固体物理 电子教案 7.1晶体缺陷的基本类型
晶体缺陷异质结构
晶体缺陷异质结构在固体物理学中,晶体缺陷异质结构是一个关键的研究领域,它涉及到晶体中原子排列的局部不规则性及其对材料性能的影响。
晶体通常以其规则的原子排列和长程有序性而著称,然而,在实际晶体中,总会存在各种各样的缺陷和不规则性。
这些缺陷可以是由原子或离子的缺失、取代或位置错乱引起的,也可以是由外部因素如辐射、杂质或温度变化等引起的。
当这些缺陷以特定的方式排列或聚集时,它们就形成了所谓的“异质结构”。
一、晶体缺陷的类型晶体缺陷主要分为点缺陷、线缺陷和面缺陷三种类型。
1.点缺陷:点缺陷是最简单的晶体缺陷形式,它只涉及到晶体中单个或少量原子的位置错乱。
常见的点缺陷有空位、填隙原子和反位原子。
空位是指晶体中某个位置上原子的缺失;填隙原子是指位于晶体正常点阵间隙中的多余原子;反位原子则是指晶体中某种类型的原子占据了另一种类型原子的位置。
2.线缺陷:线缺陷,也称为位错,是晶体中一种常见的一维缺陷。
位错可以看作是晶体中一部分原子相对于其他部分发生了滑移,形成了一条连续的错位线。
位错对晶体的力学性质、电学性质等都有重要影响。
3.面缺陷:面缺陷是晶体中二维的缺陷形式,包括晶界、孪晶界和堆垛层错等。
晶界是指不同晶粒之间的界面,孪晶界是指晶体中两部分原子排列呈镜像对称的界面,而堆垛层错则是指晶体中原子层的堆垛顺序发生了错误。
二、异质结构的形成异质结构通常是由不同类型的晶体缺陷相互作用、聚集或排列而形成的。
例如,在某些情况下,点缺陷可能会聚集在一起形成团簇或纳米尺度的结构;线缺陷可能会相互交错或形成网络结构;而面缺陷则可能会分隔晶体成不同的区域或畴。
这些缺陷的聚集和排列方式取决于晶体的生长条件、处理历史以及外部环境等因素。
三、晶体缺陷异质结构对材料性能的影响晶体缺陷异质结构对材料的物理、化学和机械性能都有显著的影响。
以下是一些主要方面:1.力学性质:晶体缺陷可以降低材料的强度和硬度,增加其塑性和韧性。
例如,位错可以作为滑移的起点和传播路径,在材料受力时促进塑性变形。
晶体结构缺陷的类型
二 按缺陷产生旳原因分类
晶体缺陷
辐照缺陷 杂质缺陷
电荷缺陷 热缺陷 非化学计量缺陷
1. 热缺陷
定义:热缺陷亦称为本征缺陷,是指由热起伏旳原因所产生 旳空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷(Frenkel defect)和肖特基缺陷 (Schottky defect)
T E 热起伏(涨落) 原子脱离其平衡位置
面缺陷旳取向及分布与材料旳断裂韧性有关。
面缺陷-晶界
晶界示意图
亚晶界示意图
晶界: 晶界是两相邻晶粒间旳过渡界面。因为相邻晶粒 间彼此位向各不相同,故晶界处旳原子排列与晶内不同, 它们因同步受到相邻两侧晶粒不同位向旳综合影响,而做 无规则排列或近似于两者取向旳折衷位置旳排列,这就形 成了晶体中旳主要旳面缺陷。
-"extra" atoms positioned between atomic sites.
distortion of planes
selfinterstitiallids
Two outcomes if impurity (B) added to host (A):
• Solid solution of B in A (i.e., random dist. of point defects)
OR
Substitutional alloy (e.g., Cu in Ni)
Interstitial alloy (e.g., C in Fe)
Impurities in Ceramics
本章主要内容:
§2.1 晶体构造缺陷旳类型 §2. 2 点缺陷 §2.3 线缺陷 §2.4 面缺陷 §2.5 固溶体 §2.6 非化学计量化合物
晶体缺陷知识点
晶体缺陷知识点晶体缺陷是固体材料中晶格出现的非理想性质,通常由于外界因素或内部原子位置错配引起。
晶体缺陷可以对材料的性质和行为产生显著影响,因此对晶体缺陷的认识和理解对于材料科学和工程领域至关重要。
本文将主要介绍晶体缺陷的类别、产生原因以及对材料性能的影响等相关知识点。
一、点缺陷点缺陷是晶体中最常见的缺陷之一,它包括空位、附加原子和原子间隙等。
空位是晶体中原子缺失的位置,它可能由于热振动、离子辐照或经历一系列化学反应等因素而形成。
附加原子是晶体中多余的原子,它可以是来自杂质或外界加入的额外原子。
原子间隙是晶体中原子之间的间隙空间,它的存在会导致晶体结构的变形和变化。
二、线缺陷线缺陷是晶体中延伸成线状的缺陷,包括位错和螺旋排列。
位错是晶体中原子错位或排列不当导致的线性缺陷,它可以通过晶体的滑移和或扩散过程产生。
螺旋排列是沿晶体某个轴线方向发生的原子错位,在某些晶体材料中常见。
三、面缺陷面缺陷是晶体中存在的平面或界面缺陷,包括晶界、层错和孪晶等。
晶界是晶体中两个晶粒的交界面,它由于晶体生长或晶体结构不匹配引起。
层错是晶体中原子层次错位排列的缺陷,通常发生在层状晶体结构中。
孪晶是晶体中两个晶粒具有相同的晶格方向但是镜像对称的缺陷。
四、体缺陷体缺陷是晶体中三维空间内存在的缺陷,主要包括孔洞和包裹物。
孔洞是晶体中的空隙空间,可以影响晶体的密度和物理性质。
包裹物是晶体中包裹其他原子或分子的空间,它可以是点状、线状或面状。
晶体缺陷的产生原因多种多样,包括热力学因素、机械应力和外部影响等。
温度和压力的变化可以导致晶体中原子位置发生偏移或畸变,进而产生缺陷。
机械应力也可以引起晶体的位错和断裂等缺陷。
此外,电磁辐射、化学环境和放射性衰变等因素也会影响晶体的结构和缺陷形成。
晶体缺陷对材料的性能和行为产生重要影响。
例如,点缺陷的存在可以改变材料的电导率、热导率和光学性能。
线缺陷和面缺陷可以导致晶体的强度和塑性发生变化,并影响晶体的断裂行为。
固体物理中的晶体缺陷
固体物理中的晶体缺陷在固体物理研究中,晶体缺陷是一个非常重要的课题。
晶体是由周期性排列的原子、分子或离子构成的固体,而晶体缺陷则是指晶体中的缺陷点、线和面。
这些缺陷对于晶体的性质和行为产生了显著的影响。
本文将从晶体缺陷的分类、形成机制以及对物性的影响等方面进行探讨。
一、晶体缺陷的分类晶体缺陷根据其维度可以分为点缺陷、线缺陷和面缺陷。
点缺陷是指晶体中存在的原子位置的空位(vacancy)和替位(substitution)缺陷。
线缺陷包括位错(dislocation)、脆性裂纹(brittle fracture)、折叠失配(folding fault)等。
面缺陷主要是晶界(grain boundary)、孪晶(twin boundary)和表面(surface)等。
二、晶体缺陷的形成机制晶体缺陷的形成机制多种多样。
其中,点缺陷的形成主要包括热激活、辐射效应、化学效应等。
线缺陷的形成可以通过应力场的作用和晶体生长过程中的失配等方式。
而面缺陷的形成则与晶体生长过程中的界面结构和生长条件等有关。
三、晶体缺陷对物性的影响晶体缺陷对物性的影响是多方面的。
首先,点缺陷会降低晶体的密度和导致电子、离子、空穴和电子空穴对的迁移,从而影响晶体的电导率。
其次,线缺陷会导致晶体的力学性能发生变化,影响其强度、塑性和断裂行为。
此外,面缺陷会引起界面的能量变化,影响晶体的界面迁移和晶粒生长等过程。
晶体缺陷还对光学性质、磁性和热导率等方面有影响。
四、应用和研究进展晶体缺陷的研究不仅对于基础科学的发展具有重要意义,而且在材料科学、电子器件、能源领域等方面也有广泛的应用前景。
例如,通过控制晶体缺陷可以改善材料的导电性能、光学性能和力学强度,从而提高材料的性能。
近年来,一些新型晶体缺陷的发现和调控方法的研究也取得了重要进展,为材料设计和制备提供了新的思路。
总结起来,固体物理中的晶体缺陷是一个复杂而又引人注目的研究领域。
通过对晶体缺陷的分类、形成机制以及对物性的影响的研究,我们可以更好地理解晶体的性质和行为,并为材料科学和其他相关领域的发展提供重要参考。
《晶体缺陷》课件
热稳定性
晶体缺陷可能影响材料在高温下的稳 定性,降低其使用温度范围。
比热容
晶体缺陷可能影响比热容,改变材料 吸收和释放热量的能力。
光学性能的影响
折射率与双折射
光吸收与散射
晶体缺陷可能导致折射率变化和双折射现 象,影响光学性能。
晶体缺陷可能导致光吸收增强或光散射增 加,改变光学透射和反射特性。
荧光与磷光
热电效应
某些晶体缺陷可能导致热电效应增强,影响 热电转换效率。
介电常数
晶体缺陷可能影响介电常数,改变电场分布 和电容。
电阻温度系数
晶体缺陷可能影响电阻温度系数,改变温度 对电阻的影响。
热学性能的影响
热导率变化
晶体缺陷可能降低材料的热导率,影 响热量传递和散热性能。
热膨胀系数
晶体缺陷可能影响热膨胀系数,影响 材料在温度变化下的尺寸稳定性。
。
韧性下降
晶体缺陷可能导致材料韧性下 降,使其在受到外力时更容易
脆裂。
疲劳性能
晶体缺陷可能影响材料的疲劳 性能,降低其循环载荷承受能
力。
强度与延展性
晶体缺陷可能影响材料的强度 和延展性,从而影响其承载能
力和塑性变形能力。
电学性能的影响
导电性变化
晶体缺陷可能改变材料的导电性,影响其在 电子设备中的应用。
传感器
基于晶体缺陷的原理,可以设计新型传感器,如压力传感 器、温度传感器和气体传感器等,以提高传感器的灵敏度 和稳定性。
在新能源领域中的应用
太阳能电池
在太阳能电池中,可以利用晶体 缺陷来提高光吸收效率和载流子 的收集效率,从而提高太阳能电
池的光电转换效率。
燃料电池
在燃料电池中,可以利用晶体缺陷 来改善电极的催化活性和耐久性, 从而提高燃料电池的性能和稳定性 。
晶体缺陷类型
晶体缺陷类型晶体缺陷是指晶体中存在的原子或离子排列不规则或异常的现象。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷三种类型。
一、点缺陷点缺陷是晶体中原子或离子位置的局部不规则,主要包括空位、间隙原子和杂质原子。
1. 空位空位是指晶体中原子或离子在其晶体格点上的位置空缺。
晶体中的空位可以通过热处理、辐射或化学反应形成。
空位的存在会降低晶体的密度和电子迁移率,影响材料的性能。
2. 间隙原子间隙原子是指晶体中原子或离子占据晶体格点之间的空隙位置。
间隙原子的存在会导致晶体的畸变和疏松,影响材料的机械性能和导电性能。
3. 杂质原子杂质原子是指晶体中非本原子或离子替代晶体中的原子或离子。
杂质原子的存在会改变晶体的导电性、光学性质和热稳定性。
常见的杂质原子有掺杂剂、杂质原子和缺陷聚集体。
二、线缺陷线缺陷是晶体中原子或离子排列沿着一条线或曲线出现的不规则现象,主要包括位错和螺旋线缺陷。
1. 位错位错是晶体中原子或离子排列的一种不规则现象,可以看作是晶体中某一面上原子排列与理想晶体的对应面上的原子排列不匹配。
位错的存在会导致晶体的畸变和塑性变形,影响材料的力学性能。
2. 螺旋线缺陷螺旋线缺陷是晶体中原子或离子排列呈螺旋状的一种不规则现象。
螺旋线缺陷的存在会导致晶体的扭曲和磁性变化,影响材料的磁学性能。
三、面缺陷面缺陷是晶体中原子或离子排列在一定平面上不规则的现象,主要包括晶界和堆垛层错。
1. 晶界晶界是晶体中两个晶粒之间的交界面,是晶体中最常见的面缺陷。
晶界的存在会影响晶体的力学性能、导电性能和晶体的稳定性。
2. 堆垛层错堆垛层错是晶体中原子或离子排列在某一平面上的堆垛出现错误的现象。
堆垛层错的存在会导致晶体的畸变和位错密度增加,影响材料的机械性能和热稳定性。
总结:晶体缺陷是晶体中存在的原子或离子排列不规则或异常的现象。
根据缺陷的不同类型,晶体缺陷可以分为点缺陷、线缺陷和面缺陷。
点缺陷主要包括空位、间隙原子和杂质原子,线缺陷主要包括位错和螺旋线缺陷,面缺陷主要包括晶界和堆垛层错。
固体物理中的晶体缺陷
固体物理中的晶体缺陷学院:化学化工与生物工程学院班级:生物1301学号: 131030114姓名:李丹丹固体物理中的晶体缺陷1.国内外进展及研究意义1.1 国内外对晶体缺陷的研究现状和发展动态19世纪中叶布拉非发展了空间点阵,概括了点阵周期性的特征,1912年劳厄的晶体X 射线衍射实验成功后,证实了晶体中原子作规则排列,从理想晶体结构出发,人们发展了离子晶体的点阵理论和金属的电子理论,成功的计算了离子晶体的结合能,对于金属晶体的原子键能也有了初步了了解,并很好的解释了金属的电学性质。
随后人们又认识到了晶体中原子并非静止排列,它在晶体中的平衡阵点位置作震动,甚至在绝对零度也不是凝固不动的,即还有所谓零点能的作用,从这个理论出发建立了点阵震动理论,从而建立了固体的比热理论。
在20世纪20年代以后人们就发现晶体的许多性质很难用理想晶体结构来解释,提出晶体中有许多原子可能偏离规则排列,即存在有缺陷,并企图用此来解释许多用理想晶体结构无法解释的晶体性质。
W.Schottky为了解释离子晶体的电介电导率问题,提出在晶体中可能由于热起伏而产生填隙离子和空位,而且发现食盐的电介导电率与这些缺陷的数目有关。
随后为了解决晶体屈服强度的实验数据值与理论估计之间的巨大差别,又引进了位错这一晶体缺陷。
今年来人们对晶体中各种缺陷有了更深刻的认识,建立了晶体缺陷理论。
理想晶体在实际中并不存在。
实际晶体或多或少存在各种杂质和缺陷。
国内外学者通过使用显微镜的对物质性能与缺陷的关系研究得相当多,也在一定意义上取得了可喜的进展。
1.2 晶体缺陷的研究意义在晶体的生长及形成过程中,由于温度、压力、介质组分浓度等外界环境中各种复杂因素变化及质点热运动或受应力作用等其他条件的不同程度的影响会使粒子的排列并不完整和规则,可能存在空位、间隙粒子、位错、镶嵌结构等而偏离完整周期性点阵结构,形成偏离理想晶体结构的区域,我们称这样的区域为晶体缺陷,它们可以在晶格内迁移,以至消失,同时也可产生新的晶体缺陷。
晶体缺陷
固溶体是以某一组元为溶剂,在其晶体点阵中溶 入其他组元原子(溶质原子)所形成的均匀混合 的固态溶体,它保持着溶剂的晶体结构类型。
固溶度:硅中能容纳杂质的最大数目 影响固溶度的因素有很多,主要有以下几个因素: ①杂质的种类。硅与杂质原子的晶体结构相同时, 杂质原子就可以连续不断地置换硅原子。如果两 种原子的晶体结构类型不同,固溶度是有限的。
一般把多出的半原子面在滑移面上边的称为正刃 型位错,记为“┻”;而把多出在下边的称为负 刃型位错,记为“┳”。正、负之分只具相对意 义而无本质的区别。
刃位错的几何特征:
位错线与原子滑移方向相垂直;
滑移面上部分位错线周围原子受压应力作用,原 子间距小于正常晶格间距; 滑移面下部分位错线周围原子受张应力作用,原 子间距大于正常晶格间距。
根据晶体缺陷的几何特征,可以分为四类:
点缺陷:其特征是在三维空间的各个方面上尺寸都很小, 尺寸范围约为一个或几个原子尺度, 故称零维缺陷,包 括空位、间隙原子、杂质或溶质原子等; 线缺陷:其特征是在两个方向上尺寸很小,另外一个方向 上延伸较长,也称一维缺陷,如各类位错;
面缺陷:其特征是在一个方向上尺寸很小,另外两个方向 上扩展很大,也称二维缺陷.晶界、相界、孪晶界和堆垛 层错等都属于面缺陷。
位错的爬升
位错爬升是靠原子或空位的转移来实现的。当原 子从多余半原子面下端转移到别处,或空位从别 处转移到半原子面下端时,位错线便向上爬升, 即正爬升;反之,当原子从别处转移到多余半原 子面下端时,或空位从这里转移到别处去时,位 错线就向下爬升,即负爬升。
刃位错爬升的实质就是构成刃位错的多余半原子 面的扩大或缩小。
位错运动不引起晶体体积的变化,这类运动称为位错的守 恒运动(滑移) 位错运动引起晶体体积的变化,这类运动称为位错的非守 恒运动(爬升)
《晶体缺陷》课件
点缺陷可能会影响晶体对化学物质的吸附和反应活性,从而影响其化学 性质。例如,在催化剂中,点缺陷可能会提高其催化活性。
03
线缺陷
定义与特点
定义
线缺陷是指晶体中沿某一特定方 向的原子或分子的缺失或错排, 导致在该方向上出现间断或错排 的原子列或分子列。
特点
线缺陷通常具有方向性,只在一 维方向上存在缺陷,对晶体结构 的影响较小。
晶体缺陷的分类
点缺陷
指晶体中只涉及到少数原子的缺陷,如 空位、间隙原子等。
线缺陷
指晶体中沿着某一特定方向连续存在的 缺陷,如位错。
面缺陷
指晶体中在某一平面上聚集的缺陷,如 晶界、相界等。
体缺陷
指在晶体中三维空间内连续存在的缺陷 ,如气泡、杂质等。
晶体缺陷的形成原因
03
热力学原因
动力学原因
外部因素
X射线衍射技术
粉末X射线衍射(PXRD)
通过测量粉末样品的X射线衍射图谱,可以分析晶体结构中的缺陷。
单晶X射线衍射(SCXRD)
通过测量单晶样品的X射线衍射图谱,可以更精确地分析晶体结构中的缺陷。
原子力显微镜技术
要点一
原子力显微镜(AFM)
通过测量样品表面的原子力,可以观察到晶体表面和亚表 面的缺陷。
《晶体缺陷》课件
目录
• 晶体缺陷概述 • 点缺陷 • 线缺陷 • 面缺陷 • 体缺陷 • 晶体缺陷的检测与表征
01
晶体缺陷概述
晶体缺陷的定义
01
02
晶体缺陷是指晶体中原子或分子的排列偏离了理想晶体结构的区域, 这些区域可以是空位、间隙原子、错位等。
晶体缺陷的存在会影响晶体的物理、化学和机械性能,从而影响材料 的应用范围和性能。
晶体缺陷的分类
晶体缺陷的分类
1. 点缺陷,就像生活中的小瑕疵一样。
比如说金属晶体里少了个原子,这就是点缺陷呀!它虽然小,可对晶体的性能影响却不小呢!
2. 线缺陷,嘿,这就像一条小裂缝在晶体中蔓延。
想想看,位错不就是这样嘛,对晶体的强度等方面有着重要作用呢!
3. 面缺陷,哇哦,这好比晶体中有个明显的界面呀!像晶界、相界这些,对晶体的一些特性那可是有着关键影响的咧!
4. 空位缺陷,不就像是晶体里本该有的位置空了出来嘛,就像教室里面少了个同学一样明显,会引起一系列的变化哦!
5. 间隙原子缺陷,这多有趣,就像是硬生生挤进了一个不该在那的原子呀,对晶体的结构稳定性会带来挑战呢!
6. 杂质原子缺陷,就仿佛外来者闯入了晶体的世界。
比如说在硅晶体里掺杂其他原子,这影响可大啦!
7. 刃型位错,它就像晶体中一把隐形的刀呀,对晶体的变形等行为有着特殊意义呢!
8. 螺型位错,像不像一条螺旋状的小过道在晶体中呢,在晶体的生长等过程中作用明显得很呢!
9. 混合位错,哈哈,这就是前两种位错的结合体呀,复杂又有趣呢,对晶体来说可真是个特别的存在哟!
我的观点结论就是:晶体缺陷的分类可真是丰富多样又奇妙无比,每一种都有着独特的魅力和重要的作用呀!。
固体物理学基础晶体缺陷与缺陷态
固体物理学基础晶体缺陷与缺陷态晶体是由原子、离子或分子的周期性排列构成的具有规则几何形状的固体物质。
在晶体中存在着各种各样的缺陷,这些缺陷对于晶体的性质和行为具有重要影响。
在本文中,我们将探讨晶体的缺陷以及与之相关的缺陷态。
一、晶体缺陷的分类晶体缺陷可以分为点缺陷、面缺陷和体缺陷三类。
其中,点缺陷是指晶体中出现的原子、离子或分子的局部位置异常,包括空位、间隙原子、替位原子和杂质原子等。
面缺陷是指晶体中的原子、离子或分子的排列在某一平面上出现了异常,比如晶体表面的步缺陷和堆垛层错。
体缺陷是指晶体中的原子、离子或分子排列出现了三维范围的异常,比如晶体内部的位错和晶界等。
二、晶体缺陷的形成机制晶体缺陷的形成可以通过多种机制实现。
在晶体的生长过程中,由于原子、离子或分子的扩散、沉积等过程中的非均匀性,会导致晶格的畸变,从而形成晶体缺陷。
此外,一些外界因素,如温度、压力和辐射,也可以引起晶体缺陷的形成。
例如,高温下的热震,会导致晶格的重排和变形,从而形成位错等缺陷。
三、晶体缺陷的性质和影响晶体缺陷对于晶体的性质和行为具有重要影响。
首先,晶体缺陷可以影响晶体的机械性质。
例如,在金属晶体中,位错是导致材料塑性变形的主要因素之一。
其次,晶体缺陷还可以影响晶体的导电性能。
在半导体中,掺杂杂质原子引入的缺陷会改变材料的导电行为。
此外,晶体缺陷还可以影响晶体的光学性质和热学性质等。
四、晶体缺陷态的产生与应用晶体中的缺陷可以形成一些电子态或离子态,称为缺陷态。
缺陷态对于晶体的物理和化学性质起着重要作用。
例如,在半导体材料中,空穴和电子缺陷态会影响材料的载流子浓度和导电性质。
此外,缺陷态还可以用于一些应用。
例如,在光学材料中引入掺杂原子产生的缺陷态可以改变材料的吸收和发射光谱特性,从而实现荧光材料或激光材料的设计与制备。
结论晶体缺陷是晶体物理学中一个重要的研究方向。
缺陷的形成机制、性质以及与之相关的缺陷态都对晶体的性质和行为产生着深远的影响。
晶体缺陷的基本类型和特征
晶体缺陷的基本类型和特征
晶体缺陷是晶体中原子或离子位置的错误或不规则排列。
基本类型和特征包括以下几种:
1. 点缺陷:点缺陷是晶体中原子或离子缺失、替代或插入所引起的缺陷。
常见的点缺陷包括:空位缺陷(晶体中存在未被占据的空位)、插入缺陷(晶格中多余的原子或离子)、置换缺陷(晶体中某种原子或离子被其他种类的原子或离子替代)。
2. 线缺陷:线缺陷是沿晶体中某一方向的错误排列或不规则缺陷。
常见的线缺陷包括:位错(晶体中原子排列错误引起的错位线)、螺旋位错(沿着晶格某个方向成螺旋形排列的错位线)。
3. 面缺陷:面缺陷是晶体中平面上原子排列错误或不规则的缺陷。
常见的面缺陷包括:晶界(不同晶体颗粒的交界面)、层错(晶体中平行于某一层的错位面)。
4. 体缺陷:体缺陷是三维空间中晶体结构的错误或不规则排列。
常见的体缺陷包括:空间格点缺陷(晶体晶格中存在未被占据的空间)、体间隙(晶体中原子或离子占据不规则的空间位置)。
每种缺陷类型都有其特定的物理和化学性质,对晶体的电学、光学、磁学等性质都有影响。
因此,研究晶体缺陷对于理解晶体的结构和性质至关重要。
晶体缺陷类型
晶体缺陷类型一、点缺陷晶体中的点缺陷是指晶体结构中原子位置的缺失或替代。
常见的点缺陷有空位、间隙原子和杂质原子。
1. 空位空位是指晶体中某个晶格位置上原子缺失的现象。
晶体中的空位通常会导致晶体的物理性质发生变化,如导电性的改变。
空位的产生可以是由于晶体的生长过程中原子的缺失,也可以是由于晶体受到外界因素的影响而产生的。
2. 间隙原子间隙原子是指晶体结构中存在于晶格空隙中的原子。
间隙原子常见的有插入型间隙原子和取代型间隙原子。
插入型间隙原子是指一种原子插入了晶体结构的空隙中,而取代型间隙原子是指一种原子取代了晶体结构中原本占据该位置的其他原子。
3. 杂质原子杂质原子是指晶体结构中掺入的其他元素原子。
当晶体中的杂质原子的尺寸与晶体原子的尺寸相近时,杂质原子可能会占据晶格空隙,形成间隙型杂质。
而当杂质原子的尺寸与晶体原子的尺寸相差较大时,杂质原子可能会取代晶体结构中的原子,形成取代型杂质。
二、线缺陷晶体中的线缺陷是指晶体中某一维方向上存在的缺陷。
常见的线缺陷有位错和脆性裂纹。
1. 位错位错是指晶体中晶格的错位。
位错的存在会导致晶体的形变和力学性质的改变。
位错可以分为位错线、位错环和位错面,具体形态取决于晶体中晶格错位的类型和方向。
2. 脆性裂纹脆性裂纹是指晶体中的裂纹缺陷。
脆性裂纹通常是由于外界应力作用于晶体中产生的。
脆性裂纹的存在会导致晶体的强度降低和断裂现象的发生。
三、面缺陷晶体中的面缺陷是指晶体中某一面或界面的缺陷。
常见的面缺陷有晶界、孪晶和堆垛层错。
1. 晶界晶界是指晶体中不同晶粒之间的界面。
晶界的存在会导致晶体结构的变化以及晶粒的生长和晶体的形变。
2. 孪晶孪晶是指晶体中存在两个或多个晶格取向相近但并不完全相同的晶粒。
孪晶的存在会导致晶体的形变和物理性质的改变。
3. 堆垛层错堆垛层错是指晶体中原子堆垛顺序的错误。
堆垛层错的存在会导致晶体的物理性质发生变化,如磁性和导电性的改变。
总结:晶体中的缺陷类型包括点缺陷、线缺陷和面缺陷。
晶体缺陷的三种形式
晶体缺陷的三种形式晶体缺陷(crystal defects)是指晶体内部结构完整性受到破坏的所在位置。
按其延展程度可分成点缺陷、线缺陷和面缺陷。
在理想完整的晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。
但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。
这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。
晶体结构中质点排列的某种不规则性或不完善性。
又称晶格缺陷。
表现为晶体结构中局部范围内,质点的排布偏离周期性重复的空间格子规律而出现错乱的现象。
根据错乱排列的展布范围,分为下列3种主要类型。
①点缺陷,只涉及到大约一个原子大小范围的晶格缺陷。
它包括:晶格位置上缺失正常应有的质点而造成的空位;由于额外的质点充填晶格空隙而产生的填隙;由杂质成分的质点替代了晶格中固有成分质点的位置而引起的替位等(图1)。
在类质同象混晶中替位是一种普遍存在的晶格缺陷。
图1②线缺陷—位错位错的概念1934年由泰勒提出到1950年才被实验所实具有位错的晶体结构,可看成是局部晶格沿一定的原子面发生晶格的滑移的产物。
滑移不贯穿整个晶格,晶体缺陷到晶格内部即终止,在已滑移部分和未滑移部分晶格的分界处造成质点的错乱排列,即位错。
这个分界外,即已滑移区和未滑移区的交线,称为位错线。
位错有两种基本类型:位错线与滑移方向垂直,称刃位错,也称棱位错;位错线与滑移方向平行,则称螺旋位错。
刃位错恰似在滑移面一侧的晶格中额外多了半个插入的原子面,后者在位错线处终止(图2)。
螺旋位错在相对滑移的两部分晶格间产生一个台阶,但此台阶到位错线处即告终止,整个面网并未完全错断,致使原来相互平行的一组面网连成了恰似由单个面网所构成的螺旋面。
图2③面缺陷,是沿着晶格内或晶粒间的某个面两侧大约几个原子间距范围内出现的晶格缺陷。
主要包括堆垛层错以及晶体内和晶体间的各种界面,如小角晶界、畴界壁、双晶界面及晶粒间界等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a) (b)
7.1.3 面缺陷
当晶格周期性的破坏是发生在晶体内部一个面的近邻, 这种缺陷为面缺陷。
1.晶粒间界 晶粒之间的交界称为晶粒间界。晶粒间界内原子的排列是 无规则的。因此这种边界是面缺陷。晶粒间界内原子排列的结 构比较疏松,原子比较容易沿晶粒间界扩散。
2.堆垛间界 我们知道金属晶体常采用立方密积的结构形式,而立方密 积是原子球以三层为一组,如果把这样的一组三层记为 ABC,
7.1.2 线缺陷
当晶格周期性的破坏是发生在晶体内部一条线的周围近邻,
这就称为线缺陷。位错就是线缺陷。
G
刃型位错 位错
螺旋位错
H
A A F B b B E
1.刃型位错
刃型位错
设想晶体的上部沿ABEF平面向右推移, AB 原来与AB
重合,经过这样的推压后,相对于AB滑移一个原子间距b,EF
是已滑移区与未滑移区的交界线,称为位错线。
实际晶体往往是由许多块具有完整性结构 的小晶体组成的,这些小晶体彼此间的取向有 着小角倾斜,为了使结合部分的原子尽可能地 规则排列,就得每隔一定距离多生长出一层原 子面,这些多生长出来的半截原子面的顶端原 子链就是刃型位错。
小角晶界上的刃型位错相互平行。
小角晶界上位错相隔的距离为 D b ,
b为原子间距,为两部分的倾角。
外来原子很可能存在于间隙位置,称它们为填隙式杂质。填隙 式杂质的引入往往使晶体的晶格常量增大。
3.色心 能吸收可见光的晶体缺陷称为色心。 完善的晶体是无色透明的,众多的色心缺陷能使晶体呈 现一定颜色,典型的色心是F心。
把碱卤晶体在碱金属的蒸气中加热,然后使之聚冷到室温, 则原来透明的晶体就出现了颜色,这个过程称为增色过程,这 些晶体在可见光区各有一个吸收带称为F带,而把产生这个带 的吸收中心叫做F心。
D b
2.螺旋位错
如图(a)设想把晶体沿ABCDDAA
平面分为上、下两部分,将晶体的上、 下做一个位移,ABCD为已滑移区, AD为滑移区与未滑移区的分界线, 称为位错线。
螺旋位错的位错线与滑移方向平行。
(b)图中的B点是螺旋位错线(上下方 向)的露出点。晶体绕该点右旋一周,原 子平面上升一个台阶(即一个原子间距), 围绕螺旋位错线的原子面是螺旋面。
构成填隙原子的缺陷时,必须使原子挤入晶格的间隙位 置,所需的能量要比造成空位的能量大些,所以对于大多数的 情形,特别是在温度不太高时,肖特基缺陷存在的可能性大于 弗仑克尔缺陷。
2.杂质原子 在材料制备中,有控制地在晶体中引入杂质原子,若杂质 原子取代基质原子而占据格点位置,则成为替代式杂质。
当外来的杂质原子比晶体本身的原子小时,这些比较小的
刃型位错的位错线与滑移方向垂直。
G H
A A F B b B E
(a)
H
B B'
E
C
D
(b)
(b)图是 (a)图在晶体中垂直于EF方向的一个原子平面的情
况。BE线以上原子向右推移一个原子间距,然后上下原子对
齐,在EH处不能对齐,多了一排原子。
刃型位错的另一个特征是位错线EF上带有一个多余的半 平面,即 (a)图中的EFGH平面,该面在(b)图中只能看到EH这 条棱边。
则晶面的排列形式为:ABCABCABBCC A
如果在晶体生长过程中,原来的A晶面丢失,于是晶
面的排列形式变成:ABCB A CB AC B C
加 的B晶面便成为错位的面缺陷。
如从某一晶面开始,晶体的两部分发生滑移,比如从某C 晶面以后整体发生了滑移,B变成A,则晶面的排列形式变成:
ABCC A BB ACB AC
4.极化子 电子吸引邻近的正离子,使之内移。排斥邻近的负离子, 使之外移,从而产生极化。
-+-+- + -+-+ -+ +- + -+-+ -++-
电子所在处出现了趋于 束缚这电子的势能阱,这种束 缚作用称为电子的“自陷”作 用。
负离子空位和被它俘获的电子
产生的电子束缚态称为自陷态,同杂质所引进的局部能 态有区别,自陷态永远追随着电子从晶格中一处移到另一处, 这样一个携带着周围的晶格畸变而运动的电子,可看作一个准 粒子(电子+晶格的畸变),称为极化子。
固体物理 电子教案 7.1晶体缺 陷的基本类型
1.弗仑克尔缺陷和肖特基缺陷
弗仑克尔缺陷 当晶格中的原子脱离格点后,移到间隙位置形成填隙原 子时,在原来的格点位置处产生一个空位,填隙原子和空位成 对出现,这种缺陷称为弗仑克尔缺陷。
肖特基缺陷
当晶体中的原子脱离格点位置后不在晶体内部形成填隙原 子,而是占据晶体表面的一个正常位置,并在原来的格点位置 产生一个空位,这种缺陷称为肖特基缺陷。
加 的C面成为错位的面缺陷。
这一类整个晶面发生错位的缺陷称为堆垛缺陷。