核反应堆结构
第三章 核反应堆结构与材料 - 复件.
控制棒驱动机构
3.1 压水堆结构
3.1.1 概述
堆芯支撑 结构
压力容器
堆芯
压水堆的纵剖面
2010.07
2
3.1 压水堆结构
堆芯和压力容器的断面
2010.07
3
3.1 压水堆结构
3.1.2 反应堆压力容器
一座100万千瓦压水堆核电 站的压力壳,高12~13 m,直 径5~6 m,壁厚250 mm,总重 量达400~500 t。 一座110万千瓦沸水堆核电 站的压力壳,高约22 m,直径 6.4 m,壁厚约160 mm。 压力容器的制造材料要求 强度高、韧性好、耐高温腐蚀、 耐辐照,并且导热性能好,易 于加工和焊接。
2010.07
27
3.2 核反应堆材料
3.2.2 反应堆结构材料
反应堆内的结构材料应具有一定的机械强度,热导率高、热 膨胀率低,并且辐照稳定性好。 反应堆内的结构材料会受到多种粒子或射线的辐照,可能引 起材料性能的变化,因此具有良好的抗辐照性能对于反应堆内 的结构材料至关重要。
快中子辐照是反应堆结构材料产生辐照损伤的主要因素。
堆内下部构件
2010.07
8
3.1 压水堆结构
堆内上部构件
1.堆芯上栅格板 上栅格板用于固定堆芯组 件,带有和下栅板一样的流 水孔。
2.导向管支撑板 支撑板通过压力容器顶盖 和压紧弹簧来固定。它对堆 芯吊篮起到固定作用。
堆内上部构件
2010.07
9
3.1 压水堆结构
3.控制棒导向管 导向管内装有导向活塞, 当控制棒组件在上下抽插时 导向筒起导向作用。 4.支撑柱 支撑柱是支撑板和上栅格 板之间的连接件。它的作用 是使两板保持一定距离,并 传递机械载荷。
核反应堆结构-5
吸收剂棒固定在星形架 的指状物上, 的指状物上,棒与指状 物之间先用螺纹连接, 物之间先用螺纹连接, 然后用销钉保持接点紧 固,最后将销钉焊接固 以保证无故障运行. 定,以保证无故障运行. 销钉位置以下的吸收剂 棒端塞直径减小, 棒端塞直径减小,以增 加棒的柔性, 加棒的柔性,以便将组 装时以及运行中与传动 轴线之间的不对中效应 减至最小程度. 减至最小程度.
下端塞呈子弹头形状,以便在棒束控制组件移动时, 下端塞呈子弹头形状,以便在棒束控制组件移动时, 吸收剂棒平稳地导向进入燃料组件中的导向管. 吸收剂棒平稳地导向进入燃料组件中的导向管.当 控制棒组件完全从堆芯抽出时(即最高位置 即最高位置), 控制棒组件完全从堆芯抽出时 即最高位置 ,吸收 剂棒的总长度能够保证棒的下端仍保持在导向套管 之内,使吸收剂棒和导向管保持对中. 之内,使吸收剂棒和导向管保持对中.控制棒的上 端塞具有螺纹端头,以便与星形架的指状物相连接, 端塞具有螺纹端头,以便与星形架的指状物相连接, 镉或不锈钢的砌块在不锈钢包壳内, 银-铟-镉或不锈钢的砌块在不锈钢包壳内,上端塞 铟 镉或不锈钢的砌块在不锈钢包壳内 下面由预紧的螺圈形弹簧压紧定位. 下面由预紧的螺圈形弹簧压紧定位.
中子源组件
主要作用是 主要作用是:①提高堆内中子通量水平,增加仪表 提高堆内中子通量水平, 测量精度,为堆的安全启动提供可靠的依据; 测量精度,为堆的安全启动提供可靠的依据;②在 反应堆启动时起"点火"的作用. 反应堆启动时起"点火"的作用. 工作方式:中子源设置在堆芯或堆芯邻近区域, 工作方式:中子源设置在堆芯或堆芯邻近区域,每 秒钟放出10 个中子. 秒钟放出 7~108个中子.依靠这些中子在堆芯内 引起核裂变反应,从而提高堆芯内中子通量, 引起核裂变反应,从而提高堆芯内中子通量,克服 核测仪器的盲区,使反应堆能安全,迅速地启动. 核测仪器的盲区,使反应堆能安全,迅速地启动. 分组:中子源组件分为初级中子源棒组件 初级中子源棒组件和 分组:中子源组件分为初级中子源棒组件和次中子 源棒组件 .
(完整版)反应堆本体结构
13
由外向内倒料方式的优缺点
优点:
可以展平堆芯功率,获得较高的燃耗深度,提高核燃料的 利用率。从第二循环开始,新装入的燃料组件的富集度为 3.25%,高于首次装料。 因为经过一段时间的运行,堆芯内积累了会吸收中子的裂 变产物,需要增加后备正反应性。
缺点:
中子注量率的泄漏率较高,导致压力容器中子注量率大, 中子利用率较低低,导致换料周期较短,燃料循环成本较 高。
偿因燃耗、氙、钐毒素、冷却剂温度改变等引起的比 较缓慢的反应性变化。 (即调节慢反应)
注:在新的堆芯中,还用可燃毒物棒补偿堆芯寿命初期的 剩余反应性。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。 组件内的燃料元件棒按正方形排列。常用的有14 14, 15 15,16 16和17 17排列等几种栅格型式。
第三讲 反应堆本体结构
1
2
3
4
5
6
(一)反应堆堆芯
7
➢ 反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特 殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
➢ 反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
➢ 堆芯结构由核燃料组件、控制棒组件、可燃毒物
➢ 燃料元件是产生核裂变
并释放热量的部件。
➢ 它是由燃料芯块、燃料包
壳管、压紧弹簧和上、下端 塞组成。燃料芯块在包壳内 叠装到所需要的高度,然后 将一个压紧弹簧和三氧化铝 隔热块放在芯块上部,用端 塞压紧,再把端塞焊到包壳 端部。
23
(a)燃料芯块
➢芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯
核反应堆结构-4
控制棒导向管 : 在标准的17×17燃料组件中,导向管占据24个栅元, 它们为控制棒插入和抽出提供导向的通道,导向管 由一整根锆-4合金管子制成.其下段在第一和第二 格架之间直径缩小,在紧急停堆时,当控制棒在导 向管内接近行程底部时,它将起缓冲作用,缓冲段 的过渡区呈锥形,以避免管径过快变化,在过渡区 上方开有流水孔,在正常运行时有一定的冷却水流 入管内进行冷却,而在紧急停堆时水能部分地从管 内流出,以保证控制棒的冲击速度被限制在棒束控 制组件最大的容许速度之内,又使缓冲段内因减速 而产生的最大压力引起导向管的应力不超过最大许 用应力.缓冲段以下在第一层格架的高度处,导向 管扩径至正常管径,使这层格架与上面各层格架以 相同的方式与导向管相连.
导向管与下管座的连接借助其螺纹塞头来实现,螺 纹塞头的端部带有一个卡紧的薄圆环,用胀管工具 使圆环机械地变形并镶入管座内带凹槽的扇形孔中; 螺纹塞头旋紧在合金端塞的螺孔中将导向管锁紧在 下管座中. 组件重量和施加在组件上的轴向载荷,经导向管传 递,通过下管座分部到堆芯下栅格板上.燃料组件 在堆芯中的正确定位由对角线上两个支撑脚上的孔 来保征,这两个孔和堆芯下栅格板上的两个定位销 相配合,作用在燃料组件上的水平载荷通过定位销 传送到堆芯支承结构上.
核燃料组件的"骨架"结构
前面已经讲到17×17型压水堆核燃料组件是由 包括定位格架,控制棒导向管,中子通量测量管, 上管座和下管座所组成的"骨架"结构和核燃料元 件组成. 定位格架 作用:燃料组件中,燃料棒沿长度方向由八层格架 夹住定位,这种定位使棒的间距在组件的设计寿期 内得以保持.格架的加紧力设计成既使可能发生的 振动减到最小,又允许有不同的热膨胀滑移,也不 致引起包壳的超应力. 结构外形:格架由锆-4合金条带制成,呈17×17正 方栅格排列,条带的交叉处用电子束焊双边点焊连 接,外条带比内条带厚,内条带的端部焊在条带上, 外条带端部由三道焊缝连接;使格架能在运输及装 卸操作过程中很好地保护燃料棒.
反应堆本体结构
1
2
3
4
5
6
(一)反应堆堆芯
7
反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特
殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
堆芯结构由核燃料组件、控制棒组件、可燃毒物
运行和事故工况下快速控制 反应性的手段。下面看一下 17 17型燃料组件的棒束型 控制棒组件的结构图。
大约1/3的燃料组件的控制棒
导向管是为控制棒组件占据的。
41
2、控制棒组件
控制棒:由星型支架和吸收剂棒组成。
以连接饼为中心呈辐射状有16根连接
翼片,每个翼片上装有一个或两个指 状物,每个指状物带有一根吸收棒。 通过螺纹固定,然后用销钉紧固,这 些吸收剂棒可插入对应燃料组件24根
23
(a)燃料芯块
芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯
块)冷压成形再烧结成所需密度的圆柱体,直径 为8-9毫米,直径与高度之比为1:1.5。
(大亚湾采用直径8.192mm,高度13.5mm)
每一片芯块的两面呈浅碟形,以减小燃料芯块
因热膨胀和辐照肿胀引起的变形。
一根燃料棒内装有271个燃料芯块。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。
组件内的燃料元件棒按正方形排列。常用的有14 14,
15 15,16 16和17 17排列等几种栅格型式。
优点:减少了堆芯内的结构材料; 冷却剂可充分交混,改善了燃料棒表面的冷却。
下面看一下17 17型燃料组件的总体图。
反应堆结构
反应堆结构反应堆结构及几种典型反应堆系统反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。
核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。
反应堆由堆芯、压力容器、上部堆内构件和下部堆内构件等几部分组成。
反应堆安置在反应堆厂房(也称为安全壳)的正中,它的六条进出口接管管嘴支撑在作为一次屏蔽的混凝土坑(即堆坑)内,而堆坑位于一个大约10米深的反应堆换料水池的底部。
如下图它可分为反应堆堆芯、堆内构件、反应堆压力容器和顶盖控制棒驱动机构四部分。
下面主要介绍反应堆堆心和压力容器。
1、反应堆堆芯:核反应堆的堆芯位于压力容器中心,由157个几何形状及机械结构完全相同的燃料组件构成,核反应区高3.65m,等效直径3.04m 。
燃料核裂变释放出来的核能立即转变成热能,并由冷却剂导出。
1.1、燃料组件:燃料组件骨架由8个定位格架、24根控制棒导向管、一根中子通量测量管和上、下管座焊接而成。
其功用是确保组件的刚性,承受整个组件的重量和控制棒快速下插的冲击力,并准确引导控制棒束的升降,保证组件在堆内可靠工作和装卸料时的运输安全。
如下图定位格架由锆-4合金条带制成,这些条带装配成17×17的正方形栅格。
在格架栅元中,燃料棒由其中两边的弹簧夹顶在另两边的两个刚性凸台上,其共同作用使燃料棒保持中心位置。
弹簧夹由因科镍718薄片弯成开口环制成,然后将夹子跨在条带上夹紧定位,并在上下相接面上点焊。
这样形成的两个相背的弹簧分别顶住相邻栅元的两根燃料棒,自然抵消了作用在条带上的力。
每个燃料组件带有24个控制棒导向管,由锆-4合金制成,它们为控制棒的插入和提出导向。
其下部在第一和第二格架之间直径缩小,形成缓冲段,以便当控制棒紧急下落接近底部时起缓冲作用。
在缓冲段上部有流水孔,正常运行时冷却水流入管内,在控制棒下插时水能部分从管内排出。
缓冲段下部的管径扩至正常,使底层格架可以按上层格架的相同方式与导向管相连接。
核反应堆的构造与原理
核反应堆的构造与原理核反应堆是人类利用核能进行能源转化和利用的重要装置,它是利用核裂变或核聚变等反应过程产生的能量,转化为电能或其他形式的能量。
核反应堆由反应堆本体、控制与保护等系统和辅助设备等部分组成。
一、反应堆本体反应堆本体是核反应堆的主体构件,核反应堆的反应主要在反应堆本体内进行。
反应堆本体包括反应堆压力容器、燃料组件和冷却系统。
1、反应堆压力容器反应堆压力容器是承受反应堆本体内高温、高压和强辐射环境的容器,它是反应堆安全的重要保障。
该容器采用钢制主体,内衬防辐射钢板和铅板等材料。
2、燃料组件燃料组件是反应堆内主要储能的部分,它包含了用于核反应的燃料和燃料包壳等外壳保护。
燃料包壳往往是由合金钢、锆合金或铝合金等制成。
燃料则往往是铀、钚等可用作核反应燃料的物质。
3、冷却系统冷却系统是反应堆内负责燃料排热的部分,它是确保反应堆正常运行的重要保证。
冷却系统采用水、氦气或钠等冷却剂。
二、控制与保护系统1、控制系统控制系统是保证反应堆反应正常的系统,它采用反应堆控制棒调节反应堆内核反应。
控制棒是一种圆筒形的中心空置管,一般由银、铝、钡等元素制成,其管壳外表面均匀地涂覆有镉等元素。
控制棒可根据能量需求随时控制反应堆中的核反应。
2、保护系统保护系统是反应堆安全的保护系统。
它包括常规保护系统和非常规保护系统两种保护方法。
常规保护系统指的是针对燃料组件的温度、压力和中子流量等测量来进行保护;非常规保护系统通常采用紧急关闭系统来保护反应堆安全。
三、辅助设备辅助设备是配合反应堆本体和控制系统使用的一些设备。
辅助设备包括冷却剂回路、泵站、容器防护等。
总之,核反应堆作为一种新型的能源生产方式,具有取之不尽,用之不竭之优势。
只有在技术得到充分保证和严格控制后,才能够达到效果,充分发挥其所以光芒。
反应堆本体结构范文
反应堆本体结构范文核反应堆本体结构的主要组成部分包括:1.燃料组件:燃料组件是核反应堆中最关键的部分,其中包含核燃料,如铀、钚等,用于产生核裂变反应。
燃料组件通过燃料排列形式的不同可以分为固体燃料和液态燃料两种类型。
固体燃料一般采用的是金属或氧化物燃料棒排列,而液态燃料一般采用的是液态金属,如液态钠。
2.冷却剂:冷却剂在核反应堆中起到冷却燃料和维持核反应堆温度稳定的作用。
常用的冷却剂包括水、液态金属(如液态钠、液态铅)等。
冷却剂从燃料组件中吸收热量后,通过循环系统将热量传递到蒸汽发生器,最终产生蒸汽用于发电。
3.反应控制系统:反应堆的稳定和安全运行需要精确控制核燃料的裂变速率。
反应控制系统通过调节控制棒的位置,可以控制中子流的增减,从而控制核反应堆的功率。
控制棒一般由吸收中子的材料制成,如硼、银等。
4.辅助设备:辅助设备包括反应堆冷却系统、安全系统等。
反应堆冷却系统主要是用来将冷却剂循环流动,从而带走燃料组件产生的热量;安全系统包括事故处理设备、废物处理设备等,用于确保反应堆在异常情况下能够安全停机或处理废物。
总体来说,核反应堆本体结构的设计要考虑燃料的性质、冷却剂和反应控制系统的配合,以及安全性和可靠性的要求。
不同类型的核反应堆(如压水堆、沸水堆、气冷堆等)本体结构也有所差异,但基本原理和组成部分大致相同。
对于核反应堆的实际工程设计来说,还需要考虑其他因素,如辐射防护、排除事故风险等。
总之,核反应堆本体结构是核反应堆中最核心的部分,它的设计和运行直接关系到核能的利用和核安全的保障,是一个复杂而精密的系统。
随着科技的不断发展,对核反应堆本体结构的研究和改进将会不断推进,以提高核能的利用效率和安全性。
反应堆本体结构
(f)压紧弹簧
➢ 限制燃料元件的运输和操作过程中,芯块的
轴向串动。
30
(2)核燃料组件的“骨架”结构
➢在一个燃料组件的全长上,有6-8个
弹性定位格架。组装时,由24根控 制棒导向管,1根测量仪表套管把弹 性定位格架与上、下管座连接成一 体构成燃料组件“骨架”, 以支撑 燃料元件棒并保持 燃料元件棒之间的 间距。使264根细长的燃料元件棒形成 一个整体,承受整个组件的重量和控 制棒下落时的冲击力,并保证 控制棒 运动的通畅。
露燃料管理。
内→外装料方式可以减少中子的径向泄露,增加堆芯的 反应性,提高燃料的卸料燃耗。但该装料方式会使堆芯功 率分布不平坦性增加,功率峰因子增大,因此,需采用 203Gd作可燃毒物来抑制功率峰。
15
对于18个月换料低泄露燃料管理策略,与常规的年换料方
式相比,能够: (1)降低压力容器中子注量率,有利于延长压力容器的寿
岭澳核电站则从第二循环开始进入混合堆芯阶段;从 第三循环开始富集度提高到3.7%。循环周期暂维持12 个月。
17
堆芯的反应性控制
1、控制棒调节:依靠棒束型控制棒组件的提升或插
入,来实现电厂启动、停闭、负荷改变等情况下比较 快速的反应性变化。(即调节快反应)
2、硼浓度调节:调整溶解于冷却剂中硼的浓度来补
堆芯的重量通过堆芯下栅格板及吊兰传给压
力壳支持。堆芯的尺寸根据压水堆的功率水平和 燃料组件装载数而定。
10
大亚湾 900 MW 级压水堆第一个堆芯的布置共有
157个横截面呈正方形的无盒燃料组件。
53个插有控制棒组件
157个无盒燃料组件
核反应堆的构造与设计
核反应堆的构造与设计核反应堆是一种能够产生和控制核裂变或核聚变反应的设备,是核能利用的核心部分。
它的构造和设计直接关系到核能的安全性、效率和可持续性。
本文将介绍核反应堆的构造和设计原理,以及相关的安全措施。
一、核反应堆的构造核反应堆主要由以下几个部分构成:1. 燃料组件:燃料组件是核反应堆中最重要的部分,它包含了核燃料,如铀或钚等。
核燃料在反应堆中发生裂变或聚变反应,释放出巨大的能量。
燃料组件通常由多个燃料棒组成,燃料棒内部填充有核燃料,外部由包覆材料包裹。
2. 冷却剂:冷却剂是核反应堆中用于吸收和带走燃料产生的热量的物质。
常用的冷却剂有水、氦气、液态金属等。
冷却剂通过循环流动,将燃料产生的热量带走,保持反应堆的温度在安全范围内。
3. 反应堆容器:反应堆容器是核反应堆的外壳,用于包裹和保护核燃料和冷却剂。
反应堆容器通常由厚重的钢材制成,具有良好的密封性和辐射屏蔽性能。
4. 控制系统:控制系统用于控制核反应堆的反应速率和功率。
它包括控制棒、反应堆堆芯布置和监测设备等。
控制棒可以插入或抽出燃料组件,调节反应堆的反应速率。
监测设备用于实时监测反应堆的温度、压力和辐射等参数,确保反应堆的安全运行。
二、核反应堆的设计原理核反应堆的设计原理主要包括以下几个方面:1. 反应堆类型:根据核反应堆的工作原理和燃料类型的不同,可以将核反应堆分为裂变堆和聚变堆。
裂变堆利用核裂变反应释放能量,聚变堆利用核聚变反应释放能量。
不同类型的反应堆有不同的设计要求和特点。
2. 反应堆堆芯布置:反应堆堆芯布置是核反应堆设计中的重要环节。
合理的堆芯布置可以提高反应堆的热效率和燃料利用率,减少燃料浪费和核废料产生。
堆芯布置通常采用周期性或非周期性的方式,以满足反应堆的设计要求。
3. 安全措施:核反应堆的安全性是设计中最重要的考虑因素之一。
设计中需要考虑到核燃料的控制、冷却剂的循环、辐射屏蔽和事故应对等方面。
安全措施包括防止核燃料过热、防止冷却剂泄漏、防止辐射泄漏等。
核反应堆结构-gas_reactor
涂敷颗粒类型有代表性的有两种:一种称BISO颗粒, 采用两种涂敷层,内层是低密度疏松热解碳层,用 以贮存裂变气体,外层是高密度的致密热解碳层, 用以承受裂变气体的压力,防止裂变产物进入氦回 路;另一种称TRISO颗粒,采用三种涂敷层,即在 热解碳的疏松层外的两层致密层之间加一层碳化硅 (SiC)层,用以防止金属裂片铯、锶、钡等的扩散迁 移。
高温气冷堆
概述 早在1956年英国就建成了净电功率45兆瓦的卡特霍 尔(Calder Hall)电站。这种第一代气冷堆采用石墨 慢化,二氧化碳冷却,金属天然铀燃料,镁合金(镁 铍)包壳,故称镁诺克斯型(Magnox)气冷堆。后来 在英、法、意和日本等国建造了一大批这样的堆。 经过改进,堆芯功率密度由开始的0.55MW/
高温气冷堆的特点:
(1)高温、高效率 高温气冷堆的氦气出口温度高,可达750~950 ℃, 不仅发电效率较高,而且可用作高温工业供热,这 是任何其他堆型所不能达到的,由此开辟了核能利 用的广阔途径。在发电方面,采用高效率的蒸汽循 环后,热效率可达40%。若采用直接循环氦气轮机, 则不仅使电站设备及系统大大简化,降低比投资, 而且可以充分利用氦气出口温度高的特点,进一步 提高发电热效率,当反应堆出口氦气温度达850℃时 其热效率即可达45%,可与新型的火电站相媲美 。
(4)对环境的污染
由于采用性能稳定的氦气作冷却剂,反应堆一回路 反射性剂量较低,而且由于它的热效率高,排出的 废热也比轻水堆少35~40%。因此,它是核电站中
较清洁的堆型,可以建在人口较密的城镇附近。
(5)有综合利用的广阔前景 如果进一步提高氦气的出口温度到900℃(左右),与氦 气轮机直接连接,热效率可达50%以上,在出口温度 提高到,1000~2000℃(左右)时,还可能将反应堆产 生的热直接用于炼铁,化工及煤的气化等工业生产中 去,达到综合利用的目的。另外,高温氦气技术经验 的取得可为将来发展气冷快堆和核聚变反应堆创造条 件。 由于这些特性,使高温气冷堆具有一回路反射性低, 易于维护和检修;固有安全性高,事故安全性好;对 环境反射性排放量少等优点。因此有可能较安全地建 造在人口稠密区,有利于选址和工业布局。
核反应堆结构设计和辐射防护方案优化
核反应堆结构设计和辐射防护方案优化核反应堆是一种能够利用核能进行能量转化的重要装置,其结构设计和辐射防护方案的优化对于核能的安全利用至关重要。
本文将从结构设计和辐射防护方案的角度探讨如何优化核反应堆的设计。
首先,核反应堆的结构设计是保证核能安全利用的基础。
在核反应堆的结构设计中,有几个关键的方面需要考虑。
首先是材料选择,核反应堆的结构材料需要具备良好的高温和辐射抗性。
目前,常用的核反应堆结构材料包括铝合金、不锈钢和铅铋合金等。
其次是结构强度和稳定性,核反应堆需要经受高温和高压的考验,所以结构设计需要考虑到这些因素的影响,同时保证反应堆的稳定运行。
另外,还需要考虑到冷却系统和热交换系统的设计,以确保核反应堆在运行期间能够保持适当的温度和能量输出。
其次,辐射防护方案的优化对于核反应堆的安全运行至关重要。
核反应堆运行过程中会产生大量的辐射,对人员和环境造成潜在的威胁。
因此,设计一个有效的辐射防护方案是非常重要的。
首先,需要对核反应堆运行过程中产生的各种辐射进行全面的评估和分析,包括中子辐射、γ射线等。
通过了解辐射类型和能量分布,可以有针对性地改善辐射防护措施。
其次,辐射防护方案应根据核反应堆的具体情况进行定制化设计。
例如,可以采用防射线材料、增加防护层厚度等措施来降低辐射水平。
此外,辐射防护方案还应考虑到人员的防护和核设施的安全等因素,确保核反应堆的安全运行。
在优化核反应堆结构设计和辐射防护方案时,还需要结合现代科技的进步。
例如,可以利用计算机模拟技术对核反应堆的结构进行优化设计,提高结构的强度和稳定性。
此外,可以利用先进的材料工艺和加工技术,生产更耐高温和辐射的结构材料,以提高核反应堆的整体性能。
另外,可以采用先进的辐射监测技术,实时监测和控制辐射水平,及时发现和应对辐射泄漏事件,保障核能的安全利用。
总之,核反应堆结构设计和辐射防护方案优化是确保核能安全利用的关键。
通过合理选择材料、优化结构设计,以及采取有效的辐射防护措施,可以保证核反应堆的安全运行,并最大程度地减少对人员和环境的辐射威胁。
核反应堆
原理
核反应堆原理核反应堆是核电站的心脏 ,它的工作原理是这样的:
原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原 子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀 235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物 质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动汽轮机发电。由此可知,核反 应堆最基本的组成是裂变原子核+载热体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要 使中子慢化增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物 都有强放射性,会对人造成伤害,因此必须有可靠的防护措施;核反应堆发生事故时,要防止各种事故工况下辐 射泄漏,所以反应堆还需要各种安全系统。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+载热体+控 制设施+防护装置+安全设施。
人类第一座核反应堆的设计者:费米1939年1月,用中子引起铀原子核裂变的消息传到费米的耳朵里,当时 他已逃亡到美国哥伦比亚大学,费米不愧是个天才科学家,他一听到这个消息,马上就直观地设想了原子反应堆 的可能性,开始为它的实现而努力。费米组织了一支研究队伍,对建立原子反应堆问题进行彻底的研究。费米与 助手们一起,经常通宵不眠地进行理论计算,思考反应堆的形状设计,
理论研究
研究历程 氢元素提供证据
惰性气体揭露谜底 间歇式
20亿年前 ,在非洲奥克罗班多地区的十几座天然核反应堆神秘启动,稳定地输出能量,并安全运转了几十 万年之久。为什么它们没有在爆炸中自我摧毁?是谁保证了这些核反应的安全运行?莫非它们真的如世间的传言 那样,是外星人造访的证据,或者是上一代文明的杰作?通过对遗迹抽丝剥茧地分析,远古核反应堆的真相正越 来越清晰地暴露在我们面前。
核反应堆物理知识点总结
核反应堆物理知识点总结核反应堆的基本原理核反应堆是通过核裂变或核聚变反应释放能量,实现能量的控制和转换。
核反应堆中的燃料通常是放射性同位素,如铀、钚等。
在裂变反应中,这些放射性同位素被中子轰击后裂变成两个或更多的裂变产物,伴随着大量的能量释放;在聚变反应中,两个轻核子融合成一个重核子,同样伴随着释放大量的能量。
裂变反应的示意图如下所示,以铀-235为例:铀-235 + 中子→ 钒-141 + 锶-92 + 3中子 + 能量聚变反应的示意图如下所示,以氘与氚核聚变产生氦和中子为例:氘 + 氚→ 氦 + 中子 + 能量核反应堆的结构核反应堆通常由反应堆压力容器、燃料组件、控制棒、冷却剂、反应堆堆芯、反应堆容器等部件组成。
其中,反应堆压力容器是核反应堆的主要设备之一,用于容纳反应堆的燃料组件和控制棒,同时提供辐射屏蔽和冷却外壳。
燃料组件是反应堆的核心部件,包含了核燃料和结构材料,用于裂变或聚变反应产生能量。
控制棒是用来调节核反应堆功率的设备,通常由吸中子材料组成,可以调整中子通量,控制核裂变反应的速率。
冷却剂则是用来带走反应堆核心区的热量,防止核反应堆过热。
核反应堆的工作原理核反应堆的工作原理主要包括裂变链式反应、控制反应堆功率、调节中子通量、冷却反应堆核心等几个方面。
首先,核反应堆的工作是通过裂变链式反应来释放能量的。
在核反应堆中,加速中子被注入燃料组件,引发铀或钚等放射性同位素的核裂变,并释放更多的中子,在一连串的核裂变中,释放出巨大的能量。
其次,为了控制核反应堆的功率,需要调节中子通量。
一般情况下,核反应堆的功率是通过控制棒来调节的,控制棒的进出深度会影响中子的散射,从而调节核反应堆的功率。
最后,为了防止核反应堆过热,需要冷却反应堆核心。
核反应堆中通过冷却系统可以带走核反应堆核心的热量,防止核反应堆过热。
核反应堆的安全控制核反应堆的安全控制是核能工程的重要一环,主要包括核反应堆冷却系统设计、核反应堆辐射屏蔽设计、控制系统设计等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 反应堆的分类
.
❖ 核电厂基本原理
.
.
.
压水堆结构概述
❖ 核电厂是利用核燃料发生的受控自持链式裂变反应 所释放的能量作为热源发电,而常规电厂则利用化 石燃料(如煤,燃油,天然气等)燃烧所释放的能量
作为热源发电。 ❖ 压水堆核电厂约占世界核电厂的60%多,我国已经
建成的均为压水堆型核电厂,尽管各压水堆核电厂 在设计细节上略有不同,但压水堆核电厂在总体上 已经基本定型,压水堆本体由反应堆压力容器、堆 芯、堆芯支撑结构、控芯是反应堆的核心部分,是放置核燃料,实现持 续的受控链式反应,从而成为不断释放出大量能量, 并将核能转化为热能的场所。它相当于常规电厂中 释放出大量热量的锅炉。此外,堆芯又是强放射源, 因此,堆芯结构设计是反应堆本体结构设计中最重 要的环节之一。
❖ 压水堆堆芯由核燃料组件、控制棒组件、固体可燃 毒物组件、阻力塞组件以及中子源组件等组成,并 由上、下栅格板及堆芯围板包围起来后,依靠吊篮 定位于反应堆压力容器的冷却剂进出口管的下方。
.
.
.
❖ 反应堆压力容器是放置堆芯和堆内构件,防止放射 性外泄的高压设备。它的完整性直接关系到反应堆 的正常运行和使用寿命,而且它在高温、高压、强 辐照的条件下长期工作,它的尺寸大,重量重,加 工制造精度要求高。因此是压水堆的关键设备之一。
❖ 压水堆压力容器布置非常紧凑,运行在很高的压力 下,容器内布置着堆芯和若干其他内部构件。压力 容器带有偶数个(4~8)出入口管嘴,整个容器重量由 出口管嘴下部钢衬与混凝土基座(兼作屏蔽层)支承, 可移动的上封头用螺栓与筒体固定,由两道“O”形 密封圈密封,上封头有几十个贯穿件,用于布置控 制棒驱动机构、堆内热偶出口和排气口。
.
❖ 堆芯冷却剂流量分配: 主要部分用于冷却
燃料元件,另一部分旁 流冷却控制棒和吊篮以 及冷却上腔室和上封头, 这非常重要,它用于冷 却控制棒导管区和上封 头,使该处水温接近冷 却剂入口温度,防止上 封头汽化。
.
❖ 在典型的燃料管理方案(大亚湾157个组件)
为使堆芯的释热比较均匀,初始堆芯采用三种 不同富集度的燃料分区布置。富集度最高的燃料装 在堆芯的外围,称为3区,另外两种较低富集度的 燃料以国际象棋棋盘的方式布置在堆芯内区,称为 1区和2区。各区所装燃料的富集度及组件数如下: 1区:53个燃料组件,富集度为1.8%; 2区:52个燃料组件,富集度为2.4%; 3区:52个燃料组件,富集度为3.1%。
.
❖ 反应堆堆芯设计的好坏对核岛的安全性、经济性和 先进性有很大的影响。一般来说,它应满足下述基 本要求: 1、堆芯功率分布应尽量均匀,以便使堆芯有最大 的功率输出; 2.尽量减小堆芯内不必要的中子吸收材料,以提 高中子经济性; 3.有最佳的冷却剂流量分配和最小的流动阻力; 4.有较长的堆芯寿命,以适当减少换料操作次数; 5.堆芯结构紧凑,换料操作简易方便。
❖ 堆芯支承结构由上部支承结构和下部支承结构(及吊篮)组成。 吊篮以悬挂方式支撑在压力容器上部支承凸缘上。吊篮与压 力容器之间形成环形腔称为下降段。
.
❖ 冷却剂流向 用作慢化剂兼冷却剂的水,从进口接管流入压
力容器,沿吊篮与压力容器内壁之间的环形通道(也 称下行流道)流向堆芯下腔室,然后转而向上流经堆 芯,加热后的冷却剂经由上栅格板、上腔室,经出 口管嘴流出,并由此导入环路的热管段,随后,反 应堆冷却剂通过蒸汽发生器底部半球形封头上的入 口接管进入蒸汽发生器,流经蒸发段的倒置U形管 后,由底部出口接管离开蒸汽发生器。蒸汽在蒸汽 发生器的二回路壳侧产生。经冷却的水从蒸汽发生 器出来后,流经一个U形过渡管段,到达位于反应 堆冷却剂泵底部的泵入口接管,泵将反应堆冷却剂 升压,以补偿系统的压降。反应堆冷却剂经泵的出 口接管,进入环路冷管段,由此,反应堆冷却剂流 回反应堆容器,构成闭合环路。
.
3、可转换核素:由于能量大于1MeV以上的中 子能够引起铀-238,钍-232转化,所以称这两种核 素为可裂变核素。铀-238,钍-232可分别转化为钚239及铀-233所以又将它们称为可转化核素。
4、一次核燃料和二次再生核燃料:在三种易裂 变核素中,由于铀-235是存在于天然矿物中的,所 以叫一次核燃料。而铀-233和钚-239是用人工方法 制造两得到的,所以又称为二次再生核燃料。
.
❖ 燃料组件由燃料棒、下管座、上管座、控制棒、导向管、定 位格架、压紧弹簧等几个部件组成。
❖ 元件棒一般按14×14、15×15、17×17方式排列成正方形 栅格,每个组件设有16~24根控制棒导向管,燃料组件中心 设有一根堆内通量测量管。其中约三分之一燃料组件的控制 棒导管内,布置有控制棒组件。控制棒组件可以从上部插入 堆芯实现停堆。组件中心的仪表管允许从压力容器底部将堆 内通量测量探头伸入组件内任意高度。凡不布置控制棒、可 燃毒物棒或中子源棒的燃料组件,均有节流组件安插在导管 上端以减少冷却剂旁流。
.
❖ 反应堆堆芯位于压力容 器内低于进出口管嘴处, 由157~193(相应于 900~1200MWe)个几 何上和机械上都完全相 同的燃料组件构成(大 亚湾157个)。燃料组件 不设元件盒,冷却剂可 以发生径向交混。堆芯 周围由围板束紧,围板 固定在吊篮上。吊篮外 固定着热屏,用以减少 压力容器可能遭受的中 子辐照。
.
❖ 二、链式裂变反应
当中子与裂变物质作用而发生核裂变反应时,裂变物质 的原子核通常分裂为两个中等质量数的核(称为裂变碎片)。 与此同时,还将平均地产生两个以上的新的裂变中子,并释 放出蕴藏在原子核内部的核能。在适当的条件下,这些裂变 中子又会引起周围其他裂变同位素的裂变,如此不断继续下 去,这种反应过程称为链式裂变反应。
核反应堆结构
哈尔滨工程大学
.
核反应堆与核电厂基本原理
❖ 反应堆的基本工作原理
一、一些关于核燃料的基本定义:
1、核燃料:在反应堆中使用的裂变物质及可转 换物质称为核燃料。核燃料中必须是:①含有铀235、铀-233、钚-239三种易裂变核素中的一种或二 种;②能够产生裂变并释放裂变能。
2、易裂变核素:任何能量的中子都能引起核裂 变的核素称为易裂变核素,如铀-235、铀-233,钚239三种核素。