数控加工误差主动补偿方法

合集下载

数控加工的补偿方法

数控加工的补偿方法

数控加工的补偿方法在20世纪六七十年代的数控加工中没有补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,这样容易产生错误。

补偿的概念出现以后,大大地提高了编程的工作效率。

在数控加工中有刀具半径补偿、刀具长度补偿和夹具补偿。

这三种补偿方法基本上能解决在加工中因刀具形状而产生的轨迹问题。

1、刀具半径补偿在数控机床进行轮廓加工时,由于刀具有一定的半径(如铣刀半径),因此在加工时,刀具中心的运动轨迹必须偏离实际零件轮廓一个刀具半径值,否则实际需要的尺寸将与加工出的零件尺寸相差一个刀具半径值或一个刀具直径值。

此外,在零件加工时,有时还需要考虑加工余量和刀具磨损等因素的影响。

有了刀具半径补偿后,在编程时就可以不过多考虑刀具直径的大小了。

刀具半径补偿一般只用于铣刀类刀具,当铣刀在内轮廓加工时,刀具中心向零件内偏离一个刀具半径值;在外轮廓加工时,刀具中心向零件外偏离一个刀具半径值。

当数控机床具备刀具半径补偿功能时,数控编程只需按工件轮廓进行,然后再加上刀具半径补偿值,此值可以在机床上设定。

程序中通常使用G41/G42指令来执行,其中G41为刀具半径左补偿,G42为刀具半径右补偿。

根据ISO标准,沿刀具前进方向看去,当刀具中心轨迹位于零件轮廓右边时,称为刀具半径右补偿;反之,称为刀具半径左补偿。

在使用G41、G42进行半径补偿时,应采取如下步骤:设置刀具半径补偿值;让刀具移动来使补偿有效(此时不能切削工件);正确地取消半径补偿(此时也不能切削工件)。

当然要注意的是,在切削完成且刀具补偿结束时,一定要用G40使补偿无效。

G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地退出工件后,才能执行G40命令来取消补偿。

2、刀具长度补偿根据加工情况,有时不仅需要对刀具半径进行补偿,还要对刀具长度进行补偿。

程序员在编程的时候,首先要指定零件的编程中心,才能建立工件编程的坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。

数控加工中常用的三种补偿方法

数控加工中常用的三种补偿方法

数控加工中常用的三种补偿方法1.坐标补偿:坐标补偿是指在机床上根据加工实际情况对加工轨迹做出调整,使得加工尺寸达到设计要求的一种方法。

常见的坐标补偿有以下几种形式:(1)G40/G41/G42坐标补偿:G40是取消刀具补偿,G41是左侧刀具补偿,G42是右侧刀具补偿。

通过设定G40、G41、G42来实现在切削路径上实际加工尺寸的自动调整。

(2)G43/G44/G49坐标补偿:G43是工件长度补偿,G44是工件半径补偿(常用于车削),G49是取消工件长度或半径补偿。

(3)G51坐标变换补偿:G51用于进行坐标变换,可以通过设定坐标系原点的偏移来实现坐标补偿功能。

2.刀具半径补偿:刀具半径补偿是指根据实际刀具半径与设计刀具半径之间的差异,通过在程序中设定刀具补偿值,使得实际加工尺寸达到设计要求的一种补偿方法。

(1)G41/G42刀具半径补偿:G41是左侧刀具半径补偿,G42是右侧刀具半径补偿。

通过设定G41或G42及刀具补偿值来实现切削路径尺寸的自动调整。

(2)G43/G44刀具长度补偿:G43是刀具长度补偿,G44是刀具半径补偿。

在加工中,通过设定刀具长度或刀具半径补偿值,使得实际加工尺寸达到设计要求。

3.工件半径补偿:工件半径补偿是指根据实际工件半径与设计工件半径之间的差异,通过在程序中设定工件半径补偿值,使得实际加工尺寸达到设计要求的一种补偿方法。

(1)G41/G42/G43工件半径补偿:G41是加工左侧边缘补偿,G42是加工右侧边缘补偿。

通过设定G41或G42及工件半径补偿值来实现工件边缘尺寸的自动调整。

G43是工件长度补偿,通过设定工件长度补偿值来调整工件的实际长度。

(2)G49工件长度或半径补偿取消:G49用于取消工件长度或半径补偿功能,即恢复到原始设计尺寸。

以上是数控加工中常用的三种补偿方法的介绍,通过合理使用这些方法,可以使得加工尺寸更加精确,提高加工效率和质量。

数控加工中的三种补偿和补偿技巧

数控加工中的三种补偿和补偿技巧

三种补偿在数控加工中有3种补偿:刀具长度的补偿;刀具半径补偿;夹具补偿。

这三种补偿基本上能解决在加工中因刀具外形而产生的轨迹问题。

下面是三种补偿在一般加工编程中的应用。

一、刀具长度补偿:1.刀具长度的概念刀具长度是一个很重要的概念。

我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。

长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。

每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm 的钻头和一把长为350mm的丝锥。

先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,假如两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。

此时假如设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z (或Z)补偿了丝锥的长度,保证了加工零点的正确。

2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。

另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。

3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。

使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。

使用刀具长度作为刀长补偿的理由如下:首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。

数控机床误差与补偿

数控机床误差与补偿
通过控制机床内部和外部的温度,减小温度变化对机床精度 的影响。
误差补偿法
通过软件或硬件方法,对机床的热变形进行补偿,减小或消 除热误差对加工精度的影响。
04
几何误差补偿
几何误差来源与分类
01
制造误差
由于机床零部件制造精度不足导致 的误差。
热误差
由于机床运行过程中温度变化导致 的误差。
03
02
装配误差
电气误差补偿
通过调整电机的电气参数,如电 流、电压等,来减小或消除由于 电机性能差异和传动系统误差引 起的误差。
传感误差补偿
通过使用高精度的传感器来检测 机床的实际位置和姿态,并将这 些信息反馈给控制系统,以实现 误差的实时补偿。
软件补偿
数学模型补偿
通过建立机床的数学模型,并利用软件算法对模型进行优化,以减小或消除误差。这种方法需要精确的数学模型和高 效的算法支持。
感谢您的观看
THANKS
几何误差补偿方法
硬件补偿
通过改进机床零部件制造和装配精度来降低几何误差。
软件补偿
利用数控系统软件对几何误差进行补偿,如螺距误差 补偿、反向间隙补偿等。
复合补偿
结合硬件和软件补偿方法,通过优化机床结构设计和 改进控制系统实现更精确的几何误差补偿。
05
运动误差补偿
运动误差产生机理
机械传动误差
由于数控机床的机械传动系统(如丝杠、齿轮等)存在制造和装 配误差,导致运动过程中产生误差。
自适应补偿技术
总结词
自适应补偿技术是一种能够自动调整和 优化补偿参数的误差补偿方法。
VS
详细描述
传统的误差补偿方法通常需要人工设定和 调整补偿参数,操作复杂且精度不高。自 适应补偿技术能够根据加工过程中的实时 反馈信息,自动调整和优化补偿参数,实 现动态误差补偿,进一步提高数控机床的 加工精度和稳定性。

数控机床几何误差及其补偿方法

数控机床几何误差及其补偿方法

数控机床几何误差及其补偿方法汇报人:日期:contents •数控机床几何误差概述•数控机床几何误差检测技术•数控机床几何误差建模与辨识•数控机床几何误差补偿技术•数控机床几何误差补偿实例分析•总结与展望目录01数控机床几何误差概述几何误差的定义与来源机床使用过程中磨损、变形等因素。

制造和装配过程中的精度限制。

机床结构设计缺陷。

定义:几何误差是指数控机床在加工过程中,由于机床本身几何元素的形状、位置和运动误差导致加工精度降低的现象。

来源几何误差对机床加工精度的影响影响加工件的尺寸精度和形状精度。

导致表面质量下降,增加粗糙度。

降低机床的整体性能,缩短使用寿命。

几何误差补偿的意义和必要性必要性现代制造业对加工精度的要求越来越高,几何误差补偿是实现高精度加工的关键手段。

几何误差补偿有助于延长机床使用寿命,提高机床的经济效益。

随着数控机床技术的发展,机床结构越来越复杂,几何误差的影响也越来越显著,需要相应的补偿技术来应对。

意义:通过几何误差补偿,可以提高数控机床的加工精度,保证产品质量,提高生产效率,降低生产成本。

02数控机床几何误差检测技术激光干涉检测技术利用激光的干涉现象进行高精度测量,能够准确地检测数控机床的几何误差。

高精度测量非接触式测量实时动态测量激光干涉检测技术采用非接触式测量方式,避免了传统接触式测量中可能引入的附加误差。

该技术具备实时动态测量能力,能够在数控机床运行过程中进行误差检测,提高检测效率。

03激光干涉检测技术0201球杆仪检测技术经济实用相较于其他高精度检测技术,球杆仪检测技术具有较低的成本,适用于大批量数控机床的误差检测。

便于携带球杆仪体积较小,便于携带,可实现在不同机床间的快速检测。

原理简单球杆仪检测技术基于简单的机械原理,通过测量球杆仪在数控机床上的运动轨迹来推断机床的几何误差。

电容传感检测技术非接触式检测与激光干涉检测技术类似,电容传感检测技术也采用非接触式检测方式,确保测量精度不受附加误差影响。

探析数控加工中的误差及补偿方法

探析数控加工中的误差及补偿方法

探析数控加工中的误差及补偿方法摘要:近年来,我国的数控工程建设的发展迅速,数控机床是制造价值创造的基础,是基础制造能力的核心。

数控机床的水平在一定程度上反映了制造水平。

高精度的误差补偿是先进数控机床的主要发展方向。

如何提高数控机床的精度:一是在应用良好的温度和振动控制的同时减小误差,消除或减少设计和制造过程中可能产生误差的原因,提高数控机床的机械精度和动态性能,控制机床内外环境的措施、气流湍流等方法来减少误差原因的影响。

二是通过软件工程和人为制造错误消除数控机床故障的纠错方法。

相对而言,数控机床精度的提高会遇到很多困难,其中包括改进空间的限制、高昂的成本、不断改变的加工条件、机器故障等。

因此要想提高数控机床的精度,需要进一步研究数控机床的误差补偿技术。

关键词:数控加工;误差;补偿方法引言数控机床是在传统机床加工的基础上,引入计算机信息技术,是现代机械生产的必不可少的设备,不仅大大提升了零部件的生产加工性能,而且有效提升零部件的生产效率。

在实际的生产加工过程中,受制于生产性能、工艺、方案等多方面因素,极大程度限制国内数控机床的生产加工优势,在一定程度上也影响了数控机床加工精度,基于此,本文在探究数控机床加工精度主要故障的基础上,分析探究数控机床加工精度故障诊断方法及维修方案,为有效提升数控机床加工效率提供理论依据。

1数控加工技术特点1.1高效率机械加工的流程通常包括精加工、打磨以及抛光等,这些流程使加工制造所需要耗费的时间较长,而长时间的运行也会导致高温的持续产生,对于设备的寿命以及产品的质量都会产生较大的影响。

而数控加工技术的应用能够有效减少生产过程中高温的产生,降低高温对于设备运行效率的影响,从而提高加工的效率。

1.2高智能数控加工的另一大特点就是智能化,这也是得益于时代的不断发展进步,数控加工的智能化水平对于机械加工的影响非常大,在其作业过程中,数控技术智能系统可以根据相关产品的各项变量参数等进行科学合理的优化设置,优化机械加工的流程,对于加工全流程中可能出现的问题进行预判,通过不断的动态调整使得设备始终保持在稳定安全的工作状态。

数控机床误差实时补偿技术及应用

数控机床误差实时补偿技术及应用

数控机床误差实时补偿技术及应用数控机床误差实时补偿技术是一种通过测量和监控机床的误差,然后通过算法和控制系统来实时修正这些误差的技术。

它可以显著提高机床的加工精度和稳定性,使得加工的零件更加精确和一致。

下面将介绍数控机床误差实时补偿技术的原理、方法和应用。

数控机床误差实时补偿技术的原理是基于机床的误差源和误差特点进行建模,并通过控制系统实时调整机床的运动轨迹来补偿这些误差。

机床的误差主要包括几何误差、动态误差和热误差等。

几何误差是由机床结构、加工刀具和工件等因素引起的,例如导轨的尺寸偏差、传动装置的误差等。

动态误差是由机床运动过程中的惯性力、弹性变形等因素引起的,例如加工过程中的振动和共振等。

热误差是由于机床在工作过程中产生的热源,例如主轴的热膨胀和冷却液的温度变化等。

数控机床误差实时补偿技术的方法一般包括两个步骤:误差测量和误差补偿。

误差测量是通过传感器或测量仪器实时检测机床的误差,并将其反馈给控制系统。

常用的测量方法包括激光干涉法、电容法和光栅尺等。

误差补偿是在控制系统中根据误差测量结果进行数学建模和分析,并根据补偿算法调整控制指令,使得机床的运动轨迹达到期望的精度。

数控机床误差实时补偿技术在实际应用中具有广泛的应用领域。

首先,它可以应用于航空航天领域的高精度零件加工。

航空航天零件对精度和质量要求非常高,数控机床误差实时补偿技术可以有效提高加工精度,降低零件的尺寸偏差和表面光洁度,从而提高航空航天产品的性能和可靠性。

其次,它可以应用于汽车制造领域的模具加工。

模具制造对精度和一致性要求较高,数控机床误差实时补偿技术可以有效减少模具的尺寸和形状偏差,提高模具的加工质量和寿命。

此外,它还可以应用于医疗器械制造、光学仪器加工等领域。

总之,数控机床误差实时补偿技术是一种通过测量和监控机床的误差,并通过控制系统实时调整机床运动轨迹的技术。

它可以显著提高机床的加工精度和稳定性,广泛应用于航空航天、汽车制造、医疗器械等领域,为实现高精度和高质量的零件加工提供了重要的技术手段。

浅谈数控加工的误差补偿技术

浅谈数控加工的误差补偿技术

浅谈数控加工的误差补偿技术摘要:随着机械制造技术的不断发展,对数控加工的精度要求也不断提高,在一般制造精度条件下,可以利用误差补偿技术在不增加生产成本的前提下提高机械加工的精度,促使机床总体精度上升到一个全新水平,实现超精密加工。

本文就针对数控加工的误差补偿技术进行探讨,分析数控加工误差产生的主要原因,并提出几种误差补偿的方法。

关键词:数控加工;误差补偿一、数控加工误差产生的具体原因数控加工过程中工艺系统误差是客观存在而无法避免的,只能采取措施予以补偿。

误差会影响到刀具与工件的位置关系,对工件的加工精度产生直接影响。

当然,多种因素均会导致加工误差的产生,比如工艺系统自身的结构状态、切削过程等,而在数控机床加工工件时产生误差的主要原因来自于两个方面,即加工方法误差与调安误差。

在工件加工过程中要求实际误差不得大于工件加工精度允许值。

其中操作人员进行工件安装或刀具调整时不准确是出现调安误差的主要原因;而导致加工方法误差的主要原因则比较复杂,包括以下几个方面:首先,工艺系统的几何误差,这类误差主要来自于加工方法的原理误差、机床误差、刀具及夹具误差、工艺系统磨损误差等等;其次,工艺系统受力及受热后发生变形而导致的误差;最后测量误差及编程误差。

在上述三种导致出现加工方法误差的因素中,又以工艺系统的几何误差及热变形误差为主要原因。

当然,实际加工过程中其它多种因素均会导致误差的产生,其中不仅有系统误差,还有随机误差,也可能是不同因素综合作用的结果。

二、数控加工中误差补偿技术措施数控机床加工过程中可以通过两种方法提高加工精度,降低加工误差,一种是误差预防法,另外一种则是误差补偿法,单纯采用误差预防法只能在某种程度上提高加工精度,却无法完全消除加工误差,并且采用误差预防法需要投入大量成本,因此本文就将讨论的重点放在误差补偿法的研究。

(一)误差补偿技术的种类所谓误差补偿法就是在数控系统中输入一定形式的测量误差,其主要作用是减弱或完全抵消当前误差,在掌握原始误差的特点及规律后,再通过分析、统计、归纳建立误差数学模型,最终使得人为误差与原始误差的数值相等、方向相反,最大程度上降低加工误差,提高工件的加工精度等级。

数控加工误差主动补偿方法分析

数控加工误差主动补偿方法分析

数控加工误差主动补偿方法分析作者:唐亚华来源:《中国科技纵横》2017年第03期摘要:在数控加工误差主动补偿分析中,采用抽样检测的方法,能够提升误差补偿的准确性。

在数控加工中采用主动补偿法进行分析,能够显著降低加工活动中产生的误差,从而提升生产效率。

本文从数控加工误差分析的角度展开讨论,提出几点有利于提升机器加工效率的可行性建议。

关键词:数控加工;误差数据;主动补偿;实验分析中图分类号:TG659 文献标识码:A 文章编号:1671-2064(2017)03-0061-01在误差控制中,技术人员应该对当前刀具路径坐标偏差的位置进行准确记录,并且采用适当的方法消除当前偏差的矢量。

在流水线生产作业的过程中,刀具会受到连续作业的影响发生位置偏移,技术人员根据偏移的情况制定偏位角分析表格,从而校正刀具路径前瞻,在加工误差主动补偿的过程中采用捅补结合的方式,加工出与设计一致的工件。

1 数控加工误差主动补偿主要流程设计分析在数控加工误差控制中,采用主动补偿方法能够显著提升成品合格率,降低产品的误差率。

在误差主动补偿分析与处理活动中,采用科学的补偿处理流程,能够提升工件生产的进度。

为了提升数控加工的效率,选择合适的加工方式,能够从源头上控制加工误差过大问题的产生。

但是,在数控机床生产的过程中,由于刀具发生不规则滚动现象,加工误差难以避免。

在生产过程中,根据流水线中输入的控制点变形值,与原定生产计划的数据标准值进行对比和分析,才能够选择正确的补偿方法,选择合适的插值方式避免误差扩大化现象产生。

采集输入控制点变形值的数据实测值,并且将其与仿真值进行对比分析,找到能够满足控制刀具面型协调变形的优化值。

当装夹具误差动态补偿功能开启时,采用动态记录与计算的方法,计算旋转轴位置的机床旋转中心偏差矢量。

2 数控加工误差主动补偿方法分析2.1 误差主动补偿刀具工艺参数设计根据曲线、曲面的情况,进行图形的选择输出,并且生成刀具轨迹。

数控加工中的误差及补偿方法分析

数控加工中的误差及补偿方法分析

数控加工中的误差及补偿方法分析摘要:数控机床现在应用十分普遍,相比普通机床,无论是生产效率还是加工精度均有了明显提升,可保证产品质量满足市场要求。

以提高数控加工精度为目的,分析各种误差产生的原因,以及寻求高精度误差补偿方法,保障数控机床可以稳定运行,维持高精度加工状态。

文章就数控加工误差类型以及补偿方法进行了简单的分析。

关键词:数控加工;高精度;误差补偿数控加工存在着精度高且柔性自动化等特点,对于复杂零件的加工优势突出,被越发广泛的应用于制造业,且取得了显著成果。

为了进一步做到高精度加工,不断减小误差,就需要在生产加工中总结各类误差的表现形式,并分析其产生的原因,寻求更有效的误差补偿方法,例如通过控制温度与振动从根源上来减少甚至消除误差,或者是应用软件工程来进行纠错等,更大程度上实现高精度数控加工。

一、数控加工误差分析1.加工误差分类数据加工生产过程中受多种因素影响而产生加工误差,一类是根据误差条件可分为静态误差、准静态误差和动态误差。

其中,静态误差即数控加工过程中准确度和误差不会因为时间影响而发生变化。

准静态误差是在给定工作环境中会缓慢的发生变化,但是该条件下会始终保持不变,例如特定工作条件下产生的准静态误差本质并不会发生变化或者是变化速度非常缓慢[1]。

另一类则是根据误差来源可分为位置误差与非位置误差。

位置误差即数控加工生产过程中,随着零部件的运动,产生的运动轨迹以及位置与理想条件有着一定偏差,同时期望运动轨迹以及位置与指令相差较大,如几何误差。

数控机床不同零件与零件在生产运动过程中因外界条件的干扰,零部件的实际运行轨迹以及位置与理想条件偏差较大,包括力误差、热误差以及刀具磨损误差等。

2.误差产生原因数控加工生产中因各因素的影响不可避免的会有误差形成,促使切削工艺中工件与刀具的位置发生变化,影响零部件加工精度。

一般数控加工误差产生原因可从加工方法误差与调安误差两个方面分析,只有当误差总和低于允许差值时,才能够做到高精度数控加工。

数控机床的误差补偿

数控机床的误差补偿

数控机床的误差补偿随着我国经济的飞速发展,数控机床作为新一代工作母机,在机械制造中已得到广泛的应用,精密加工技术的迅速发展与零件加工精度的不断提高,对数控机床的精度也提出了更高的要求。

尽管用户在选购数控机床时,都十分看重机床的位置精度,特别是各轴的定位精度与重复定位精度。

但是这些使用中的数控机床精度到底如何呢? 大量统计资料表明:65.7%以上的新机床,安装时都不符合其技术指标;90%使用中的数控机床处于失准工作状态。

因此,对机床工作状态进行监控与对机床精度进行经常的测试是非常必要的,以便及时发现与解决问题,提高零件加工精度。

目前数控机床位置精度的检验通常采用国际标准ISO230-2或国家标准GB10931-89等。

同一台机床,由于采用的标准不同,所得到的位置精度也不相同,因此在选择数控机床的精度指标时,也要注意它所采用的标准。

数控机床的位置标准通常指各数控轴的反向偏差与定位精度。

对于这二者的测定与补偿是提高加工精度的必要途径。

一、反向偏差在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达与步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。

对于采用半闭环伺服系统的数控机床, 反向偏差的存在就会影响到机床的定位精度与重复定位精度, 从而影响产品的加工精度。

如在G01切削运动时, 反向偏差会影响插补运动的精度, 若偏差过大就会造成“圆不够圆,方不够方”的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。

同时,随着设备投入运行时间的增长, 反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加, 因此需要定期对机床各坐标轴的反向偏差进行测定与补偿。

(1)反向偏差的测定反向偏差的测定方法:在所测量坐标轴的行程内, 预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差,在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值, 以所得平均值中的最大值为反向偏差测量值。

数控加工误差主动补偿方法

数控加工误差主动补偿方法

数控加工误差主动补偿方法周静;陈蔚芳;曲绍朋【摘要】为提高零件的加工精度,提出了基于公差的局部误差补偿法,并通过修正数控程序主动补偿加工误差.分析零件加工表面误差的特点,根据实际公差要求找出超出公差范围的变形关键区域,修正其切削深度以实现误差的局部补偿.得到刀位控制点修正的切深后,重新规划带有误差补偿值的刀具轨迹.结合实际加工精度确定走刀步距和行距,经过后置处理生成零件修正的数控代码.通过实例验证了上述方法的可行性.【期刊名称】《计算机集成制造系统》【年(卷),期】2010(016)009【总页数】6页(P1902-1907)【关键词】误差补偿;数控编程;数控加工;薄壁零件【作者】周静;陈蔚芳;曲绍朋【作者单位】南京航空航天大学,机电学院,江苏,南京,210016;南京航空航天大学,机电学院,江苏,南京,210016;北京航空精密机械研究所,北京,100076【正文语种】中文【中图分类】TH1640 引言数控加工过程通常分为离线零件编程(加工前)、在线加工与监控(加工中)和检验处理(加工后)三个阶段。

目前,对数控加工质量保证的研究主要侧重于中后期两个阶段[1]。

对于零件加工质量的保证,其主要矛盾是加工过程中的工件由于切削力、夹紧力、切削热和残余应力而产生了变形,薄壁件加工因刚度低,加工变形现象则更为显著。

为了加工出合格的薄壁零件,可以在数字控制(Num erical Control,NC)加工的前期阶段采取相应的措施控制工件的变形,如通过修正NC程序克服薄壁件对基于零件理想几何形状所生成的数控刀具轨迹代码的有效性的限制等。

在对薄壁件进行误差主动补偿之前,应充分分析加工变形预测量,采取合理的补偿方法,以达到有效改进加工质量的目的。

目前,国内外有关误差补偿技术的研究成果很多,也存在一些不足。

DE'PINCE'P等人针对刀具加工时受力变形引起工件加工误差的问题,提出考虑公差的镜像补偿法[2];KRIS M Y L等人研究了基于刀杆变形的腔槽加工过程的误差补偿方法[3],但该模型没考虑工件变形,不适合薄壁件加工;Ratchev S在对薄壁件加工变形预测的基础上,通过修正单个方向的刀具路径来补偿加工变形[4-5];胡韦化提出利用变形等值线偏移铣削路径,来补偿薄壁件腹板加工变形的工艺方法[6];楼文明根据变形轮廓线的不同和变形程度来修正铣削参数,实现加工变形的补偿[7];李益锋针对薄壁矩形板零件,提出了通过刀心位置偏置和刀具轴线偏摆同时控制X,Z两轴向变形的策略[8]。

数控加工的参数补偿方法及相关装置

数控加工的参数补偿方法及相关装置

数控加工的参数补偿方法及相关装置下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!数控加工的参数补偿方法及相关装置介绍数控加工是一种精密加工技术,在工业生产中起着至关重要的作用。

数控机床几何误差及其补偿方法的

数控机床几何误差及其补偿方法的

几何误差的分类与识别
分类
根据误差的性质和来源,几何误差可分为定位误差、直线度误差、角度误差、垂 直度误差等。
识别
通过机床的精度检测、工件的加工精度检测等手段,可以识别并量化几何误差。 同时,借助先进的测量设备和检测技术,如激光干涉仪、球杆仪等,可以实现对 几何误差的高精度检测与识别。
02
CATALOGUE
未来发展趋势与挑战
发展趋势
随着制造技术的不断发展,对数控机床的精 度要求越来越高。未来,数控机床几何误差 补偿方法将更加注重实时性、自适应性和智 能化。同时,随着深度学习、大数据等技术 的发展,基于数据驱动的误差建模和补偿方 法将成为重要研究方向。
面临的挑战
在实际应用中,数控机床的误差往往受到多 种因素的影响,如温度、湿度、磨损等。如 何建立更加精确的误差模型,以及如何设计 更加有效的误差测量方法和补偿策略,将是 未来面临的主要挑战。
来源
几何误差主要来源于机床的制造误差、装配误差、磨损误差以及热变形等因素 。
几何误差对机床加工精度的影响
影响加工精度
几何误差会导致刀具与工件之 间的相对位置发生偏差,直接
影响工件的加工精度。
影响表面质量
几何误差可能引起刀具在加工过程 中的振动,从而影响工件的表面质 量。
影响生产效率
为了弥补几何误差带来的加工精度 损失,可能需要增加加工时间、调 整切削参数等,从而降低生产效率 。
实施效果
基于混合补偿法的机床精度提升 方案实施后,机床的加工精度得 到显著提高,满足了高精度零件 的加工需求。
案例三:先进补偿策略在高精度机床中的应用
问题描述
高精度机床对加工精度要求极高,传统的几何误差补偿方法难以满足其要求。

数控加工中的误差及补偿方法

数控加工中的误差及补偿方法

数控加工中的误差及补偿方法摘要:数控机床是制造价值创造的基础,是基础制造能力的核心。

数控机床的水平在一定程度上反映了制造水平。

高精度的误差补偿是先进数控机床的主要发展方向。

如何提高数控机床的精度:一是在应用良好的温度和振动控制的同时减小误差,消除或减少设计和制造过程中可能产生误差的原因,提高数控机床的机械精度和动态性能,控制机床内外环境的措施、气流湍流等方法来减少误差原因的影响。

二是通过软件工程和人为制造错误消除数控机床故障的纠错方法。

相对而言,数控机床精度的提高会遇到很多困难,其中包括改进空间的限制、高昂的成本、不断改变的加工条件、机器故障等。

因此要想提高数控机床的精度,需要进一步研究数控机床的误差补偿技术。

关键词:数控加工;误差;补偿方法引言近年来,随着经济的迅速发展,我国已步入信息技术时代,自动化机械设备数量日益增多,对工业发展和人们日常生活的影响程度不断提升。

数控机床是数字控制下机床的简称,是一种带有程序控制系统的自动化机床,能够有效地解决和处理复杂、精密、多样化、小批量零部件的加工,代表着现代机床控制技术的发展趋势和方向,属于典型的机电一体化产品。

在实际加工过程中,数控机床受诸多因素的影响,会出现加工误差,影响其工作质量,导致其加工的产品出现误差,影响生产企业的经济效益和未来的发展。

1数控机床误差分类1.1操刀问题企业对相关产品实施加工与制造中,想要确保加工与制造的质量与效率,就需选择好操刀路线与换刀方法,特别是大规模生产与制造中,若操刀的线路缺乏合理性、操刀的位置不够准确,就会导致换刀的时间延长,影响到生产的效率提高。

鉴于此,在操作中,需确保操作的熟练度,做好操刀线路的控制,对刀具与换刀的顺序进行合理选择,以确保机械加工的效率,并实现企业的生产效益提升。

1.2设备运行产生的误差①传统轴反转误差。

数控机床在运转的过程中,坐标轴移动或静止都会使机床驱动轴经过加速或者是减速的流程,在此过程中受设备运行的惯性作用以及驱动加、减速度的影响,容易产生加工误差。

数控加工中的三种补偿和补偿技巧

数控加工中的三种补偿和补偿技巧

三种补偿在数控加工中有3种补偿:刀具长度的补偿;刀具半径补偿;夹具补偿。

这三种补偿基本上能解决在加工中因刀具外形而产生的轨迹问题。

下面是三种补偿在一般加工编程中的应用。

一、刀具长度补偿:1.刀具长度的概念刀具长度是一个很重要的概念。

我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。

长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。

每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm 的钻头和一把长为350mm的丝锥。

先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,假如两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。

此时假如设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z (或Z)补偿了丝锥的长度,保证了加工零点的正确。

2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。

另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。

3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。

使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。

使用刀具长度作为刀长补偿的理由如下:首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。

数控机床误差补偿关键技术及其应用

数控机床误差补偿关键技术及其应用

数控机床误差补偿关键技术及其应用一、本文概述随着现代制造技术的飞速发展,数控机床作为精密制造的核心设备,其加工精度和效率直接决定了产品质量和生产效益。

然而,在实际应用过程中,数控机床不可避免地会受到各种误差的影响,如几何误差、热误差、力误差等,这些误差的存在严重影响了机床的加工精度和稳定性。

因此,对数控机床误差补偿关键技术的研究与应用,已成为当前制造业领域的研究热点和难点。

本文旨在深入探讨数控机床误差补偿关键技术及其应用。

对数控机床误差的来源和分类进行详细分析,明确误差补偿的重要性和必要性。

重点介绍了几种常用的误差补偿方法,包括基于误差模型的补偿、基于在线测量的补偿以及基于的补偿等,并对各种方法的优缺点进行了比较和评价。

结合具体的应用案例,详细阐述了误差补偿技术在提高数控机床加工精度和效率方面的实际效果,为实际生产和科研工作提供了有益的参考和借鉴。

本文的研究不仅有助于深化对数控机床误差补偿技术的理解,也为推动制造业的转型升级和提高产品质量提供了有力的技术支持。

二、数控机床误差来源与分类数控机床作为现代制造业的核心设备,其加工精度直接决定了产品的质量和性能。

然而,在实际运行过程中,数控机床会受到多种因素的影响,导致误差的产生。

这些误差不仅会影响机床的加工精度,还会缩短机床的使用寿命。

因此,对数控机床的误差来源进行深入分析,并采取有效的补偿措施,对于提高机床的加工精度和稳定性具有重要意义。

几何误差:这是指由于机床结构本身的设计、制造和装配不当所导致的误差。

例如,机床床身、导轨、主轴等部件的几何形状误差、位置误差以及运动误差等。

热误差:数控机床在工作过程中,由于内部热源和外部热环境的影响,会产生温度变化,从而导致机床结构发生热变形,产生误差。

热误差是数控机床误差中的重要组成部分,对加工精度的影响较大。

动态误差:这是指机床在运动过程中,由于惯性力、切削力等动态因素导致的误差。

例如,机床在高速运动时,由于惯性力的作用,会使机床结构发生弹性变形,从而影响加工精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16卷第9期计算机集成制造系统Vol.16No.92010年9月Computer Integrated Manufacturing SystemsSep.2010文章编号:1006-5911(2010)09-1902-06收稿日期:2009-11-17;修订日期:2010-02-26。

Received 17Nov.2009;accepted 26Feb.2010.基金项目:总装备部预研基金资助项目(51318020202)。

Fou nda tion item:Project supported by the Gen eral Arm am ent Department Pre -researchFoundation,China(No.51318020202).数控加工误差主动补偿方法周 静1,陈蔚芳1,曲绍朋2(1.南京航空航天大学机电学院,江苏 南京 210016;2.北京航空精密机械研究所,北京 100076)摘 要:为提高零件的加工精度,提出了基于公差的局部误差补偿法,并通过修正数控程序主动补偿加工误差。

分析零件加工表面误差的特点,根据实际公差要求找出超出公差范围的变形关键区域,修正其切削深度以实现误差的局部补偿。

得到刀位控制点修正的切深后,重新规划带有误差补偿值的刀具轨迹。

结合实际加工精度确定走刀步距和行距,经过后置处理生成零件修正的数控代码。

通过实例验证了上述方法的可行性。

关键词:误差补偿;数控编程;数控加工;薄壁零件中图分类号:T H 164 文献标志码:AActive error compensation methods for numerical control machiningZH O U J ing 1,CH EN Wei -f ang 1,Q U Shao -p eng 2(1.Colleg e o f M echanical &Electr ical Eng ineer ing,Nanjing U niv er sity of A eronautics &A stro nautics,N anjing 210016,China;2.China P recision Engineering Inst itute for Aircraft Industr y,Beijing 100076,China)Abstract:T o improv e machining accuracy of w orkpieces,a local er ror compensation method based on to ler ance w as pr oposed.A nd the machining erro rs w ere compensated act ively by mo dif ying Numerical Contro l(NC)codes.Err or values of parts surface wer e analyzed,and acco rding to to lerance r equirements,the cr itical deflectio n areas beyond tolerance r ang e wer e obtained,and actual cutt ing depth of t he ar eas w as amended to com pensat e local err or s.T o ol path w ith err or compensated v alues w as re -planned when actually modified cutting depth w as decided.A nd then step and ro w spacing w ere determ ined accor ding to actual machining accur acy.By post -pro cessing ,modified N C codes wer e achiev ed for wo rkpiece machining.A n ex ample w as used to demo nstr ate the feasibility of this approach.Key words:er ro r compensation;numer ical co nt rol prog ramming ;numerical co nt ro l machining ;t hin -w alled par ts0 引言数控加工过程通常分为离线零件编程(加工前)、在线加工与监控(加工中)和检验处理(加工后)三个阶段。

目前,对数控加工质量保证的研究主要侧重于中后期两个阶段[1]。

对于零件加工质量的保证,其主要矛盾是加工过程中的工件由于切削力、夹紧力、切削热和残余应力而产生了变形,薄壁件加工因刚度低,加工变形现象则更为显著。

为了加工出合格的薄壁零件,可以在数字控制(Num er ical Co n -trol,NC)加工的前期阶段采取相应的措施控制工件的变形,如通过修正NC 程序克服薄壁件对基于零件理想几何形状所生成的数控刀具轨迹代码的有效性的限制等。

在对薄壁件进行误差主动补偿之前,应充分分析加工变形预测量,采取合理的补偿方法,以达到有效改进加工质量的目的。

目前,国内外有关误差补偿技术的研究成果很多,也存在一些不足。

DE p PINCE p P 等人针对刀具加工时受力变形引起工件加工误差的问题,提出考虑公差的镜像补偿法[2];KRIS M Y L 等人研究了第9期周 静等:数控加工误差主动补偿方法基于刀杆变形的腔槽加工过程的误差补偿方法[3],但该模型没考虑工件变形,不适合薄壁件加工;Ratchev S 在对薄壁件加工变形预测的基础上,通过修正单个方向的刀具路径来补偿加工变形[4-5];胡韦化提出利用变形等值线偏移铣削路径,来补偿薄壁件腹板加工变形的工艺方法[6];楼文明根据变形轮廓线的不同和变形程度来修正铣削参数,实现加工变形的补偿[7];李益锋针对薄壁矩形板零件,提出了通过刀心位置偏置和刀具轴线偏摆同时控制X ,Z 两轴向变形的策略[8]。

以上文献提出的加工策略都是针对工件的变形进行的全局误差补偿,对整体变形曲线曲面进行统一处理,而实际加工时,可以通过分析得到关键变形区,从而对其进行选择性的误差补偿,在满足加工精度的同时提高数控加工效率。

能产生优质高效加工结果的优化刀轨,不可能由一种统一的算法得到。

因此,本文在分析薄壁件变形规律的基础上,提出了结合实际公差要求的局部误差补偿法,并在Visual Basic 6.0环境下开发出了基于公差的局部误差补偿和全局优化补偿相结合的数控程序自动生成系统,此系统能够自动生成具有误差补偿功能的数控加工程序。

1 误差主动补偿机理的研究生成具有误差补偿功能的数控程序,其核心就是根据加工变形值的大小,在数控编程时让刀具在原有走刀轨迹中按变形程度附加补偿值,来补偿变形引起的加工误差,然后根据不同的变形情况判断切削深度是否合理,在此基础上修正切深。

111 镜像对称补偿法切削力对薄壁零件引起的工件变形较大,变形回弹较严重,致使加工后的实际表面偏离理论表面,形成加工误差,如图1所示。

为减小实际表面和理论表面之间的误差,依据产生误差的大小,将刀具偏移理论轨迹一个距离,即可减少误差[9]。

具体补偿时,刀具偏移量采用镜像对称法得到,假如加工变形的大小为D ,将刀具沿此变形的反方向偏移D 距离,图2以一端固定、一端铰支的悬臂梁为例,阐明了加工变形误差的补偿思路。

图中假设x d 为刀具轨迹上某点的理想刀位,由于工件受力变形,实际加工点位置变为x a ,此时刀具就应反向偏置x d 与x a 的差值D (x d ),调整刀位到x c 的位置。

根据离线补偿原理,只要能够准确预测加工变形的大小,通过修正各个刀位点处的数控加工代码,就可以有效消除工件变形引起的加工误差。

具体进行误差补偿处理的算法如下:(1)在名义刀具轨迹上取n 个关键控制点P i (i =1,2,,,n)。

n 根据加工精度确定,精度高则取较大的n 值。

控制点的密度根据轨迹上的变形程度确定,刚度差的地方变形较大,取较密的控制点。

(2)根据实测值或仿真结果,得到各P i 处的变形量D i 。

(3)按实际加工要求确定补偿量u i 。

通常采取两种方式确定:¹采用镜像补偿法,把变形实测值或仿真变形值直接取作实际补偿量;º采用优化补偿方式[10],根据仿真优化补偿量(结合柔性力学模型多次迭代产生[11-12])得到实际优化补偿量u i ,L i =L c iD c i#D i 。

(1)式中:D i 为第i 个工位的实际变形测量值,D c i 为第i 个工位的仿真变形量,u c i 为第i 个工位的仿真优化补偿量。

(4)按式(2)计算修正后各控制点P c i 的位置:P c i =P i +u i 。

(2)(5)将所有控制点P c i (i =1,2,,,n)进行插值计算,得到修正后的刀具轨迹。

1903计算机集成制造系统第16卷112 基于公差的局部误差补偿法实际加工中,如果对任意位置都进行误差补偿,则会降低加工效率。

实际的加工表面往往因变形而最终变为曲面(如图3),但是只要误差落于公差带T d 范围内,此零件即可满足尺寸要求。

因此在误差补偿时,可以按公差要求进行。

本文提出了基于公差的局部误差补偿法,由于加工零件时,表面轮廓线均是渐变过程,可选取加工后工件表面上的关键点进行刀具轨迹的修正(如图3),找出变形超差的边界点Q 0,Q 1,然后修正超差部分(Q 0-Q 1)刀位的实际切深,以补偿变形,使其满足公差要求。

具体实现过程如下:(1)确定变形的关键区域 设加工面的变形公差带宽为T d ,根据实测或仿真所得的关键控制点的变形值拟合变形分布图,则变形量u 超出公差范围的刀位点即为变形关键点,一系列变形关键点构成变形关键区域。

没有超差的部分命名为原始加工区域,对其保持名义切深。

(2)修改变形关键区域的切深 根据前面得到的关键区域分离出变形量,结合111节的方法确定对应的补偿量,然后修正关键区域的实际切削深度。

(3)修改刀位文件 对于直线加工,原始加工区域仍通过一条G 指令完成,而关键区域由于采用修正的切深,实际加工时按曲线加工进行。

为实现刀轨的光顺,在不同区域的相接处采用圆弧连接,如图3b 所示,在变形关键区域上找出离边界点Q 1最近的关键控制点P j ,按补偿原理确定P j 点修正后的实际刀位P c j ,然后在原始加工区域上确定刀位连接点P jj ,使其与P c j 构成的圆弧加工段相切于原始区域的直线加工段,从而使不同区域的相接尽量平缓过渡,减小因切深突变带来的加工误差。

相关文档
最新文档