为(ka+b)∥(a-3b),
1
,2 + .
2
课堂篇探究学习
探究一
探究二
探究三
当堂检测
解(1)因为 a=(1,2),b=(3,-4),c=(-2,6),
所以 a+3b=(1,2)+3(3,-4)=(1,2)+(9,-12)=(10,-10),
a-2b=(2,3)-2(-1,2)=(4,-1).
又因为ma+4b与a-2b共线,所以有(2m-4)×(-1)-4×(3m+8)=0,解得
m=-2.故选D.
答案D
4.已知a=(1,2),b=(1,0),c=(3,4),则当(a+λb)∥c时,λ=
.
1
解析 a+λb=(1+λ,2),由(a+λb)∥c,得(1+λ)×4=3×2,解得 λ=2.
D.(-6,-10)
)
解析 = + = − =(-2,-4),故选 A.
答案A
课堂篇探究学习
探究一
探究二
探究三
当堂检测
3.已知向量a=(2,3),b=(-1,2),若ma+4b与a-2b共线,则m的值为(
1
A.2
B.2
1
C.-2
D.-2
解析由已知得ma+4b=m(2,3)+4(-1,2)=(2m-4,3m+8),
(2)解ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4).
因为(ka+b)∥(a-3b),
高一下学期数学北师大版必修第二册2.4.1平面向量基本定理课件PPT
可以用形如λ1e1+λ2e2 的形式表示呢?
分析
如图,给定两个不共线的向量e1, e2,以及任
意一个向量a
在平面内任取一点O,作 = , = , = .
C
M
1
Ԧ
2
A
O
N
B
过点C作平行于OB的直
线,与直线OA交于点M;
过点C作平行于OA的直
线,与直线OB交于点N.
的线性表示。.
C
M
1
Ԧ
2
A
O
N
B
分析
如图, , 是两个不共线的向量,容易看出 =
2 + 3 , = − + 4 , = 41 − 4 , =
− 2 + 5 ,可以发现,平面内任意一个向量都可以由这
个平面内两个不共线的向量 , 线性表示.
平面向量基本定理应用
→ → →
而BA=BC+CA=2e1+3e2,由平面向量基本定理,
λ=4,
λ+2μ=2,
5
得
解得
3
3λ+μ=3,
μ=5.
→ 4 → → 3→
∴AP=5AM,BP=5BN,
3
∴AP∶PM=4,BP∶PN=2.
解后心得
应用平面向量基本定理时的关注点
1充分利用向量的加法、减法的法则,在平行四边形、三角形
A.①
B.②
C.①③
C [由平面向量基本定理可知,只有①③是正确的.]
D.②③
练习
对基的理解
设e1,e2是平面内所有向量的一组基,则下列四
组向量中,不能作为基的是(
A.e1+e2和e1-e2
分析
如图,给定两个不共线的向量e1, e2,以及任
意一个向量a
在平面内任取一点O,作 = , = , = .
C
M
1
Ԧ
2
A
O
N
B
过点C作平行于OB的直
线,与直线OA交于点M;
过点C作平行于OA的直
线,与直线OB交于点N.
的线性表示。.
C
M
1
Ԧ
2
A
O
N
B
分析
如图, , 是两个不共线的向量,容易看出 =
2 + 3 , = − + 4 , = 41 − 4 , =
− 2 + 5 ,可以发现,平面内任意一个向量都可以由这
个平面内两个不共线的向量 , 线性表示.
平面向量基本定理应用
→ → →
而BA=BC+CA=2e1+3e2,由平面向量基本定理,
λ=4,
λ+2μ=2,
5
得
解得
3
3λ+μ=3,
μ=5.
→ 4 → → 3→
∴AP=5AM,BP=5BN,
3
∴AP∶PM=4,BP∶PN=2.
解后心得
应用平面向量基本定理时的关注点
1充分利用向量的加法、减法的法则,在平行四边形、三角形
A.①
B.②
C.①③
C [由平面向量基本定理可知,只有①③是正确的.]
D.②③
练习
对基的理解
设e1,e2是平面内所有向量的一组基,则下列四
组向量中,不能作为基的是(
A.e1+e2和e1-e2
北师大版()高中数学必修第二册课件ppt(22份)
积,该推理不正确,即a·
b=b·
c
a=c.
2.对于实数a,b,c有(ab)c=a(bc),但对于向量a,b,c,(a·
b)·
c=a·
(b·
c)一般
不成立.这是因为(a·
b)·
c表示一个与c共线的向量,而a·
(b·
c)表示一个
与a共线的向量,而c与a不一定共线,所以(a·
b)·
c=a·
(b·
c)一般不成立.
1.若e是单位向量,则a·e=e·a=|a|cos<a,e>;
2.若a,b是非零向量,则a·b=0⇔a⊥b;
3.a·a=|a|2,即|a|= ·;
4.cos<a,b>=
·
(|a||b|≠0);
||||
5.|a·b|≤|a||b|,当且仅当a∥b时等号成立.
名师点析常用运算公式
(1)(a+b)·
是
.
5
解析易知||2=||2+||2,C=90°,cos B=13,
5
所以 cos <, >=cos(180°-B)=-cos B=- .
13
所以 ·=||·||cos(180°-B)
=13×5× -
5
13
答案-25
=-25.
a·b=
.
解析 a·b=|a||b|cos <a,b>=2× 3×cos 30°=2× 3 ×
答案3
3
2
=3.
课前篇自主预习
激趣诱思
知识点拨
二、投影
1.如图,已知两个非零向量 a 和 b,作=a,=b,
过点 A 向直线 OB 作垂线,垂足为 A',得到 a 在 b 上的投影 γ=',γ
b=b·
c
a=c.
2.对于实数a,b,c有(ab)c=a(bc),但对于向量a,b,c,(a·
b)·
c=a·
(b·
c)一般
不成立.这是因为(a·
b)·
c表示一个与c共线的向量,而a·
(b·
c)表示一个
与a共线的向量,而c与a不一定共线,所以(a·
b)·
c=a·
(b·
c)一般不成立.
1.若e是单位向量,则a·e=e·a=|a|cos<a,e>;
2.若a,b是非零向量,则a·b=0⇔a⊥b;
3.a·a=|a|2,即|a|= ·;
4.cos<a,b>=
·
(|a||b|≠0);
||||
5.|a·b|≤|a||b|,当且仅当a∥b时等号成立.
名师点析常用运算公式
(1)(a+b)·
是
.
5
解析易知||2=||2+||2,C=90°,cos B=13,
5
所以 cos <, >=cos(180°-B)=-cos B=- .
13
所以 ·=||·||cos(180°-B)
=13×5× -
5
13
答案-25
=-25.
a·b=
.
解析 a·b=|a||b|cos <a,b>=2× 3×cos 30°=2× 3 ×
答案3
3
2
=3.
课前篇自主预习
激趣诱思
知识点拨
二、投影
1.如图,已知两个非零向量 a 和 b,作=a,=b,
过点 A 向直线 OB 作垂线,垂足为 A',得到 a 在 b 上的投影 γ=',γ
2024-2025学年高一数学必修第二册(北师版)教学课件第二章-§4平面向量基本定理及坐标表示
(, ∈ ),则 + 的值是(
1
5
A.-
B.
1
5
2
5
C.-
D.
)
2
5
解题提示:建立适当的直角坐标系,运用向量的坐标运算求解.由题意知,
,,三点共线,则 = ,用 和表示出 ,根据,,三点共线,
可得到的值,整理化简即可得到和的值,从而可得答案.
高中数学
新知学习
一、平面向量基本定理
如果 和 是同一平面内两个不共线的向量,那么对该平面内任意一个向量,存在唯一的一对实数1,2 ,
使=11 + 22.
我们把不共线的向量和叫作表示这一平面向量的一组基,记为{,}.
若基中的两个向量互相垂直,则称这组基为正交基.在正交基下向量的线性表示称为正交分解.
5
B.(2 , 2) C.(-1,12)
)
D.(5,4)
解析:因为=(2,8),=(-3,4),所以=-=(-5,-4).因为=,
1
5
即为的中点,所以=2 =(− 2 , −2),
5
1
所以=+=(2,8)+(− 2 , −2)=(− 2 , 6).
3
∴ ( 2 − 1)+2 +(2 + 2 )( + 2 )=0,则(4 + 4 − 1)+( + 2 )=0.
又,不共线,∴{
1
4
3
+ 2 =0,
4
= − 5 ,
4
解得{
∴
+
=
.
8
5
= 5 .
+ 4 − 1=0,
1
5
A.-
B.
1
5
2
5
C.-
D.
)
2
5
解题提示:建立适当的直角坐标系,运用向量的坐标运算求解.由题意知,
,,三点共线,则 = ,用 和表示出 ,根据,,三点共线,
可得到的值,整理化简即可得到和的值,从而可得答案.
高中数学
新知学习
一、平面向量基本定理
如果 和 是同一平面内两个不共线的向量,那么对该平面内任意一个向量,存在唯一的一对实数1,2 ,
使=11 + 22.
我们把不共线的向量和叫作表示这一平面向量的一组基,记为{,}.
若基中的两个向量互相垂直,则称这组基为正交基.在正交基下向量的线性表示称为正交分解.
5
B.(2 , 2) C.(-1,12)
)
D.(5,4)
解析:因为=(2,8),=(-3,4),所以=-=(-5,-4).因为=,
1
5
即为的中点,所以=2 =(− 2 , −2),
5
1
所以=+=(2,8)+(− 2 , −2)=(− 2 , 6).
3
∴ ( 2 − 1)+2 +(2 + 2 )( + 2 )=0,则(4 + 4 − 1)+( + 2 )=0.
又,不共线,∴{
1
4
3
+ 2 =0,
4
= − 5 ,
4
解得{
∴
+
=
.
8
5
= 5 .
+ 4 − 1=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 立体几何初步
最新北师大版高一数学必修2全册 完整课件
1.简单几何体
最新北师大版高一数学必修2全册 完整课件
ቤተ መጻሕፍቲ ባይዱ
1.1简单旋转体
最新北师大版高一数学必修2全册 完整课件
1.2简单多面体
最新北师大版高一数学必修2全册 完整课件
习题1—3
最新北师大版高一数学必修2全册 完整课件
4.空间图形的基本关系与公理
最新北师大版高一数学必修2全册 完整课件
3.三视图
最新北师大版高一数学必修2全册 完整课件
3.1简单组合体的三视图
最新北师大版高一数学必修2全册 完整课件
3.2由三视图还原成实物图
最新北师大版高一数学必修2全册 完整课件
习题1—1
最新北师大版高一数学必修2全册 完整课件
2.直观图
最新北师大版高一数学必修2全册 完整课件
习题1—2
最新北师大版高一数学必修2全册 完整课件
最新北师大版高一数学必修2全 册完整课件目录
0002页 0048页 0091页 0128页 0194页 0260页 0295页 0360页 0410页 0435页 0470页 0520页 0563页 0602页 0660页 0662页 0811页
第一章 立体几何初步 1.1简单旋转体 习题1—1 习题1—2 3.1简单组合体的三视图 习题1—3 4.1空间图形基本关系的认识 习题1—4 5.1平行关系的判定 习题1-5 6.1垂直关系的判定 习题1—6 7.1简单几何体的侧面积 7.3球的表面积和体积 阅读材料 蜜蜂是对的 本章小结 第二章 解析几何初步