非参数检验的SPSS操作
08-SPSS的非参数检验
SPSS中的非参数检验方法主要涉及以下方面: 单样本非参数检验 两独立样本的非参数检验 多独立样本的非参数检验 两配对样本的非参数检验 多配对样本的非参数检验 其中,每个方面都包括若干种检验方法。受时间 和篇幅限制,本章主要介绍单样本的非参数检验。
单样本的非参数检验
拿到一批样本数据以后,往往希望了解样本来 自的总体的分布是否与某个已知的理论分布相 吻合。可以通过绘制样本数据的直方图、P-P 图、Q-Q图等方法作粗略判断,还可以利用非 参数检验的方法来实现。SPSS单样本非参数 检验正是对单个总体的分布形态等进行推断的 方法,其中包括卡方检验、二项分布检验、KS检验以及变量值随机性检验等方法。
布)。适用于探索连续随机变量的分布情况。例
如,收集一批周岁儿童身高的样本数据,需利用 样本数据推断周岁儿童总体的身高是否服从正态 分布。 (2)基本假设H0:样本来自的总体与指定的理论分布无 显著差异。SPSS的理论分布主要包括正态分布、 均匀分布、指数分布和泊松分布等。
单样本K-S检验
(3)基本方法 首先,在零假设成立的前提下,计算各样 本观测值在理论分布中出现的理论累计概 率值. 其次,计算各样本观测值的实际累计概率 值. 计算实际累计概率值与理论累计概率值的 差。如果相差较小,则认为样本所代表的 总体符合指定的总体分布.
观察样本序列出现了多少游程(run).
游程是样本序列中连续出现的变量值的次数.
一般出现太多或太少的游程表示变量值序列有一定的非
随机性.
变量值随机性检验
(4)基本步骤: 菜单选项:analyze->nonparametric tests>Runs 选择待检验的变量入test variable list 框 在cut point框中确定计算游程数的分界值。 至此,SPSS将自动计算游程数、检验统 计量和概率p值,并将结果显示到输出窗口中。
SPSS的非参数检验
02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。
第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验
SPSS第讲非参数检验(共72张PPT)
SPSS应用
Kendall协同系数检验中会计算Friedman检验方 法,得到friedman统计量和相伴概率。如果相伴概
率小于显著性水平,可以认为这10个节目之间没有 显著差异,那么可以认为这5个评委判定标准不一 致,也就是判定结果不一致。
SPSS应用
3.多配对样本的Cochran Q检验
多配对样本的Cochran Q检验也是对多个互 相匹配样本总体分布是否存在显著性差异的统计 检验。不同的是多配对样本的Cochran Q检验所能 处理的数据是二值的(0和1)。其零假设是:样 本来自的多配对总体分布无显著差异。
SPSS应用
单样本K-S检验可以将一个变量的实际频数分
布与正态分布(Normal)、均匀分布(Uniform)、
泊松分布(Poisson)、指数(Exponential)分 布进行比较。其零假设H0为样本来自的总体与指定
的理论分布无显著差异。
SPSS应用
6.2 两配对样本非参数检验
6.2.1 统计学上的定义和计算公式
SPSS应用
两配对样本非参数检验的前提要求两个样本 应是配对的。在应用领域中,主要的配对资料包 括:具有年龄、性别、体重、病况等非处理因素 相同或相似者。首先两个样本的观察数目相同, 其次两样本的观察值顺序不能随意改变。
SPSS应用
SPSS中有以下3种两配对样本非参数检验方 法。
SPSS应用
1验.两配对样本的McNemar变化显著性检
SPSS应用
2.两配对样本的符号(Sign)检验
当两配对样本的观察值不是二值数据时,无法 利用前面一种检验方法,这时可以采用两配对样本
的符号(Sign)检验方法。其零假设为:样本来
自的两配对样本总体的分布无显著差异。
SPSS教程-非参数检验
一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ
表
肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。
非参数检验-SPSS
非参数检验-SPSS什么是非参数检验?非参数检验是一种统计假设检验方法,它不依赖于总体的任何假设条件,如总体分布的正态性、方差的同一性等。
与参数检验相比,非参数检验更加灵活,能够适应更多的数据情况。
为什么需要非参数检验?当我们的数据不满足正态分布等假设条件时,就需要使用非参数检验。
此外,非参数检验还有以下优点:1.不需要知道总体分布的具体形态,从而更加适用于实际情况2.对于离群值和极端值并不敏感3.数据缺失并不会影响检验结果SPSS中的非参数检验现在我们来介绍SPSS中的非参数检验。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验旨在检验两组配对样本的中位数差异是否为零。
它的原假设是两组样本中位数相同。
首先,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“数据”-“配对样本T检验”-“Wilcoxon符号秩检验”。
接下来,我们需要在弹出的对话框中选择配对变量,然后点击“OK”即可得到检验结果。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于检验两组独立样本的中位数是否相同。
它的原假设是两组样本中位数相同。
要进行Mann-Whitney U检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“2独立样本”。
接着,在弹出的对话框中选择两组样本的变量,并设置分析的方法为“Mann-Whitney U检验”。
最后点击“OK”即可得到检验结果。
3. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数检验方法,用于检验多个独立样本的中位数是否相同。
它的原假设是多组样本中位数相同。
要进行Kruskal-Wallis检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“Kruskal-Wallis检验”。
接着,在弹出的对话框中选择多组样本的变量,并点击“OK”即可得到检验结果。
spss使用教程非参数检验
SPSS二项分布检验就是根据收集到的样本 数据,推断总体分布是否服从某个指定的二项 分布。其零假设是H0:样本来自的总体与所指 定的某个二项分布不存在显著的差异。
第24页/共152页
SPSS中的二项分布检验,在样本小于或等 于30时,按照计算二项分布概率的公式进行计 算;样本数大于30时,计算的是Z统计量,认 为在零假设下,Z统计量服从正态分布。Z统计 量的计算公式如下
人数 2 4 7 16 20 25 24 22 16 2 6 1
第49页/共152页
实现步骤
图10-12 在菜单中选择“1-Sample K-S”命令
第50页/共152页
图10-13 “One-Sample Kolmogorov-Smirnov Test”对话框
第51页/共152页
图10-14 “One-Sample K-S:Options”对话框
第28页/共152页
表10-2
35名婴儿的性别
婴儿
Sex
婴儿
Sex
婴儿
Sex
1
1
13
1
25
1
2
0
14
1
26
1
3
1
15
1
27
0
4
1
16
1
28
0
5
1
17
0
29
0
6
1
18
0
30
0
7
0
19
0
31
1
8
0
20
0
32
0
9
0
21
0
33
0
10
SPSS操作:多个相关样本的非参数检验(CochransQ检验)
SPSS操作:多个相关样本的⾮参数检验(CochransQ检验)点击Settings→Customize tests,勾选Cochran's Q (k samples)。
点击Define Success,在Cochran's Q: Define Success对话框中,点击Combine values into success category,在Success框中填⼊1(这⾥是“成功”对应的编码,本例中即为通过体能测试,“Passed”对应的是1,所以这⾥填“1”)。
点击OK→Run,输出结果。
3.4 不符合假设4的“精确”Cochran's Q检验当不符合假设4时,需要使⽤“精确”Cochran's Q检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→K Related Samples,出现Tests for Several Related Samples对话框。
将变量initial_fitness_test、month3_fitness_test和final_fitness_test选⼊Test Variables框中。
在Test Type 下⽅去掉Friedman,然后勾选Cochran's Q。
(如果数据符合假设4,则此时点击OK,结果与3.3部分的操作结果⼀致)点击Exact,在Exact Tests对话框中,点击Exact,点击Continue→OK。
3.5 “精确”Cochran's Q检验后的两两⽐较对于符合假设4的Cochran's Q检验(3.3部分),事后的两两⽐较将在结果解释部分展⽰(4.2部分)。
对于不符合假设4的“精确”Cochran's Q检验(3.4部分)事后的两两⽐较,可采⽤经Bonferroni法校正的多重McNemar检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→2 Related Samples。
SPSS中非参数检验方法
1. 总体分布的卡方(Chi-square)检验 2. 二项分布检验 3. SPSS单样本变量的随机性检验 4. SPSS单样本的K-S检验 5. 两个独立样本的非参数检验 6. 多个独立样本的非参数检验 7. 两个配对样本的非参数检验 8. 多配对样本的非参数检验
本章主要介绍总体分布的卡方(Chi-square) 检验、二项分布(Binomial)检验、单样本K-S ( Kolmogorov-Smirnov ) 检 验 、 单 样 本 变 量 值 随机性检验(Runs Test);两独立样本非参数 检验、多独立样本非参数检验、两配对样本非 参数检验、多配对样本非参数检验等8类常用的 非参数检验方法。
前面已经讨论的统计分析方法,对总体有特殊的要求,如T检 验要求总体符合正态分布;F检验要求误差呈正态分布,且各 组方差齐,等等。这些方法常用来估计或检验总体参数,统 称为参数检验。
现实中,许多调查或实验所得的科研数据,其总体分布未知 或无法确定。因为有的数据不是来自所假定分布的总体,或 者数据根本不是来自一个总体;还有可能数据因为某种原因 被严重污染。这样在假定分布的情况下进行推断的做法,就 有可能产生错误的结论。此时人们希望检验对一个总体分布 形状不必作限制。
人数 2 4 7 16 20 25 24 22 16 2 6 1
实现步骤
在菜单中选择“1-Sample K-S”命令
“One-Sample Kolmogorov-Smirnov Test”对话框
“One-Sample K-S:Options”对话框
4.3 结果和讨论
(1)本例输出结果如下表所示。
总体分布的卡方检验的数据是实际收集到 的样本数据,而非频数数据。
1.2 SPSS中实现过程
SPSS的参数检验和非参数检验
SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。
参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。
而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。
参数检验主要有t检验、方差分析和回归分析等。
其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。
方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。
回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。
非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。
Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。
在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。
2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。
3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。
4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。
5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。
无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。
同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。
在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。
利用SPSS进行非参数检验
利用SPSS进行非参数检验(卡方检验)
一、启动SPSS
二、建立数据文件
1、定义两个数值型变量:组限L和频数f(先确定变量名称,
变量类型的默认值为数值型)。
2、输入组限L和频数f的实际数据。
3、用Data菜单中的Weight cases将f变成Frequency(频率)。
三、单击Analyze s菜单,选择Nonparametric Test中的
Chi-Square选项,打开相应的对话框。
选择要进行检验的变量L。
四、根据需要选择相应的选择项:
1、在Expected Range中选择Get from data或Use specified
range,后者需指定Lower(下限)和Upper(上限)。
2、在Expected Values指定期望值:如检验总体是否服从均匀分
布,只需选定All categories equal项;如检验总体是否服从某
个给定的分布,需选定Values,并键入相应各组所对应的由
给定分布计算而得的期望值。
五、选定所需的各项后,单击Ok即可得所需结果。
SPSS非参数检验
SPSS⾮参数检验实验⽬的:学会使⽤SPSS的简单操作,掌握⾮参数检验。
实验内容: 1.中位数符号检验,检验总体中位数是否等于某个假定的值。
设⼀个随机样本有n个数据,总体中位数的实际值为M,假设的总体中位数值为。
当样本中的数据⼤于假设的中位数时,⽤“+”号表⽰,⼩于假设的中位数时,⽤“-”表⽰;对于恰好等于假设的中位数的数据予以剔出。
若关⼼实际的M与假设的是否有差别,应建⽴假设:;计算检验统计量S+和S-。
S+表⽰每个样本数据与与差值符号为正的个数;S-表⽰每个样本数据与差值符号为负的个数。
计算P值并作出决策。
若P<,拒绝原假设。
2.Wilcoxon符号秩检验,检验总体参数(如中位数)是否等于某个假定的值。
它是对符号检验的⼀种改进,弥补了符号检验的不⾜,要⽐单纯的符号检验更准确⼀些(对应的参数检验—单样本均值检验)。
检验步骤:①计算各样本观察值与假定的中位数的差值,并取绝对值;②将差值的绝对值排序,并找出它们的秩;③计算检验统计量和P值,并作出决策。
3.独⽴样本的检验,Mann-Whitney检验不需要诸如总体服从正态分布且⽅差相同等之类的假设,但要求是两个独⽴随机样本的数据⾄少是顺序数据;Kruskal-Wallis检验不需要总体服从正态分布且⽅差相等这些假设。
该检验可⽤于顺序数据,也可⽤于数值型数据。
要检验k个总体是否相同,提出如下假设。
:所有总体都相同,:并⾮所有总体都相同或等价于,不全相同。
4.秩相关检验,对两个顺序变量之间相关程度的⼀种度量。
Spearman秩相关系数也称等级相关系数,记为,计算公式为,的取值范围为[-1,1];,两种排序之间完全相关;若,两种排序之间为负相关;若,两种排序之间为正相关;若,两种排序之间不相关;越趋于1,相关程度越⾼;越趋于0,相关程度越低。
实验步骤: 1.中位数符号检验SPSS操作,点击【分析】→【⾮参数检验】→【相关样本】,打开【⾮参数检验、两个或更多相关样本】对话框。
SPSS第七章SPSS的非参数检验
是否合格
a. Altern ativ e hy po thesis states that the prop ortion of cases in the first group < .9.
结果说明
上表表明,一级品的样本率为0.8,检验 一级品概率是0.9,由于是小样本,自动 计算精确概率,发现23个样本中一级品率 小于0.9的概率为0.193; 如果确定显著性水平为0.05,则检验不显 著,所以认为一级品率与0.9没有显著差 异;
Change1
Extract... Options...
Upper
Remove
7.1.1.2 卡方检验的基本操作(续)
将待检验的变量选入Test Variable 框中; 在 Expected Range 框中确定参与分析的样本 范围,其中 Get from data 表示所有样本都参 与分析,Use Specified Range 表示只有在取 值范围内的样本才参与分析; 在Expected 框中给出期望的各个p值,其中 All Categories equal 表示所有子集的p值相同, 也可在Value框中输入p值,可以添加、删除和 修改;
Nonparametric Tests
1-Sample K-S
Analyze菜单
7.1.3.2 基本操作(续)
Test Variable list:
OK
Extract...
>
Paste
CheckBox1
Reset Cancle Help
Test Distribution
Normal CheckBox1
Extract... Options...
7.1.1.2 二项分布检验的基本操作(续)
第6章 SPSS的非参数检验(共109张PPT)
0.63 0.95 0.95 0.95 0.91 没有可比
较的
6.2 SPSS 在卡方检验中的应用
1.使用目的 卡方检验〔Chi-Squar Test〕也称为卡方拟合优度检验,是K.Pearson 给出的一种最常用的非参数检验方法。它用于检验观测数据是否与某 种概率分布的理论数值相符合,进而推断观测数据是否是来自于该分 布的样本的问题。
• Step02:选择检验变量
在【Binomial Test(二项式检验)】对话框左侧的候选 变量列表框中选择一个或几个变量,将其添加至【Test Variable List(检验变量列表)】列表框中,表示需要进行 进行二项分布检验的变量。
• Step03:定义二元变量
在【Define Dichotomy(定义二分法)】选项组中可以 定义二元变量。
表6-1 参数检验和非参数检验的效率比较
应用
参数检验
非参数检 验
对正态总 体的 非参 数检 验的 效率 评价
配对样 本数 据
t检验或者 z检验
符号检验 Wilcoxon
两个独 立样 本
多个独 立样
t检验或者 z检验
方差分析 (F检验)
线性相关
无可用的
检验
Wilcoxon 检验
K-W检验 秩相关检
验
最后,单击【OHK(0确:定)样】按本钮,来操自作完的成。总体与某个指定的二项分布无显著性差异。 966227,9大70于显10著54H性9水187平:09.6样7 9本69 来967自10的01 总994体993与某个指定的二项分布有显著性差异。
P由e于rc三en种tile糖s果的S卡P路SS里会含量自独动立,计故算引入出多二独立项样分本布非参检数验检验相方应法。的检验统计量及对应的概率P值。如果概率P 3 实例分析:值糖小果中于的或卡路等里于用户设定的显著性水平,那么拒绝零假设,认为总体与某个指定的二 (提2-示ta:ile可d)以在项【分Tes布t D有istr显ibut著ion性(检验差分异布);】选相项反组中的选,择检如验果分概布类率型P;值大于显著性水平,那么接受零假设。 在【Test Distrib需uti要on(注检验意分的布)】是选,项二组中项,分用户布需检要选验择过待检程验要的理求论变分布量。必须是数值型的二元变量〔只取两个 就它单此是击数 指 【据在Op你总tio的体可量ns结不】能;论服按是从假值钮什正,的设么态在?分变变弹布出量量且的分〕不对布话。是情框假二况的不【元设明S变变时tat,i量量st用ic是,s来(统检字需计验量符要数)据】型设资选的置料项是组,断否中可点来勾自选以将同【使数一De个用据sc总r重分ip体ti假v编为e设(描码两的述个功一性类)能局】检和将部验【方其,Q法u转将。arti化大les(为于四分数断位值点数)型值】复变的选框,表示输 出根本统计量归。为一组,其余归为另一组。
SPSS非参数检验—两独立样本检验_案例解析
SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种不基于总体分布特征的统计方法,适用于数据分布未知、非正态分布或无法满足参数检验假设的情况。
其中一种非参数检验是两独立样本检验,用于比较两组独立样本之间的统计差异。
本篇文章将结合案例解析,详细介绍SPSS软件中如何进行非参数检验的两独立样本检验。
案例背景:工厂生产两种不同形状的零件,为了比较两种零件的尺寸是否存在差异,随机选取了30个零件进行测量。
现在需要使用两独立样本检验来研究这两种零件的尺寸是否存在显著差异。
步骤一:数据导入首先,将收集到的数据导入SPSS软件中。
数据包括两个变量:零件类型(Group)和尺寸(Size)。
将数据按照Excel或CSV格式保存,然后在SPSS中选择"文件"->"导入"->"数据",选择导入文件,并进行数据格式定义。
步骤二:描述性统计分析在进行假设检验之前,首先进行描述性统计分析,以了解样本数据的基本特点。
在SPSS中,选择"分析"->"描述性统计"->"描述性统计",将"Size"变量拖入"变量"框中,然后点击"统计"按钮,选择要统计的统计量(如均值、标准差等),最后点击"确定"按钮进行计算。
步骤三:正态性检验在进行非参数检验之前,需要进行正态性检验,以确定数据是否满足参数检验的假设。
在SPSS中,选择"分析"->"非参数检验"->"单样本分布检验",将"Size"变量拖入"变量"框中,然后点击"选项"按钮,选择要进行的正态性检验方法,如Kolmogorov-Smirnov检验或Shapiro-Wilk检验等。
SPSS中非参数检验方法的使用
SPSS中非参数检验方法的使用SPSS中非参数检验方法的使用统计软件包SPSS给统计工作者提供了很大方便,SPSS for Windows版本推出后,使用者无需编写程序也可完成分析,使用更广泛了。
然而,面对软件包提供的众多统计过程(或方法),有些使用者感到迷惘。
针对这种情况,本文就如何正确使用SPSS for Windows软件包中Nonparametric Tests过程清单提供的8个非参数检验过程(或方法)逐一介绍。
一、Chi-SquareChi-Square是对单个样本作检验的推断方法,用于推断目前掌握的样本是否来自某特定分布总体,属拟合优度检验〔1〕。
要求提供假定总体的理论频数;默认总体为均匀分布时无需提供理论频数〔2〕。
Chi-Square过程通过分析实际频数与理论频数吻合的程序来完成检验,因此特别适合于频数资料的分析,也只接受和处理频数资料,如病人经治疗后治愈、好转、有效和无效的人数总的说来是否相同(实为治愈、好转、有效和无效的概率或机会是否相同),成绩优、良、中、差的学生人数总的说来是否相同,赞同某种观点的人数总的说来是否达到80%,等等。
要求样本足够大,按观察值从小到大的顺序提供理论频数。
理论频数通过主对话框中Expected Values的Values选项提供,All categories equal是默认项,即均匀分布。
若只想推断样本中某一范围内的频数是否来自某种特定分布总体,可通过主对话框中ExpectedRange的Use speciffied range选项提供范围的上、下限。
上述理论频数需根据假定总体分布计算或问题的实际背景确定。
二、BinomialBinomial过程对二值变量的单个样本作检验,推断总体中两类个体的比例是否分别为π和(1-π),π值通过T est Proportion选项提供,默认值是π=0.5〔2〕。
可借助于主对话框中Define Dichotomy的Cut point选项提供截断点,将连续变量转化成二值变量作分析;若提供的变量已经是二值变量,则不需提供截断点。
SPSS操作步骤讲解系列--非参数K个独立样本检验
非参数K个独立样本检验1.理论非参数K个独立样本检验:检验多个两独立样本检验的问题。
分析方法原理和两个独立样本检验类似。
提出假设与备择假设:H0:各个样本代表的总体分布相同,H1各个样本代表的总体分布不完全相同。
求出各个样本秩和统计量求H统计量统计推断:p>0.05,表明各个样本代表的总体分布相同P<0.05,表明各个样本代表的总体分布不完全相同图1成对比较结果2.非参数K个独立样本检验操作步骤先导入数据后点击分析、非参数检验、旧对话框、K个独立样本。
图2操作步骤第一步第二步:进入图对话框后将因变量放入检验变量框中,后将分组变量放入分组变量框中后定义范围,填入分组变量赋值时的最大值和最小值,后点击继续、确定。
图3检验方法勾选及定义分组范围第三步:若需要看描述统计表结果,点击选项勾选描述、四分位数。
图4描述统计勾选第四步:若需要修改检验标准、点击精确、勾选蒙特卡洛法填入对应的检验标准置信区间。
图5检验标准置信区间修改3.非参数K个独立样本检验结果后K个独立样本检验的结果就出来了。
图6结果4.两两比较结果操作步骤第一步:如需要看两两比较结果,点击分析、非参数检验、独立样本。
图7两两比较结果第一步第二步:进入图中对话框后点击、字段、将对应变量放入对应的变量框中。
图8定义字段点击设置、勾选定制检验、克鲁卡尔沃利斯单因素ANOVA检验(K个样本)在多重比较里勾选:全部成对。
点击运行。
图9定义设置5.两两比较结果然后K个独立样本检验两两比较的假设检验结果就出来了。
图10假设检验结果第一步:双击假设检验中的一个结果(一般都是双击显著的结果),及可以进入图中结果查看器。
图11结果查看器第二步:在模型查看器中找到查看并点击其中的成对比较。
图12成对比较选择进入图中两两比较的结果框查看结果。
图13两两比较结果6.结果整理将结果粘贴复制到Excel表格中进行整理,将克鲁斯卡尔-沃利斯检验结果粘贴复制到表格中,后将检验统计放入卡方和p值,且把两两比较结果放入表格中。
非参数检验的SPSS操作
第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。
一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。
SPSS第6章 非参数检验
•现实生活中有很多现象的数据取值仅分两类,例如:学生可以按性别 分成男生和女生,产品可以按质量分成合格和不合格,投掷硬币实验的 结果可能出现正面或反面等。这时,如果某一类情况出现的概率是P, 则另一类情况出现的概率就是Q(即1-P),这种分布称为二项分布。 •【例6-3】根据过去的观察,用旧方法生产某种产品,其不合格率为1%。 现采用新方法,在600件产品中,发现了2件不合格品,问是否可以认为 新方法的不合格率明显低于旧方法的不合格率? •1、方法基本思路 •二项检验属于拟合优度检验,适用于数据只能划分为两类的总体。二 项检验是检验是否认为从样本中观察到的两类比例来自具有指定P的总 体。H0:样本所属总体的分布形态与指定的二项分布无显著差异。 •就例6-3而言,H0:样本所属总体分布是P=1%的二项分布。 •SPSS中的二项分布检验,在样本数小于等于30时,按照计算二项分布概 率的公式进行计算;在样本数大于30时,计算的是Z统计量。SPSS将自 动计算Z统计量,并给出其所对应的概率值。如果Z值对应的概率值小于 或等于给定的显著性水平α,则应拒绝H0,认为样本所属的总体分布形 态与指定的二项分布存在显著差异;如果对应的概率值大于给定的显著 性水平α,则没有足够理由拒绝H0,认为样本所属的总体分布形态与指 定的二项分布无显著差异。
•c.“Expected Values”选项区可设定总体的各类别构成。若选用默认值则表示 所有各类构成比都相等;在“Values”框中可自行定义设定总体的各类构成, 输入的数值的个数和排放次序应和数据文件中的相对应。本例选用默认值。
•d. 单击图6.2主对话框中的“Options”按钮进行统计,“Statistics”用于确定 是否需要输出描述统计指标和分位数。
3、简要评论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节非参数检验的SPSS操作
前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。
一、两个独立样本的差异显著性检验
两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据
采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析
对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程
(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。
图9-1:两独立样本非参数检验的主对话框
(2)单击按钮Options…可以要求输出描述统计量,四分位数,及对缺失值的处理方法。
这里我们选择描述统计量和四分位数,缺失值采用系统默认的方法。
点击Continue返回主对话框。
(3)在主对话框点击OK,得到程序运行结果。
3.结果及解释
(1)因变量与分组变量的描述统计量表
Descriptive Statistics
Minimum Maximum Percentiles
N Mean Std.
Deviation
75th
25th 50th
(Median) ATTEN 31 28.29 4.85 19 37 25.00 29.00 32.00 GENDER 31 1.55 .51 1 2 1.00 2.00 2.00
从上表中的结果可以看出,变量ATTEN对应的样本容量为31,平均值为28。
29,标准差为4。
85,最小值为19,最大值为37,25%的分位点的值为25,50%的分位点的值为29,75%的分位点的值为32。
(2)等级表Ranks 列出分组后等级平均数及等级之和(如下表所示)。
Ranks
GENDER N Mean Rank Sum of Ranks
ATTEN 男生14 12.43 174.00
女生17 18.94 322.00
Total 31
男生组14人,平均等级(Mean Rank)为12.43,等级和为174.00;女生组17人,平均等级(Mean Rank)为18.94,等级和为322.00。
(3)统计量检验表
Test Statistics
ATTEN
Mann-Whitney U 69.000
Wilcoxon W 174.000
Z -1.990
Asymp. Sig. (2-tailed) .047
Exact Sig. [2*(1-tailed Sig.)] .048
a Not corrected for ties.
b Grouping Variable: GENDER
经检验发现,两种方法计算的显著性水平值(Asymp. Sig.与Exact Sig.)均小于0.05,所以可以推论说两总体没有显著性差异。
二、多个独立样本的差异显著性检验
当把差异显著性检验从两个独立总体推论到多个独立总体时,参数检验的方法为方差分析,如果方差分析的条件不满足,就需要用到非参数检验的方法。
1.数据
以本章第三节例2中的数据为例,简单说明用SPSS如何进行非参数的多个独立样本的差异性的检验。
数据如下所示(文件“9-4-2.sav”):。