数学思想方法应用

合集下载

常见数学思想方法应用举例

常见数学思想方法应用举例

常见数学思想方法应用举例1.归纳法:归纳法是一种从特殊到一般的推理方法,通常应用于证明一些性质在所有情况下成立。

例如,我们可以使用归纳法来证明1+2+3+...+n的总和公式为n(n+1)/2、首先,当n=1时,左侧为1,右侧为1(1+1)/2,成立。

接下来,假设对于一些k成立,即1+2+3+...+k=k(k+1)/2、那么当n=k+1时,左侧为1+2+3+...+k+(k+1),右侧为(k+1)((k+1)+1)/2、我们可以将左侧拆分为k(k+1)/2+(k+1),然后代入归纳假设得到右侧,因此可以推断1+2+3+...+n=n(n+1)/2对于所有自然数n成立。

2.递推法:递推法是一种逐步推进的思想方法,在每一步中根据前一步的结果得到下一步的结论。

递推法常常应用于数列和数列的性质推导。

例如,斐波那契数列就是一个典型的应用递推法得到的数列。

斐波那契数列的定义是:第一个和第二个数都是1,从第三项开始,每一项都等于前两项的和。

即,F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)。

通过递推法,我们可以计算任意给定项的斐波那契数列。

3.反证法:反证法是一种通过假设命题的否定形式为真,再通过推导推出与已知事实矛盾的结论,从而推断原命题为真的思想方法。

例如,我们想要证明根号2是无理数。

假设根号2是有理数,可以表示为p/q,其中p和q是互质的。

如果我们将这个假设代入p^2/q^2=2,可以得到p^2=2q^2、这意味着p的平方是一个偶数,因此p也是一个偶数(偶数的平方是偶数)。

我们可以将p表示为2k,其中k是一个整数,那么我们得到(2k)^2=2q^2,即4k^2=2q^2,化简为2k^2=q^2、这表明q的平方也是偶数,进一步可以推断q也是偶数。

但这与p和q是互质的假设相矛盾,因此根号2不可能是有理数,即它是无理数。

4.数学归纳法:数学归纳法是一种证明自然数性质的方法,适用于证明具有递推性质的命题。

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。

例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。

2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。

逆向思维常用于解决逻辑推理和问题求解。

例如,将一个求和问题转化为找到使得等式成立的数。

3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。

这种思想方法常用于解决复杂的问题,可以降低问题的难度。

4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。

例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。

5.推理与证明:通过逻辑推理和数学证明解决问题。

推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。

6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。

抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。

7.反证法:通过反证得到正证结论。

反证法常用于证明一些结论的唯一性或否定性。

通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。

8.猜想与验证:通过猜想和验证的方法解决问题。

猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。

9.近似与估算:通过近似和估算的方法解决问题。

近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。

以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。

数学思想方法的综合应用

数学思想方法的综合应用

► 探究点二 使用函数方法解决非函数问题例2 (1)已知{a n }是一个等差数列,且a 2=1,a 5=-5,则数列{a n }前n 项和S n 的最大值是________.(2)长度都为2的向量OA →,OB →的夹角为60°,点C 在以O 为圆心的圆弧AB (劣弧)上,OC →=mOA→+nOB →,则m +n 的最大值是________. 【分析】 (1)根据方程思想求出数列的首项和公差,建立S n 关于n 的函数;(2)将向量坐标化,建立m +n 关于动向量OC →的函数关系.(1)4 (2)233【解析】 (1)设{a n }的公差为d ,由已知条件,⎩⎨⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2.S n =na 1+n n -12d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.(2)建立平面直角坐标系,设向量OA →=(2,0),向量OB →=(1,3).设向量OC →=(2cos α,2sin α),0≤α≤π3.由OC →=mOA→+nOB →,得(2cos α,2sin α)=(2m +n ,3n ),即2cos α=2m +n,2sin α=3n ,解得m =cos α-13sin α,n =23sin α.故m +n =cos α+13sin α=233sin ⎝ ⎛⎭⎪⎫α+π3≤233.变式题若a >1,则双曲线x 2a 2-y 2a +12=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5) B 【解析】 e 2=⎝ ⎛⎭⎪⎫c a 2=a 2+a +12a 2=1+⎝⎛⎭⎪⎫1+1a 2,因为1a 是减函数,所以当a >1时,0<1a<1,所以2<e 2<5,即2<e < 5.► 探究点三 联用函数与方程的思想例3 已知函数f (x )=x (x -a )2,g (x )=-x 2+(a -1)x +a (其中a 为常数).设a >0,问是否存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得f (x 0)>g (x 0)?若存在,请求出实数a 的取值范围,若不存在,请说明理由;【解答】 假设存在,即存在x 0∈⎝⎛⎭⎪⎫-1,a 3,使得, f (x 0)-g (x 0)=x 0(x 0-a )2-[-x 20+(a -1)x 0+a ]=x 0(x 0-a )2+(x 0-a )(x 0+1)=(x 0-a )[x 20+(1-a )x 0+1]>0,当x 0∈⎝ ⎛⎭⎪⎫-1,a 3时,又a >0,故x 0-a <0,则存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得x 20+(1-a )x 0+1<0, ①当a -12>a3即a >3时,⎝ ⎛⎭⎪⎫a 32+(1-a )⎝ ⎛⎭⎪⎫a 3+1<0得a >3或a <-32,∴a >3; ②当-1≤a -12≤a 3即0<a ≤3时,4-a -124<0得a <-1或a >3,∴a 无解.综上:a >3.► 探究点四 以形助数探索解题思路例4 (1)不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)(2)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .⎝ ⎛⎭⎪⎫14,-1B .⎝ ⎛⎭⎪⎫14,1C .(1,2)D .(1,-2)【分析】 (1)把不等式的左端看作一个函数,问题等价于这个函数的最大值不大于不等式右端的代数式的值,通过画出函数图象找到这个函数的最大值即可;(2)画出抛物线,根据抛物线上的点到焦点的距离等于其到准线的距离,把问题归结为两点之间的距离.(1)A (2)A 【解析】 (1)f (x )=|x +3|-|x -1|=⎩⎨⎧-4x <-3,2x +2-3≤x <1,4x >1.画出函数f (x )的图象,如图,可以看出函数f (x )的最大值为4,故只要a 2-3a ≥4即可,解得a ≤-1或a ≥4.正确选项为A.(2)点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图,PF +PQ =PS +PQ ,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,代入y 2=4x 得x =14,故点P 坐标为⎝ ⎛⎭⎪⎫14,-1,正确选项为A.(1)⎣⎢⎡⎦⎥⎤-43,7 (2)⎝⎛⎦⎥⎤-∞,-32∪[-1,+∞) 【解析】 (1)g (x )=f ′(x )=3x 2+4x -a ,g (x )=f ′(x )在区间(-1,1)上存在零点,等价于3x 2+4x =a 在区间(-1,1)上有解,等价于a 的取值范围是函数y =3x 2+4x 在区间(-1,1)上的值域,不难求出这个函数的值域是⎣⎢⎡⎭⎪⎫-43,7.故所求的a 的取值范围是⎣⎢⎡⎭⎪⎫-43,7. (2)由⎩⎨⎧Δ1=4a2-43-4a <0,Δ2=a -12-4a 2<0,Δ3=2a2+8a <0,解得-32<a <-1,再求它的补集,则a 的取值范围是:a ≤-32或a ≥-1.例4 (1)若cos ⎝ ⎛⎭⎪⎫π2+α=2sin ⎝ ⎛⎭⎪⎫α-π2,则sin(α-2π)sin(α-π)-sin ⎝ ⎛⎭⎪⎫5π2+αsin ⎝ ⎛⎭⎪⎫3π2-α=________.(2)函数f (x )=sin x +cos x +sin2x 的最小值是________.【分析】 (1)化简已知和求解目标,然后采取适当的方法;(2)把sin x +cos x 看做一个整体,用这个整体表示已知函数.(1)-35 (2)-54 【解析】 (1)已知条件即sin α=2cos α,求解目标即cos 2α-sin 2α.已知条件转化为tan α=2,求解目标转化为cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α,把已知代入得求解结果是-35. (2)令t =sin x +cos x ,则t 2=1+sin2x ,且t ∈[]-2,2.此时函数化为y =t +t 2-1=⎝⎛⎭⎪⎫t +122-54,故所求函数的最小值为-54.。

高中数学函数教学中渗透数学思想方法的应用

高中数学函数教学中渗透数学思想方法的应用

高中数学函数教学中渗透数学思想方法的应用
在高中数学教学中,函数是一个非常重要的概念。

函数作为数学中的一种基本关系,可以描述自然界和人类社会中的各种现象和规律。

通过函数的学习,可以帮助学生认识和理解数学思想方法,提高其数学素养。

一、渗透数学思想方法
渗透是指将某些元素渗透到另一些元素中,以达到更好的效果。

在数学教学中,渗透数学思想方法就是将数学概念、思想、方法渗透到各个学科中,以提高学生的综合素质。

具体包括以下几个方面:
1.将数学模型渗透到其他学科中。

数学模型是一种用数学语言描述现实世界的工具。

在高中数学教学中,我们可以将数学模型应用到其他学科中,例如物理、化学、生物等领域。

通过应用数学模型,可以帮助学生更好地理解和掌握其他学科中的知识。

在高中数学函数教学中,应用渗透数学思想方法,可以帮助学生更好地掌握和理解函数的概念、性质和应用。

例如,在物理学中,可以应用函数描述物体的运动状态;在生物学中,可以应用函数描述生物体的生长变化;在商业管理中,可以应用函数描述市场的需求变化等。

例如,可以将函数的复合、反函数和逆函数等概念应用到其他学科中,帮助学生理解和掌握其他学科中的知识。

同时,可以培养学生的思考能力和解决问题的能力。

例如,可以应用导数和微积分的方法解决函数相关的问题,在解决实际问题时,可以应用求函数的最大值、最小值等方法。

通过应用数学方法,可以培养学生解决问题的能力和应用数学的能力。

高中数学思想的方法与运用

高中数学思想的方法与运用

谈高中数学思想的方法与运用一、数学思想方法的几种形式1、数学化归的思想方法。

数学化归的实质是把未知转化成已知的问题来解决,把复杂问题转变为简单问题来解决,这是处理数学问题时的一种基本思路。

在基本运算中,将减法化成加法,除法化成乘法;在方程中,化未知为已知、化复杂为简单是解方程和方程组的基本思想,具体表现为把“多元”变成“一元” ,“高次”变为“低次”,把复杂图形转变为基本图形,把立体几何问题转变为平面几何问题等等。

2、数形结合的思想方法。

数形结合是从感知向思维过渡的中间环节,是帮助学生理解掌握教材的重要手段。

集中体现为两个方面,一是对直观图形赋予代数意义,要求学生能根据直观图形将实际问题抽象为数学问题;二是对抽象的数学问题赋予直观图形的意义,以形帮数。

3、概括归纳的思想方法。

概括是在思维中将同一种类型的对象共同的本质属性集中起来,结合为一般类型的属性。

归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性。

一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用、定积分在经济生活中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等。

4、演绎的思想方法。

演绎推理是培养学生逻辑思维能力的主要内容。

数学问题不仅要解决“是什么”的问题,更重要的是要解决“是怎样想到的”。

要进一步引导学生对概念定义的结构特征加以分析,在此基础上再启发诱导学生演绎推理出其基本性质、应用范围,利用定义解题、证题,进而发展学生的思维能力。

二、掌握渗透数学思想方法的途径,提高数学素养1、在知识的形成过程中渗透。

课程标准明确指出:“数学教学不仅要教给学生数学知识,而且还要揭示获取知识的思维过程。

”这一思维过程就是科学家对数学知识和方法形成的规律性的理性认识的过程。

任何一个概念,都经历着由感性到理性的抽象概括过程;任何一个规律,都经历着由特殊到一般的归纳过程。

(完整版)数学思想方法在中学教学中的应用

(完整版)数学思想方法在中学教学中的应用

数学思想方法在中学教学中的应用数学与统计学院张春月全日制普通高级中学数学教学大纲中规定:“高中数学的基础知识主要是高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。

”义务教育数学新大纲指出:“初中数学的基础知识主要是代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。

”把数学知识中的数学思想和方法纳入基础知识范畴,这充分体现了我国数学教育工作者对于数学课程发展的一个共识。

这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然要求。

一、中学数学思想方法的主要内容中学数学中的基本数学思想如下。

两大“基石”思想:符号化与变元表示思想(换元思想、方程思想、参数思想) 与集合思想(分类思想、交集思想、补集思想) 。

两大“支柱”思想:对应思想(函数思想、变换思想、递归思想、数形结合思想) 与公理化与结构思想(公理化思想、结构思想、极限思想) 。

两大“主梁”思想:系统与统计思想(整体思想、分解组合思想、运动变化思想、最优化思想;随机思想、统计调查思想、假设检验思想、量化思想) 与化归与辩证思想(纵向化归、横向化归、同向化归、逆向化归思想, 对立统一、互变、一分为二思想) 。

中学数学中的基本数学方法如下。

五种科学认识方法:观察与实验,比较与分类,归纳与类比,想象、直觉与顿悟。

四种推理方法:综合法与分析法,完全归纳法与数学归纳法,演绎法,反证法与同一法。

三种求解方法:数学模型法,关系映射反演方法,构造法。

二、提高数学思想方法教学的意识性对数学思想方法教学缺乏意识性是一个较普遍的问题。

主要表现在:制定教学目的时,对具体知识、技能训练的教学要求比较明确,而忽视数学思想方法的教学要求;教学时,往往注重知识的结论,而削弱知识形成过程中思想方法的训练;知识应用时,又偏重于就题论题,忽视数学思想方法的揭示与提炼;小结复习时,只注意知识的系统整理,忽视思想方法的归纳提高等等,致使数学教学停留在较低的层次上。

数学中的思想方法及应用

数学中的思想方法及应用

数学中的思想方法及应用数学在人类的发展进程中扮演着重要的角色,它不仅是一门学科,更是一种思想方法和一种工具。

数学思想方法包括抽象思维、逻辑思维、系统思维和创造思维等多个方面,它们在解决实际问题、推动科学技术进步、培养人的思维能力等方面起着重要作用。

首先,抽象思维是数学思想方法中的重要部分。

数学通过抽象的方式将实际问题或对象转化为符号或模型,以便进行研究和分析。

抽象使得数学问题的本质更加清晰和简明,使得数学可以研究和解决更加一般化、复杂化的问题。

例如,在几何学中,我们可以将具体的线段、三角形等几何对象抽象为点、线、面等基本几何元素进行研究。

通过抽象,我们可以更好地理解并解决几何学中的各种问题。

逻辑思维是数学思想方法的另一个重要方面。

数学思想符合严密的逻辑规律,通过推理和证明来达到对问题的深入理解。

逻辑思维让我们在分析和解决问题时能够清晰地进行论证和推断。

数学逻辑思维的一个典型例子是证明。

在证明过程中,我们使用逻辑推理的方法建立命题之间的联系和结论的正确性。

逻辑思维在数学中的应用使得数学成为一门严密的学科,并为其他科学领域提供了重要的理论基础。

系统思维也是数学思想方法的重要组成部分。

数学思维可以理解为一种系统性的思考和分析问题的方式。

数学问题很少是孤立存在的,通常存在于一个系统中。

系统思维帮助我们把握问题的全貌,并通过分析系统中的各个部分和相互关系,找到问题的规律和解决办法。

例如在微积分中,我们通过对函数的整体分析,从整个变化过程中找到了导数和积分的概念,从而建立了微积分的理论体系。

创造思维则是数学思想方法中最富有创造性和想象力的一部分。

数学创造思维是指通过运用已有的数学知识和方法,创造性地解决新问题或发现新规律。

数学创造思维需要充分发挥想象力和灵感,同时结合逻辑推理进行验证和证明。

创造思维广泛应用于数学研究和解决实际问题的过程中。

例如,在代数学中,通过创造性地引入新的概念和符号,人们扩展了数的概念并发展了复数和矩阵等数学工具,为解决实际问题提供了丰富的数学方法。

数学思想方法在三角函数中的应用

数学思想方法在三角函数中的应用

数学思想方法在三角函数中的应用四川 张继海数学思想方法属于方法范畴,但更多地带有思想、观点的属性,是数学知识在更高层次上的抽象和概括.中学教学与高考考查中,常用的数学思想有:化归与转化的思想,函数与方程的思想,数形结合的思想,分类与整合的思想,特殊与一般的思想,有限与无限的思想,或然与必然的思想等.本文主要说明的是,数学思想方法在三角函数中的应用.在三角函数一章中,主要用到的数学思想方法有:1.化归与转化的思想 把未知化归为已知,如用诱导公式把求任意角的三角函数值逐步化归为求锐角的三角函数值;把特殊化归为一般,如把正弦函数的图象逐步化归为函数y = A sin (ωx + φ),x ∈R (其中A >0,φ>0)的简图,把已知三角函数值求特殊范围内的角逐步化归为求适合条件的所有角的集合等;等价化归,如进行三角函数式的化简、恒等变形和证明三角恒等式.2.函数与方程思想 在某些等式条件中,余弦定理,特别是已知三角函数值求角时,可将其看作是关于某个元的方程(组),借助解方程(组)的思想使问题得以解决.3.数形结合的思想 如将角的研究纳入直角坐标系下,利用三角函数线作正弦、余弦、正切函数的图象,利用图象求解某些三角等式或不等式问题.4.分类与整合的思想 如已知角α 的某一三角函数值,求α 的其余三角函数值或求角α 时,则应分情况讨论α 的范围或所在象限,用正弦定理解已知两边和一边的对角这类斜三角形问题时亦应分类讨论.例1 在△ABC 中,已知364=AB ,66cos =B ,AC 边上的中线BD =5,求sin A 的值.分析与解 设E 为BC 的中点,连接DE ,则DE ∥AB ,且DE =36221=AB .设BE = x ,在△BDE 中,利用余弦定理可得: BD 2 = BE 2 + ED 2-2 BE ·ED ·cos ∠BED ,∴ 5663622382=⋅⋅++x x , 3x 2 + 4x -7 = 0,解得 x = 1,37-=x (舍去), 故 BC = 2.从而 328cos 2222=⋅⋅-+=B BC AB BC AB AC ,即 3212=AC .∵ 630sin =B , ∴ 3063212sin 2⋅=A , 1470sin =A . 评注 本题内涵丰富,结构特别,有很多(至少5种)解法,同学们不妨一试.它不仅对方程的思想、数形结合的思想有较深入的考查,而且对等价转化的思想方法也有很高的要求.例2 已知锐角三角形ABC 中,53)sin(=+B A ,51)sin(=-B A .(1)求证:tan A = 2tan B ;(2)设AB = 3,求AB 边上的高.分析与解 题目给出的条件是两角和与差的正弦值,用和、差角公式将其展开,得53sin cos cos sin =+B A B A , ①B EC D A51sin cos cos sin =-B A B A . ② 此时有sin A ,cos A ,sin B ,cos B 四个未知数,显然不能通过两个方程求出,因此将sin A cos B ,cos A sin B 看成两个未知数(二元一次方程组),将其整体解出,得52cos sin =B A ,51sin cos =B A .由于两个等式相除可得正切与余切,tan A ·cot B = 2,即tan A = 2 tan B .(这也可从转化待定式 ⇐ BBA A cos sin 2cos sin = ⇐ sin A cosB = 2cos A sin B 得到有效支撑). 由第(1)问的结论,能得关于tan A 与tan B 的一个方程 tan A = 2 tan B .③ 还需要再建立一个关于tan A 与tan B 的方程,这个方程可由已知条件53)sin(=+B A 及ππ<+<B A 2求得,先得出43)tan(-=+B A ,展开后,得43tan tan 1tan tan -=-+B A B A .④ 解由③、④组成的方程组,可求出 62tan +=A ,262tan +=B .求CD 时,同样需要列方程:AB = AD + DB =623tan tan +=+CDB CD A CD ,由AB = 3,可解得AB 边上的高62+=CD . 评注 本题是对三角恒等变形及求值问题的考查,重点放在方程思想和转化思想上,其解题过程是方程思想与转化思想的最佳体现.例3 已知函数y = tan (2x + ϕ)的图象过点)0,12(π,则ϕ 可以是( ).A .6π-B .6π C .12π- D .12π分析与解 ∵ y = tan (2x + ϕ)过点)0,12(π,∴ 0)6t a n (=+ϕπ,即 πϕπk =+6,6ππϕ-=k ,k ∈Z .当 k = 0时,得 6πϕ-=,选A .评注 将点代入后,化为已知三角函数值求角的问题,这时应通过坐标系写出满足条件的角的终边所在象限的所有角,再结合题目要求求出其解.例4 已知α,β,γ 是成公比为2的等比数列(α∈[ 0,2π ]),且sin α,sin β,sin γ 也成等比数列.求α,β,γ 的值.分析与解 ∵ α,β,γ 是成公比为2的等比数列, ∴ β = 2α,γ = 4α. (减少变量,消元) ∵ sin α,sin β,sin γ 成等比数列,∴ βγαβsin sin sin sin = ⇔ αααα2sin 4sin sin 2sin = ⇒ cos α = 2cos 2α-1, 即 2cos 2α-cos α-1 = 0,(化归为关于cos α 的二次方程)解得 cos α = 1,或 21cos =α.当 cos α = 1时,sin α = 0,与等比数列的首项不为零矛盾,故cos α = 1应舍去.当 21cos =α,α∈[ 0,2π ] 时,32πα= 或 34πα=.所以 32πα=,34πβ=,38πγ= 或 34πα=,38πβ=,316πγ=. 评注 本题通过将文字叙述向等式(符号)转化,使用方程思想(消元)化为关于cos α的一元二次方程,并时时注意字母取值范围,而简捷获解.例5 已知 6 sin 2α + sin α·cos α-2cos 2α = 0,],2[ππα∈,求)32sin(πα+的值.分析与解 首先从已知出发,需要将二次式转化为一次式(因式分解转化),(或减少函数名种类,转化为关于tan α 的一元二次方程),有(3sin α + 2cos α)(2sin α-cos α)= 0, 即 3sin α + 2cos α = 0 或 2sin α-cos α = 0.由已知条件可知cos α≠0,所以2πα≠,即),2(ππα∈,从而tan α<0,∴ 32tan -=α.其次从待求式出发,有 3sin 2cos 3cos 2sin )32sin(παπαπα+=+=)sin (cos 23cos sin 22αααα-+=αααααααα222222sin cos sin cos 23sin cos cos sin +-⋅++ =αααα222tan 1tan 123tan 1tan +-⋅++=ααα22tan 22tan 3tan 23+-+. 于是将tan α 的值代入,不难计算出)32sin(πα+的值等于261235-,为所求.评注 本题对已知和待求式一再进行等价转化,目的是沟通它们的联系,寻到一个联结点tan α.事实上,若借助于计算器(机),亦可由32tan -=α直接求出角α≈-33.69︒,代入)32sin(πα+快速求得其值为-0.12845,与上述结果一致.例6 若513sin 3sin =αα,求cos α 的值. 分析与解 αααααs i n )2s i n (s i n 3s i n +==513sin sin 2cos cos 2sin =+ααααα, ∴513sin sin 2cos cos sin 22=+ααααα, 即 5132cos cos 22=+αα,518cos 42=α, 109cos 2=α.∴ 10103cos ±=α.评注 本题通过和角公式、倍角公式(或变形)对已知条件一再实施转化,使其和结论联系起来.例7 函数xxx f cos 2cos 1)(-=( ).A .在]2,23(),23,[,],2(),2,0[πππππππ在上递增上递减B .在]2,23(),,2[,]23,(),2,0[πππππππ在上递增上递减C .在]23,(),2,0[,]2,23(],,2(πππππππ在上递增上递减D .在]2,2(),2,0[,],23(),23,0[ππππππ在上递增上递减分析与解 将函数f (x )简单化、明显化,有x x x x x x x f cos |sin |2cos sin 2cos )sin 21(1)(22==--=是分段函数, 即⎪⎩⎪⎨⎧<-≥=.0sin ,tan 2,0sin ,tan 2)(x x x x x f(1)在一、二象限时sin x >0,x x f tan 2)(=单调递增;(2)在三、四象限时sin x <0,x x f tan 2)(-=单调递减. 于是,结合备选项,选A .评注 本题综合考查三角函数式的化简及分段函数知识,同时较好地考查了三角函数的性质,整个解题过程十分深刻地蕴含了多种数学思想的应用.例8 函数y = A ·sin (ω x + ϕ)(ω>0,| ϕ |<2π,x ∈的部分图象如图所示,则函数表达式为( ).A .)48sin(4ππ+-=x yB .)48sin(4ππ-=x yC .)48sin(4ππ--=x yD .)48sin(4ππ+=x y 分析与解 由图象可以看出,A = 4,262+=T , ∴ T = 16, 于是 8162ππω==. 将点(-2,0)(或(6,0))代入函数)8sin(4ϕπ+=x y 中,得0)4sin(=+-ϕπ,∴ πϕπ=+-4(比照到正弦函数五点作图简法,此处对应于π),∴ )458sin(4ππ+=x y .又 ∵ 2||πϕ<, ∴ 函数表达式为 )48sin(4πππ++=x y =)48sin(4ππ+-x ,选A .评注 本题考查给定三角函数图象,求三角函数表达式,考查方程、数形结合和化归的数学思想.自我检测一、选择题1.对任意的锐角α,β,下列不等关系中正确的是( ). D A .sin (α + β)> sin α + sin β B .sin (α + β)> cos α + cos β C .cos (α + β)< sin α + sin β D .cos (α + β)< cos α + cos β2.当20π<<x 时,函数xx x x f 2sin sin 82cos 1)(2++=的最小值为( ). CA .2B .32C .4D .34 解 将函数式等价化为xx x x x x x x x x x f tan 1tan 4cos sin 4sin cos cos sin 2sin 8cos 2)(22+=+=+=,所以,当20π<<x 时,有f (x )≥ 4,选C 。

数学思想方法在生活中的应用

数学思想方法在生活中的应用

数学思想方法在生活中的应用
1、运用数学概率统计原理加快购物速度
现在的购物大多是在网上完成,买家要提出购买的条件,比如“要什么
产品,多少价格”,这时运用概率统计,令购物者根据一定的概率抽取
最适合他们的产品或者最优惠的价格,使购物者可以根据自己的需要
以更快速度和更方便的方式购买到他们想要的东西。

2、数学规律用于家居美化
许多家里装修师傅都运用数学美学原则和规律进行装修,比如运用金
砖铺面以及长宽比例等来进行美化装修。

一般而言,数学美学会探究
一种物品的运动情况,通过把一定的数学方程式分析运用于空间装饰,使家居美化变得更加合理、整齐、恰当。

3、数学思维改变餐饮消费
近年来,越来越多的餐饮企业依靠数学思维的改变为消费者提供更多
的服务和更多的选择,比如听说在一些餐饮厅里,顾客可以根据自己
的需求自由组合食物。

客户根据自己的口味,随着自己的喜好,按照
自己的实时把组合菜单拼成一份,实现快捷又有设计感的点餐方式。

数学思想方法的应用

数学思想方法的应用

数学思想方法的应用
数学思想方法是指在解决数学问题时所运用的思维方式和解题方法。

数学思想方法在解决实际问题时也可以运用。

数学思想方法的应用可以帮助人们通过系统地分析、推理、解决问题,提高解决问题的能力和效率。

下面介绍一些数学思想方法的应用:
归纳法是指通过一系列的具体案例来推广一个总的结论。

归纳法常用于证明数学定理,也可用于解决实际问题。

归纳法的应用可以帮助人们对一类问题进行分析和总结,提高解决问题的能力。

推理法是指从已知条件出发,通过逻辑推理,得出结论的方法。

推理法常用于解决数学问题,也可用于解决实际问题。

推理法的应用可以帮助人们对问题进行逻辑分析,提高解决问题的能力。

推广法是指从一个具体的问题出发,扩展到更广泛的范畴,得出普遍结论的方法。

推广法常用于证明数学定理,也可用于解决实际问题。

推广法的应用可以帮助人们对一个问题进行扩展,提高解决问题的能力。

模拟法是指通过模拟实际情况来解决问题的方法。

模拟法常用于解决实际问题,也可用于解决数学问题。

模拟法的应用可以帮助人们对实际情况进行模拟,提高解决问题的能力。

总之,数学思想方法的应用可以帮助人们通过系统地分析、推理、解决问题,提高解决问题的能力和效率。

数学归纳思想在小学数学中的应用

数学归纳思想在小学数学中的应用

数学归纳思想在小学数学中的应用
数学归纳法是数学中一种常用的证明方法,其基本思想是先证明一个命题在某个特定的情况下成立,然后证明在这个情况下成立的话,那么在下一个情况下也会成立,从而推导出这个命题对于所有情况都成立。

1. 数字模式的发现与总结
数学归纳法可以帮助学生发现并总结数字模式。

通过观察一些自然数的规律,学生可以利用数学归纳法验证这些规律是否对所有的自然数都成立。

例如,学生通过观察一些连续正整数的平方数的差值,可以发现这些差值是等差数列,然后利用数学归纳法证明这个结论对于所有正整数都成立。

2. 公式的推导与验证
3. 等式的证明
数学归纳法可以用于等式的证明。

例如,学生可以利用数学归纳法证明自然数的奇数和是一个平方数,即1+3+5+...+(2n-1) = n^2。

通过归纳基础和归纳步骤的证明,学生可以得到这个等式的正确性,并培养了解决问题的逻辑思维能力。

总之,数学归纳法在小学数学中的应用是非常广泛的。

通过帮助学生观察规律、总结规律、证明规律,数学归纳法不仅能够培养学生的数学思维能力,还能够提高他们的逻辑思维和推理能力,从而加深对数学的理解和掌握。

因此,在小学数学的教学中,应该适当引导学生运用数学归纳法解决问题,培养他们的数学思维能力和解决问题的能力。

数学思想和数学方法

数学思想和数学方法

数学思想和数学方法数学思想和数学方法在人类文明发展中起到了重要的推动作用。

数学思想是指人们对于数学概念、原理和定理的理解和认知,而数学方法则是人们在解决数学问题时采用的一种系统的思维方式和操作手段。

本文将就数学思想和数学方法的重要性以及其在实践中的应用进行探讨。

一、数学思想的重要性数学思想作为一种高度抽象的思维方式,不局限于实际应用,而是探求各个学科中的基本规律和普适性原则。

数学思想的重要性主要体现在以下几个方面:首先,数学思想具有普遍性。

数学思想在不同学科领域中都能得到应用,不仅能够解决数学问题,更能够帮助人们理清科学问题的逻辑关系和内在联系,从而推动各个学科的发展。

其次,数学思想具有严密性。

数学思想倡导严谨的逻辑推理和严密的证明过程,这种严谨性使得数学思想具有高度的准确性和可靠性,保证了数学结论的正确性。

最后,数学思想具有创造性。

数学思想的发展是源于人们对数学问题的思考和探索,每一次的突破都代表了一种创造力的体现。

数学思想的创造性不仅推动了数学学科的不断发展,更有助于人类创造力的培养和提升。

二、数学方法的应用数学方法是人们在解决数学问题时采用的一种系统的思维方式和操作手段。

它不仅可以用于数学学科本身,还可以应用于自然科学、工程技术、社会科学等各个领域。

以下将介绍数学方法在不同领域中的应用。

1. 自然科学领域在自然科学领域,数学方法被广泛运用于物理学、化学、生物学、地理学等各个学科中。

比如在物理学中,数学方法用于建立实验数据的数学模型,推导物理定律和方程式。

在化学中,数学方法用于计算化学反应的速率和平衡常数,优化化学合成的工艺。

在生物学中,数学方法可以分析生物群体的变化规律,模拟基因的传递和变异。

2. 工程技术领域在工程技术领域,数学方法被广泛应用于机械、电子、通信、材料等领域。

比如在机械工程中,数学方法用于机械结构的优化设计,运动学和动力学分析。

在电子工程中,数学方法用于电路模拟和信号处理。

数形结合思想方法在小学数学教学中的应用

数形结合思想方法在小学数学教学中的应用

数形结合思想方法在小学数学教学中的应用数形结合思想方法是指将数学知识与几何图形相结合,通过图形的形状、位置、变换等特性来解决数学问题。

这种方法可以帮助学生更好地理解抽象的数学概念,激发他们的数学兴趣和创造力。

在小学数学教学中,数形结合思想方法有以下几个方面的应用:一、几何图形的分类与属性的学习:通过观察各种几何图形的形状和属性,让学生进行分类和比较。

可以让学生观察多边形的边数和角数,并进行分类,如三角形、四边形等。

引导学生发现图形的对称性、相等性等性质,帮助他们掌握几何图形的基本属性。

二、几何图形的变换与对称性的学习:通过学习平移、旋转、翻折等变换操作,让学生理解几何图形的变化规律和对称性。

可以让学生进行变换操作,观察图形的形状和位置的变化,并总结规律。

引导学生发现图形的对称性,如点的对称、线的对称和面的对称等,并进行讨论和比较。

三、图形的面积与周长的学习:通过几何图形的面积和周长的计算,让学生理解面积和周长的概念,并掌握计算的方法。

可以通过平铺法、划分法等方式,让学生计算图形的面积,并比较大小。

通过测量图形的边长,让学生计算图形的周长,并进行比较和应用。

四、图形的位置与方位的学习:通过观察几何图形的位置和方位,让学生学习位置关系和方位概念。

可以让学生观察图形在平面内的位置,如上、下、左、右等,并进行描述和比较。

引导学生使用坐标系来表示图形的位置,并进行相应的运算和应用。

五、几何图形的应用:通过实际问题的解决,让学生应用几何图形的知识和技巧。

可以设计一些实际的问题,让学生根据图形的属性和关系进行分析和解答。

引导学生发现几何图形在日常生活中的应用,如建筑、地图等,并进行讨论和探究。

数形结合思想方法在小学数学教学中的应用可以帮助学生更好地理解抽象的数学知识,增强他们的几何直观和创造力,同时培养他们的问题解决能力和数学思维能力。

教师在教学中应重视培养学生的观察力和想象力,同时注重启发学生的思维,引导他们自主探究和合作学习,从而提高教学效果。

初中数学思想和方法总结

初中数学思想和方法总结

初中数学思想和方法总结初中数学思想和方法总结初中数学是学习数学的基础阶段,培养学生数学思想和方法的关键时期。

下面我将从数学思想和数学方法两个方面对初中数学进行总结。

一、数学思想1.抽象思维:初中数学要求学生具备抽象思维的能力。

在学习数学的过程中,学生需要通过观察、归纳和总结来发现问题的共性和规律,并将其抽象成数学概念或定理,以解决更广泛的数学问题。

2.逻辑思维:初中数学强调逻辑思维的重要性。

学生需要通过分析问题的关系、推理链条和证明过程,运用正确的逻辑推理来解决问题。

培养学生的逻辑思维能力,不仅能提高解题的准确性,还能培养学生的思考能力和创造力。

3.实际应用:初中数学注重将数学知识和方法应用于实际问题。

学生通过数学建模,将抽象的数学理论和现实问题相结合,从而培养实际应用数学的能力。

实际应用不仅能提高学生对数学的兴趣,还能加深对数学理论的理解和应用。

4.认知能力:初中数学要求学生具备较强的认知能力。

学生需要主动思考、积极探究问题的思维方式和方法,养成自主学习和解决问题的习惯。

通过主动思考和自主学习,学生能更好地掌握数学知识和方法。

5.创新思维:初中数学要求学生具备创新思维的能力。

学生需要在解决数学问题中寻找新的方法和策略,创造性地提出新的问题并寻找解决方案。

培养创新思维能力,能够帮助学生在面对繁琐的数学问题时灵活应对,提高解题的效率和准确性。

二、数学方法1.综合运用:初中数学要求学生将所学的数学知识和方法综合运用于实际问题中。

学生需要根据问题的特点,并结合已学的知识和方法,选择合适的方法和策略解决问题。

通过综合运用,学生能够更全面地理解和掌握所学的数学知识和方法。

2.分类整理:初中数学要求学生进行分类整理。

学生需要根据数学知识的性质和问题的特点,将问题进行分类整理,以便更好地掌握和应用相应的数学方法。

分类整理不仅能提高学生对数学知识的理解,还能培养学生的归纳和总结能力。

3.模型建立:初中数学要求学生通过建立数学模型,将实际问题转化成数学问题,并运用数学方法解决。

(完整版)数学思想方法在中学教学中的应用

(完整版)数学思想方法在中学教学中的应用

数学思想方法在中学教学中的应用数学与统计学院张春月全日制普通高级中学数学教学大纲中规定:“高中数学的基础知识主要是高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。

”义务教育数学新大纲指出:“初中数学的基础知识主要是代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。

”把数学知识中的数学思想和方法纳入基础知识范畴,这充分体现了我国数学教育工作者对于数学课程发展的一个共识。

这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然要求。

一、中学数学思想方法的主要内容中学数学中的基本数学思想如下。

两大“基石”思想:符号化与变元表示思想(换元思想、方程思想、参数思想) 与集合思想(分类思想、交集思想、补集思想) 。

两大“支柱”思想:对应思想(函数思想、变换思想、递归思想、数形结合思想) 与公理化与结构思想(公理化思想、结构思想、极限思想) 。

两大“主梁”思想:系统与统计思想(整体思想、分解组合思想、运动变化思想、最优化思想;随机思想、统计调查思想、假设检验思想、量化思想) 与化归与辩证思想(纵向化归、横向化归、同向化归、逆向化归思想, 对立统一、互变、一分为二思想) 。

中学数学中的基本数学方法如下。

五种科学认识方法:观察与实验,比较与分类,归纳与类比,想象、直觉与顿悟。

四种推理方法:综合法与分析法,完全归纳法与数学归纳法,演绎法,反证法与同一法。

三种求解方法:数学模型法,关系映射反演方法,构造法。

二、提高数学思想方法教学的意识性对数学思想方法教学缺乏意识性是一个较普遍的问题。

主要表现在:制定教学目的时,对具体知识、技能训练的教学要求比较明确,而忽视数学思想方法的教学要求;教学时,往往注重知识的结论,而削弱知识形成过程中思想方法的训练;知识应用时,又偏重于就题论题,忽视数学思想方法的揭示与提炼;小结复习时,只注意知识的系统整理,忽视思想方法的归纳提高等等,致使数学教学停留在较低的层次上。

浅谈数学思想方法对于小学数学教学的意义

浅谈数学思想方法对于小学数学教学的意义

浅谈数学思想方法对于小学数学教学的意义数学是一门抽象而精确的学科,数学思想方法对于小学数学教学具有重要的意义。

本文将从数学思想方法的定义和特点入手,探讨其在小学数学教学中的应用,以及对学生数学学习能力的提升和创造力培养的影响。

一、数学思想方法的定义和特点数学思想方法是指数学家在数学探究和解决问题过程中产生的对于数学现象的认识、思考和表达方式。

数学思想方法具有以下几个特点:1. 抽象性:数学思想方法注重从具体事物中抽离出一般规律和普遍性原理,通过符号和符号化的形式表达。

2. 逻辑性:数学思想方法强调严谨的逻辑推理和演绎,追求准确性和完备性。

3. 统一性:数学思想方法追求寻求不同数学分支之间联系的统一性,以整体观念来把握和认识数学。

4. 创造性:数学思想方法强调创新和发散思维,鼓励学生提出独立的见解和解决问题的新方法。

二、数学思想方法在小学数学教学中的应用1. 培养逻辑思维能力:通过引导学生进行逻辑推理和演绎,promote 学生的逻辑思维能力,提高他们的问题分析和解决能力。

2. 培养抽象思维能力:通过提供丰富的具体问题和适当的引导,帮助学生从具体事物中抽象出数学规律和普遍性原理。

3. 培养创新意识和解决问题的能力:通过给予学生开放、探究性的学习环境,激发学生创新思维,培养他们解决问题的能力。

4. 强调数学与现实生活的联系:利用数学思想方法的抽象特点,引导学生将数学与生活相结合,认识到数学在日常生活中的应用。

三、数学思想方法对学生数学学习能力的提升和创造力培养的影响1. 提高学生的数学学习兴趣:数学思想方法注重培养学生的思维能力和解决问题的方法,从而激发学生的学习兴趣。

2. 培养学生的批判性思维:数学思想方法要求学生进行推理和证明,培养了学生的批判性思维和分析问题的能力。

3. 发展学生的创新思维:数学思想方法鼓励学生提出新的见解和方法,培养了学生的创新思维和创造力。

4. 增强学生的问题解决能力:通过运用数学思想方法,学生能够有效地解决各种复杂的数学问题,提升了他们的问题解决能力。

数学归纳思想在小学数学中的应用

数学归纳思想在小学数学中的应用

数学归纳思想在小学数学中的应用数学归纳思想是数学中非常重要的一种思维方法,它在小学数学中也有着广泛的应用。

通过数学归纳思想,小学生可以更好地理解数学概念和解决问题,培养逻辑推理能力和分析问题的能力。

本文将从数学归纳思想的基本概念开始,详细介绍数学归纳思想在小学数学中的应用,并总结其在小学数学教学中的重要性。

一、数学归纳思想的基本概念数学归纳法是一种数学证明方法,用来证明属于自然数集合的性质。

其基本思想是通过证明当n=k时命题成立,以及当n=k成立时,n=k+1也成立,从而证明对于一切自然数n 命题都成立。

这种思维方法可以使我们通过递推的方式去理解和解决问题。

它是数学证明方法中的一种重要思维方式,在数学中有着广泛的应用。

1. 数列的规律在小学数学中,我们经常会遇到一些数列的问题,比如等差数列和等比数列。

学生可以利用数学归纳思想来发现数列的规律。

以等差数列为例,学生可以通过观察数列中相邻两项之间的差是否相等,然后利用数学归纳法来证明这个规律成立。

通过这样的方式,学生可以更加深入地理解数列的规律,并且培养他们的归纳思维能力。

2. 算术运算规律在小学数学中,学生学习了加减乘除等各种算术运算。

利用数学归纳思想,学生可以通过观察和总结,找到这些运算的规律,并进行推导和证明。

学生可以通过数学归纳法来证明乘法交换律和结合律,以及除法的运算规律。

这样可以帮助学生更好地理解算术运算的性质,并且训练他们的逻辑思维能力。

3. 几何图形的性质在小学数学教学中,学生学习了各种几何图形的性质,比如三角形、矩形、正方形等。

通过数学归纳思想,学生可以从具体的例子出发,总结出这些图形的性质,然后利用数学归纳法来证明这些性质。

通过这样的方式,学生可以更好地理解几何图形的性质,并且提高他们的抽象推理能力。

4. 实际问题的解决在解决实际问题时,数学归纳思想也有着广泛的应用。

在解决一些排列组合的问题时,学生可以利用数学归纳法来总结规律,然后推导出问题的解决方法。

数学思想方法在二次函数中的应用

数学思想方法在二次函数中的应用

数学思想方法在二次函数中的应用二次函数是高中数学中非常重要的一章,学好二次函数不仅可以提高数学成绩,也有助于理解日常生活中的许多问题。

二次函数中的数学思想和方法包括:函数图像的性质、函数的零点和极值、判别式、配方法和公式等。

1. 函数图像的性质二次函数的图像是一个拱形,称为抛物线。

抛物线的顶点是函数图像的最低或最高点,称为极值。

由于二次函数的抛物线对称于顶点,因此可以通过顶点来确定图像的对称轴。

这些性质的应用包括:- 通过函数图像来判断二次函数的符号。

如果 a>0,则抛物线开口向上,函数值随着x 的增大而增大;如果 a<0,则抛物线开口向下,函数值随着 x 的增大而减小。

- 通过顶点来确定函数的最值。

如果 a>0,则函数的最小值等于 y 坐标的值,即f(x) = f(h);如果 a<0,则函数的最大值等于 y 坐标的值,即 f(x) = f(h)。

2. 函数的零点和极值二次函数的零点是函数图像与 x 轴交点的横坐标。

二次函数的极值是顶点处的函数值。

通过求解二次方程 f(x) = ax^2 + bx + c = 0 来确定函数的零点,分为以下情况:- 当判别式 b^2-4ac>0 时,二次函数有两个不同的实数根,即x=(−b±√(b^2−4ac))/2a。

这时函数图像与 x 轴有两个交点,函数有两个零点。

- 当判别式 b^2-4ac=0 时,二次函数有一个实数根(相当于它与 x 轴只有一个交点),即 x=-b/2a。

这时函数图像在顶点处与 x 轴相切,函数有一个零点。

- 当判别式 b^2-4ac<0 时,二次函数没有实数根,即函数值始终大于或小于零。

这时函数图像与 x 轴没有交点,函数没有零点。

3. 判别式判别式是二次方程 b^2-4ac 的值,它可以用来判断二次函数的根的情况(上文第二点)。

当判别式为负数时,二次函数没有实数根;当判别式为零时,二次函数有一个实数根;当判别式为正数时,二次函数有两个不同的实数根。

几种常见的数学思想方法在初中数学教学中的应用

几种常见的数学思想方法在初中数学教学中的应用

几种常见的数学思想方法在初中数学教学中的应用数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学方法是解决问题的手段和工具,是解决数学问题时的程序、途径,它是实施数学思想的技术手段。

数学思想方法是从数学内容中提炼出来的数学学科的精髓,是数学素养的重要内容之一,数学思想、方法作为数学学科的“一般原理”,在数学学习中,使学生掌握这一具有重大价值的思想方法,在具体教学中是至关重要的。

学生学习了数学思想、方法就能够更好地按照教师设出的问题去观察,探索。

(1)渗透方程思想方程是初中数学教学中的一大重点,方程思想的实质是建立数学模型,即将数学实际问题抽象成数学模型而后解决,解应用题是方程思想应用的最突出的体现。

此外,求函数解析式,利用根的判别式,根与系数的关系求字母系数的值等都运用了方程的思想。

在解决问题的过程中,教师要把握好渗透的契机,有意识的在问题的分析和解决过程中,渗透方程的思想,对于简化解题过程,提升解题技巧和方法,有重要的作用。

不但能使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。

忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方程的方法的一次次良机。

(2)转化思想转化思想是把数学问题进行变换、转化直至化为以往已解决或容易解决的问题的思想方法。

是解决问题的一种最基本的思想,贯穿于整个中学阶段,最重要也最常用。

转化的方法多种多样,其最终目的是将未知问题转化为已知问题来解决,实现新问题向旧问题的转化,复杂问题向简单问题的转化,抽象问题向具体问题转化等。

如高次方程转化为低次方程,分式方程转化为整式方程,多边形转化为三角形,几何问题代数化等都是初中数学中经常要用到的转化。

(3)数形结合思想数形结合思想是指将数与图形结合起来解决问题的一种思维方式。

数和式是问题的抽象和概括,图形和图像是问题的具体和直观的反映。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学思想方法的应用
摘要:数学思想方法是学生建立自身思维体系的基石,是学习的精髓。

要更加注重学生的数学思想方法的的学习,培养学生自学能力和良好的学习习惯,使掌握数学思想方法。

关键词:函数与方程转化与化归分类讨论数形结合
数学思想方法在教学和学习过程中占有重要地位。

数学思想方法与数学基础知识比较它有较高的地位,数学思想方法是一种数学意识属于思维范畴。

1.主要的数学思想方法
1.1函数与方程
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型的方法。

然后通过解方程(组)或不等式(组)来解题。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。

它体现了“联系和变化”的辩证唯物主义观点。

1.2等价转化
等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行数学思想领悟必要的修正(如无理
方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。

1.3分类讨论
在解答某些数学问题时,有时会遇到矛盾,对矛盾分析,并逐类求解,然后综合得解,这就是分类讨论法。

分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

1.4数形结合
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。

2.数学思想方法在学习中的应用
2.1数学思想方法的意义
数学思想方法是从各分支中提炼和总结出来的,实质就是学习和研究数学的思想方法、进行数学活动的方法。

揭示了数学的本质和发展规律,是数学学习的精髓。

数学思想方法的学校往往比书本知识的学习更重要,更能适应未来社会的变化和发展。

加强思想方
法的学习,可使人变的更有意识的、自觉的应用。

2.2数学思想方法的应用
2.2.1函数与方程思想
应用函数思想解题:确立变量之间的函数关系是关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式。

把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求。

确定某些变量的值.这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们。

例2.1:方程的解是。

解:方程的解满足,解得
2.2.2等价转化
就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,因此要尽可能的从简单、显性、明了、具体等着手,把复杂问题从一个侧面转化到简单的问题上来,一般总是将复杂的问题通过变化转化为简单的问题,或者是把复杂问题转化成几个简单问题来解决,将未解决的问题转化为已解决的问题降低问题的难度,提升解题的速度和准确率。

例2.2:已知,求证:。

证明:当时,有,所以,以上表明,若,则的逆否命题为真命题,所以,原命题成立。

本题的精髓就是,在数学问题中,设都是条件,如果
,那么在含有a的问题中,用b代替a或者代表a的后续步骤,能使问题易于解决,这就是条件的等价转换。

2.2.3分类讨论
在数学中,分类思想是根据数学本质属性的相同点和不同点,分类讨论思想在代数中应用的体现较多。

例2.3.若x的相反数是2,y的绝对值是5,则x+y的值为()
a、-7
b、2
c、-7或2
d、7或-3
分析:依题意可知y=5或y=5,由于y有两解,所以在求x+y的值时应该分两种情况加以讨论,得出两个正确结果。

2.2.4数形结合
数形结合的思想可以使某些抽象思维变为形象思维,更有助与把问题简单明了化,数形结合方法的运用,很多问题变的迎刃而解。

在解决数学问题时将抽象的数学语言同图形结合起来,把抽象问题具体化,使数与形的信息相互联系起来,开拓我们的解题思路,使许多问题简单化了。

3.数学思想方法的教学模式
数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式:
操作——掌握——领悟
对此模式作如下说明:1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的;2)
“操作”是指表层知识教学,即基本知识与技能的教学。

“操作”是数学思想、方法教学的基础; 3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提; 4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会。

通过学习掌握思想方法来促进学生成绩的提高,在学习和教学中凸显数学思想方法的作用。

参考文献:
[1]钱佩玲. 数学思想方法与中学数学[m]. 北京:北京师范大学出版社,2008。

相关文档
最新文档