算法分析与设计作业(三)
算法分析与设计大作业

算法分析与设计大作业摘要:本文以算法分析与设计为主题,对算法的概念、分析和设计进行了探讨。
首先介绍了算法的概念和基本特征,其次分析了算法的效率和复杂度,并介绍了常用的算法复杂度表示方法。
然后,通过实例分析了几种常用的排序算法的性能与复杂度,并对它们进行了比较。
最后,总结了算法分析与设计的重要性,并提出了进一步研究的方向。
一、引言随着计算机技术的快速发展,算法分析与设计成为计算机领域中的重要研究方向。
算法是指解决特定问题的具体步骤和方法,是计算机科学的核心和基础。
算法的效率和复杂度对计算机的性能和运行时间有着直接的影响,因此算法的分析和设计非常重要。
二、算法的概念和特征算法是指在有限的时间内解决特定问题的一种方法。
它具有以下特征:输入、输出、确定性、有穷性和可行性。
输入是指算法接受的问题的数据或信息,输出是指算法求解得到的问题的解。
确定性是指算法在任何情况下都能够得到相同的结果。
有穷性是指算法在执行有限的步骤后能够终止。
可行性是指算法的每一步都是可行的,即能够被计算机执行。
三、算法的效率和复杂度算法的效率是指算法解决问题所需要的时间和空间资源的多少。
算法的复杂度是用来描述算法执行过程中所需要的资源的多少。
常用的算法复杂度表示方法有时间复杂度和空间复杂度。
时间复杂度表示算法的执行时间与输入规模之间的关系,用大写O表示。
空间复杂度表示算法所需的空间资源与输入规模之间的关系,用大写S表示。
四、常用的排序算法及性能与复杂度分析1.插入排序插入排序是一种简单直观的排序算法。
它的基本思想是将未排序的元素逐个插入到已排序的序列中。
插入的过程中,需要比较和移动元素的次数与未排序序列中的元素个数相关,因此时间复杂度为O(n^2)。
空间复杂度为O(1)。
2.冒泡排序冒泡排序是一种重复比较相邻元素并交换位置的排序算法。
它的基本思想是两两比较相邻元素,如果顺序错误则交换位置。
冒泡的过程中,需要进行n-1次的比较和交换操作,因此时间复杂度为O(n^2)。
算法设计与分析试题库

《算法分析与设计》试题库(一)一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D )策略,从根结点出发搜索解空间树。
北师大2018年春算法分析与设计作业(三)答案

《算法分析与设计》作业(三)本课程作业由两部分组成。
第一部分为“客观题部分”,由15个选择题组成,每题1分,共15分。
第二部分为“主观题部分”,由简答题和论述题组成,共15分。
作业总分30分,将作为平时成绩记入课程总成绩。
客观题部分:一、选择题(每题1分,共15题)1、贪心算法解各个子问题的方法是:( B )A、自底向上B、自顶向下C、随机选择D、自底向上或自顶向下2、用回溯法解旅行售货员问题时生成的树是:( B )A、子集树B、排列树C、二叉树D、多叉树3、在n后问题中任意两个皇后能放在:( D )A、同一行B、同一列C、同一斜线D、以上都不行4、用回溯法解0-1背包问题时生成的解空间树是:( A )A、子集树B、排列树C、二叉树D、多叉树5、用贪心算法解单源最短路径问题时采用的算法是:( A )A、Dijkstra算法B、Prime算法C、Kruskal算法D、蒙特卡罗算法6、在用动态规划解流水作业调度时的最优调度法则是:( C )A、最优子结构B、重叠子问题C、Johnson法则D、最长处理时间作业优先7、算法与程序的区别在于:( C )A、输入B、输出C、指令的确定性D、指令的有限性8、从分治法的一般设计模式可以看出,用它设计的程序一般是:( D )A、顺序B、选择C、循环D、递归9、回溯法的解空间是在搜索过程中:( A )A、动态产生B、静态产生C、无解空间D、动态或者静态产生10、在用贪心法解多机调度时的贪心选择策略是:( D )A、最优子结构B、重叠子问题C、Johnson法则D、最长处理时间作业优先11、合并排序和快速排序采用的共同策略是:( A )A、分治法B、蒙特卡罗法C、拉斯维加斯法D、单纯形法12、用回溯法解最大团问题时生成的解空间树是:( D )A、子集树B、排列树C、二叉树D、多叉树13、用分支限界法解装载问题的解空间是:( B )A、子集树B、排列树C、单向链表D、多向链表14、计算定积分的算法:( A )A、随机投点法B、舍伍德法C、分治法D、回溯法15、用随机化算法解同一实例两次得到:( C )A、结果和时间都相同B、结果相同时间不相同C、结果和时间都不相同D、以上都不对主观题部分:二、改错题(每题2.5分,共2题)下面有两个二分搜索算法,请判断它们的正确性。
算法分析与设计作业及参考答案样本

《算法分析与设计》作业( 一)本课程作业由两部分组成。
第一部分为”客观题部分”, 由15个选择题组成, 每题1分, 共15分。
第二部分为”主观题部分”,由简答题和论述题组成, 共15分。
作业总分30分, 将作为平时成绩记入课程总成绩。
客观题部分:一、选择题( 每题1分, 共15题)1、递归算法: ( C )A、直接调用自身B、间接调用自身C、直接或间接调用自身 D、不调用自身2、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的字问题, 这些子问题: ( D )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同3、备忘录方法的递归方式是:( C )A、自顶向下B、自底向上C、和动态规划算法相同D、非递归的4、回溯法的求解目标是找出解空间中满足约束条件的:( A )A、所有解B、一些解C、极大解D、极小解5、贪心算法和动态规划算法共有特点是: ( A )A、最优子结构B、重叠子问题C、贪心选择D、形函数6、哈夫曼编码是: ( B)A、定长编码B、变长编码C、随机编码D、定长或变长编码7、多机调度的贪心策略是: ( A)A、最长处理时间作业优先B、最短处理时间作业优先C、随机调度D、最优调度8、程序能够不满足如下性质: ( D )A、零个或多个外部输入B、至少一个输出C、指令的确定性D、指令的有限性9、用分治法设计出的程序一般是: ( A )A、递归算法B、动态规划算法C、贪心算法D、回溯法10、采用动态规划算法分解得到的子问题:( C )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同11、回溯法搜索解空间的方法是: ( A )A、深度优先B、广度优先C、最小耗费优先D、随机搜索12、拉斯维加斯算法的一个显著特征是它所做的随机选性决策有可能导致算法: ( C )A、所需时间变化B、一定找到解C、找不到所需的解D、性能变差13、贪心算法能得到: ( C )A、全局最优解B、 0-1背包问题的解C、背包问题的解 D、无解14、能求解单源最短路径问题的算法是: ( A )A、分支限界法B、动态规划C、线形规划D、蒙特卡罗算法15、快速排序算法和线性时间选择算法的随机化版本是:( A )A、舍伍德算法B、蒙特卡罗算法C、拉斯维加斯算法D、数值随机化算法主观题部分:二、写出下列程序的答案( 每题2.5分, 共2题)1、请写出批处理作业调度的回溯算法。
算法设计与分析复习题目及答案 (3)

分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
《算法分析与设计》课后作业

《算法分析与设计》各章课后作业第一章 课后作业1. 设某算法在输入规模为n 时的计算时间为T(n)=10*2n。
若在甲台计算机上实现并完成该算法的时间为t 秒,现有一台运行速度是甲的64倍的另一台计算机乙,问在乙计算机上用同一算法在t 秒内能解决的问题的规模是多大?2.按照渐近阶从低到高的顺序排列以下表达式:4n 2,logn ,3n,20n ,2,n 2/3。
又n!应该排在哪一位?第二章 课后作业1. 用展开法求解下列递推关系:T(n)=⎩⎨⎧>+=1n )()2/(20n )1(n O n T O,写出T(n)的大O 记号表示。
2. 下面是实现在a[0]<=a[1]<=…<=a[n-1]中搜索x 的二分搜索算法,请根据二分 搜索技术在下划线处填充语句。
算法描述如下: template<class Type>public static int BinarySearch(int []a, int x, int n) { //在a[0]<=a[1]<=…<=a[n-1]中搜索 x // 找到x 时返回其在数组中的位置,否则返回-1 int left = 0; int right = n - 1; while ( ) {int middle = ;if(x == a[middle]) return ; if(x > a[middle]) left = middle + 1; else right= ; }return -1; // 未找到x}第三章课后作业1、选择题。
(1)下列算法中通常以自底向上的方式求解最优解的是()。
A、备忘录法B、动态规划法C、贪心法D、回溯法(2)备忘录方法是那种算法的变形。
()A、分治法B、动态规划法C、贪心法D、回溯法(3)矩阵连乘问题的算法可由()设计实现。
A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法2.计算题。
算法分析与设计作业

最接近点对问题问题此问题分为一维,二维,三维的情况1. 一维: 给定直线上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,这个问题比较简单,是引出二维解法的一个引子,因为一维的直线上的点,相邻点的距离肯定小于相隔的点的距离,只需要考虑相邻点即可。
2. 二维:给定平面上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,这是我们这一问题的重点3. 三维:给定空间上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,此问题是二维的解法的复杂化,具体可以在飞机航线等问题上运用,但在此不多做介绍。
基本思想由于该问题的基本解法是去考察每个点和其他所有点的距离。
因此它的时间复杂度是2()O n ,这样做的效率太低,我们就要去寻找一个更高效的办法:分治法。
1. 因二维的情况太过复杂,先考虑一维的情况中,可以用分治法对其进行分部计算: 把直线分成两部分, 1s 2s ,分别求出其最接近点的距离1d 2d 。
但分割开的地方的两点距离可能小于这两个值,这三个值进行比较之后,得到最后结果。
2. 鉴于此,二维的也可以用此方法进行计算:把待计算的点s 分成两部分1s 2s ,分别求出其最接近点的距离1d 2d 。
但1d 2d 最小的未必是s 中的最小距离d ,它有可能是1s 中的一个点和2s 中的一个点组成的最接近点对。
所以还要考虑1s 中的所有点到2s 中的每一个点的距离,一一比较之后得出一个最小值,再和1d 2d 比较,这就得出了最后结果。
3. 接下来是具体算法实现的步骤:1. 把待计算的点s 分成两部分1s 2s :重要的如何去划分,这里采用在二维平面上的中线(用横坐标的最小值加上最大值的平均数)来划分。
2. 分别求出其最接近点的距离1d 2d :这可以用一个递归来完成。
3. 计算1s 中的所有点到2s 中的每一个点的距离:这个问题是此问题的关键。
电子科技大学研究生算法设计与分析拟考题及答案评分细则(3)

电子科技大学研究生算法设计与分析拟考题及答案评分细则(3)一、Please answer T or F for each of the following statements to indicate whether the statement is true or false1. The knapsack problem can be solved in polynomial time by using dynamic programming.( F )2. Some problems in NP can be solved in polynomial time.( T )3. To show a problem is NP-hard, we can reduce it to a well-known NP-Complete problem.( F )4. In an undirected graph, the value of the maximum flow between two vertices is equivalent to the value of the minimum cut between them. ( T )5. . ( F )二、Arrange the following functions in ascending asymptotic order of growth rate:,,,,.参考答案:f2,f3,f1,f4,f5三、Please answer the following questions:(a) What are the main steps of designing a dynamic programming algorithm?参考答案:1.定义子问题;2根据子问题建立递归关系式;3用自底而上的方式求解(建立储存表)。
(b) What are the main steps of proving the NP-Completeness of a problem?参考答案:1.证明该问题属于NP;2.选一个已知的NPC问题B;3.将问题B归约到该问题上。
奥鹏云南开放大学 算法设计与分析(20秋)形考作业3.doc

1.下列说法错误的是()A.使用高级计算机语言,如C、C、Java,编写的程序,都需要经过编译器编译或解释,才能转化成机器能够识别并能执行的二进制代码。
B.如何一步步的跟踪代码,找到问题,搞明白为何程序不能正常运行,这个过程称为调试程序。
C.自动化的工具同样也能够帮助你跟踪程序,尤其当程序很复杂时效果更加明显,这种工具叫做调试器。
D.调试器并能解决程序中出现的问题。
【参考答案】: D2.十六进制的基数是()。
A.2B.8C.10D.16【参考答案】: D3.九进制,就表示某一位置上的数运算时是逢()进一位。
A.2B.8C.9D.10【参考答案】: C4.十进制的123,1的位权是()。
A.1B.2C.10D.100【参考答案】: D5.一个有n个结点的图,最多有()个连通分量。
A.0B.1C.n-1D.n【参考答案】: D6.()通常位于函数或过程的开头部分,它应当给出函数或过程的整体说明,对于理解程序本身具有引导作用。
A.文件注释B.函数注释C.功能注释D.程序注释【参考答案】: B7.一个良好算法的基本单元是:顺序结构、循环结构和()。
A.线性结构B.离散结构C.数据结构D.选择结构【参考答案】: D8.支持子程序调用的数据结构是()A.栈B.树C.队列D.二叉树【参考答案】: A9.广度优先搜索的原则()。
A.按时间遍历解空间B.按代价遍历解空间C.按层遍历解空间D.按速度遍历解空间【参考答案】: C10.使用(),可以简化日常或重复性任务,使用方便、灵活,功能强大,自动化程度高。
A.文件读写函数B.批处理文件C.单步调试功能D.设置断点【参考答案】: B11.下列说法正确的是()。
A.关键字是数据元素(或记录)中某个数据项的值,可以标识一个记录,称为主关键字。
B.就平均查找长度而言,分块查找最小,折半查找次之,顺序查找最大。
C.对长度为n 的有序链表进行对分查找,最坏情况下需要的比较次数为log2n。
【分析】算法分析与设计作业参考答案

【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
2、简答题:1.算法需要满足哪些性质?简述之。
算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。
2)输出:算法产生至少一个量作为输出。
3)确定性:组成算法的每条指令清晰、无歧义。
4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
2)用递推来实现递归函数。
3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。
1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
算法分析与设计(习题答案)

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
算法分析与设计第3章课后习题答案

第3章作业解答设有4个矩阵连乘积ABCD ,设它们的维数分别为A:45×8,B:8×40,C:40×25,D:25×10,请求出它们的最优计算次序及对应的最少计算量。
解:设A 1=A, A 2=B, A 3=C, A 4=Dp 0=45,p 1=8,p 2=40,p 3=25,p 4=10 ,用两个二维数组m 和s 记录中间结果,其中,m[i][j]记录矩阵连乘积A[i:j]的最少计算量,s[i][j]记录A[i:j]的最优断开位置。
由动态规划思想,得递归式为:⎪⎩⎪⎨⎧<+++==-<≤j i p p p j k m k i m j i j i m j k i }],1[],[{min 0],[1jk i 其中,k 的取值有j-i 种可能:i,i+1,...,j-1. 计算过程如下: (1) m[i][i]=0, i=1,2,3,4 (2) 求m[i][i+1], i=1,2,3m[1][2]= p 0×p 1×p 2=45×8×40=14400 s[1][2]=1 m[2][3]= p 1×p 2×p 3=8×40×25=8000 s[2][3]=2 m[3][4]= p 2×p 3×p 4=40×25×10=10000 s[3][4]=3 (3) 求m[i][i+2], i=1,2m[1][3]=min{m[1][1]+m[2][3]+p 0×p 1×p 3, m[1][2]+m[3][3]+p 0×p 2×p 3 } =min{8000+45×8×25,14400+45×40×25} =min{17000, 59400} =17000 s[1][3]=1m[2][4]=min{m[2][2]+m[3][4]+p1×p2×p4, m[2][3]+m[4][4]+p1×p3×p4 }=min{10000+8×40×10,8000+8×25×10}=min{13200, 10000} =10000s[2][4]=3(4) 求m[i][i+3], i=1m[1][4]=min{m[1][1]+m[2][4]+p0×p1×p4 ,m[1][2]+m[3][4]+p0×p2×p4 ,m[1][3]+m[4][4]+p0×p3×p4 }=min{10000+45×8×10, 14400+10000+45×40×10, 17000+45×25×10 }=min{13600, 42400, 28250} =13600s[1][4]=1根据以上结果可得数组m, s如下:m[1][4]即A[1:4]的最少计算量,也即ABCD连乘积的最少计算量为13600。
算法分析与设计第二版习题答案-第三章到第五章

int bool=1;
int min;
int j;
int i;
int k;
int flag;
for(i=0;i<count;i++)
{
if(buf[i]=='(')
push(buf[i],i);
if(buf[i]==')')
{
flag=pop();
算法设计与分析(第二版)习题答案 主编:吕国英
算法设计与分析(第二版)习题答案(第三章)
第三章:
1.#include<stdlib.h>#include<stdio.h>int main(int argc,char **argv){int n;int i,j,k;int *buf;printf("请输入n的数值:");
;}for(i=0;i<N;i++){ for(j=0;j<N;j++) printf("]",buf[i][j]); printf("\n");}return
0;}6.#include<stdio.h>#include<stdlib.h>typedef struct s_node s_list;typedef s_list *link;struct s_node{char ch;int flag;link next;};link top;void push(char ch,int flag){link newnode;newnode=(link)malloc(sizeof(s_list));newnode->ch=ch;newnode- >flag=flag;newnode-
算法设计与分析实验报告三篇

算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }} 五.程序调试中的问题调试过程,页码出现报错。
算法分析与设计(参考题及答案

A、找出最优解的性质 B、构造最优解
C、算出最优解 D、定义最优解
答案:A
27.对完全二叉树自顶向下,从左向右给节点编号,节点编号为10的父节点编号为( ).
A、0 B、2 C、4 D、6
答案:C
28.下面哪种函数是回溯法中为避免无效搜索采取的策略()
3.贪婪技术并不能够总是找到最优解。
A、正确 B、错误 答案:正确
4.对于任何权重的图,Dijkstra算法总能产生一个正确的解。
A、正确 B、错误 答案:错误
5.对于给定的字符表及其出现的概率,哈夫曼编码是唯一的。
A、正确 B、错误 答案:错误
6.贪婪算法是在每一步中,“贪婪”地选择最佳操作,并希望通过一系列局部的最优选择, 能产生一个整个问题的最优解。
一、单选题 1.下列函数关系随着输入量增大增加最快的是( )
A、log2n B、n2 C、2n D、n!
答案:C
2.实现循环赛日程表利用的算法是()。
A、分治策略 B、动态规划法 C、贪心法 D、回溯法
答案:A
3.最长公共子序列算法利用的算法是()。
A、分支界限法 B、动态规划法 C、贪心法 D、回溯法
答案:某个问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。
3.简述动态规划方法所运用的最优化原理。
答案:“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这 个决策序列是最优的,对于任何一个整数k,1<k<n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定 的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。
算法设计和分析大作业答案.docx

算法设计技术与方法大作业学院________________专业______________姓名__________________________学号_______________________任课老师多项式求值的四种方法1.问题背景分别实现多项式求值的四种运算,若针对不同规模的输入值a,各算法的运行时间,问题规模n 分别取10, 50, 100, 150, 200, 300, 400, 500, 10000, 20000, 50000, 100000 时绘制四种算法运行时间的比较图。
2.程序设计分析题意可知,该题要用四种方法实现对多项式的求值计算,每种方法取从10-100000 不同的规模。
本文采用直接代入法和递归法。
而其中递归法分三类不同思路进行递归:①只3)=只-13) +时";。
, Q = 1, Q = Qx, P = P + a t Q;②P = a③3'3)=《3)工+。
"—,。
3.程序清单具体编程如下:clc;close all;clear all;n=[10 50 100 150 200 300 400 500 10000 20000 50000 100000];x=5;for i=l:12a=rand(l,(n(i)+l));%产生多项式,最高次幕为n(i)tic;forj=l:n(i); %直接代入法s(j)=a(j)*x A(j);endpl(i)=a(n(i)+l);for j=l:n(i);pl(i)=s ①+pl ⑴;endtl(i)=toc;tic;p2(i)=0;for j=l:(n(i)+l)p2(i)=p2⑴+a(j)*xWl); % 递归法1endt2(i)=toc;tic;p3(;i)=0;q=l;for j=2:(n (i)+l)q=q*x;p3(i)=p3(i)+a(j)*q; % 递归法2endt3(i)=toc;tic;p4 ①=0;for j=l:n(i);p4(i)=x*p4(i)+a(n⑴+l-j); % 递归法3endt4(i)=toc;endfigure(l);subplot(2,2,l);h=semilogx(n,t 1);set(h,'linestyle','-'「linewidth'』,'marker','s','color','g','markersize',6); xlabel(问题规模(n ));ylabel(运行时间(s),);title(方法一);grid on;subplot(2,2,2);h=semilogx(n,t2);set(h,'linestyle','-'「linewidth'』,'marker','s','color','b','markersize',6); xlabelC问题规模(n ),);ylabel(运行时间(s),);title(方法二);grid on;subplot(2,2,3);h=semilogx(n,t2);set(h,'linestyle','-'「linewidth'』,'marker','s','color',k,'markersize',6); xlabel(,问题规模(n ),);ylabel(运行时间(s),);title(方法三);grid on;subplot(2,2,4);h=semilogx(n,t2);set(h,'linestyle','-',Tinewidth', 1,'marker','s','color',、','markersize',6); xlabelC问题规模(n ),);ylabel(运行时间(s),);title(方法四);grid on;figure(2);g=semilogx(n,tl,'g+',n,t2,'bx',n,t3,'k*',n,t4,To‘);legend(方法一7方法二7方法三,,方法四);set(g,'linestyleV-','linewidth', 1,'markersize',8);xlabel('n=10, 50, 100, 150, 200, 300, 400, 500, 10000, 20000, 50000, 100000'); ylabel。
算法分析与设计作业及参考答案

算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在什么情况下性能较好,什么情况下性能较差。
2、设计一个算法,用于在一个已排序的整数数组中查找特定元素。
要求算法的时间复杂度为 O(log n)。
3、比较贪心算法和动态规划算法的异同,并举例说明它们在实际问题中的应用。
参考答案一、冒泡排序算法的分析冒泡排序(Bubble Sort)是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
1、时间复杂度最坏情况:数组完全逆序,需要进行 n(n 1) / 2 次比较和交换操作,时间复杂度为 O(n^2)。
最好情况:数组已经有序,不需要进行交换操作,只需要进行 n 1 次比较,时间复杂度为 O(n)。
平均情况:时间复杂度也为 O(n^2)。
2、空间复杂度冒泡排序只在交换元素时使用了临时变量,空间复杂度为 O(1),是一个原地排序算法。
3、性能分析性能较好的情况:当数组规模较小且接近有序时,冒泡排序的性能相对较好。
因为在这种情况下,比较和交换的次数相对较少。
性能较差的情况:当数组规模较大且无序程度较高时,冒泡排序的性能会非常差。
因为需要进行大量的比较和交换操作,时间消耗很大。
例如,对于数组 2, 1, 3, 5, 4,冒泡排序需要经过多次比较和交换才能将其排序为 1, 2, 3, 4, 5。
而对于已经有序的数组 1, 2, 3, 4, 5,冒泡排序只需要进行较少的比较操作就能确定数组已经有序。
二、在已排序数组中查找特定元素的算法设计对于在已排序的整数数组中查找特定元素,我们可以使用二分查找(Binary Search)算法。
二分查找的基本思想是:将数组从中间分成两部分,比较目标元素与中间元素的大小,如果目标元素小于中间元素,则在左半部分继续查找;如果目标元素大于中间元素,则在右半部分继续查找;如果目标元素等于中间元素,则查找成功。
《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
算法分析与设计作业

排序算法总结一、各种排序算法及程序清单插入排序(Insert_Sort)1. 基本思想:每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。
2.程序清单:#include<stdio.h>#define MAX 255int R[MAX];void Insert_sort(int n){ /*对数组R中的记录R[1..n]进行按递增序进行插入排序*/ int i,j;for(i=2;i<=n;i++) /*依次插入R[2]...R[n]*/if(R[i]<R[i-1]){ /*若R[i]大于等于所有的R,则R[i]应该在原有的位置上*/ R[0]=R[i]; /*R[0]是哨兵,且是R[i]的副本*/j=i-1;do{ /*从右至左在有序区R[1...i-1]中查找R[i]的插入位置*/R[j+1]=R[j]; /*将关键字大于R[i]的记录后移*/j--;}while(R[0]<R[j]); /*当R[i]>=R[j]时终止*/R[j+1]=R[0]; /*将R[i]插入到正确的位置上*/ }}选择排序1. 基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2.程序清单:#include<stdio.h>#define MAX 255int R[MAX];void Select_sort(int n){ /*对数组R中的记录R[1..n]进行按递增序进行插入排序*/int i,j,k;for(i=1;i<=n;i++) /*做第i趟排序(1<=i<n-1)*/{k=i;for(j=i+1;j<=n;j++) /*当前无序区R[i...n]中选择关键字最小的记录if(R[j]<R[k])k=j; /*k记下当前最小关键字的位置*/ if(k!=i) /*交换R[o]和R[k]*/{R[0]=R[i]; /*R[0]是暂存单元,*/R[i]=R[k];R[k]=R[0];}}}冒泡排序(BubbleSort)1. 基本思想:两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》作业(三)
本课程作业由两部分组成。
第一部分为“客观题部分”,由15个选择题组成,每题1分,共15分。
第二部分为“主观题部分”,由简答题和论述题组成,共15分。
作业总分30分,将作为平时成绩记入课程总成绩。
客观题部分:
一、选择题(每题1分,共15题)
1、贪心算法解各个子问题的方法是:()
A、自底向上
B、自顶向下
C、随机选择
D、自底向上或自顶向下
2、用回溯法解旅行售货员问题时生成的树是:()
A、子集树
B、排列树
C、二叉树
D、多叉树
3、在n后问题中任意两个皇后能放在:()
A、同一行
B、同一列
C、同一斜线
D、以上都不行
4、用回溯法解0-1背包问题时生成的解空间树是:()
A、子集树
B、排列树
C、二叉树
D、多叉树
5、用贪心算法解单源最短路径问题时采用的算法是:()
A、Dijkstra算法
B、Prime算法
C、Kruskal算法
D、蒙特卡罗算法
6、在用动态规划解流水作业调度时的最优调度法则是:()
A、最优子结构
B、重叠子问题
C、Johnson法则
D、最长处理时间作业优先
7、算法与程序的区别在于:()
A、输入
B、输出
C、指令的确定性
D、指令的有限性
8、从分治法的一般设计模式可以看出,用它设计的程序一般是:()
A、顺序
B、选择
C、循环
D、递归
9、回溯法的解空间是在搜索过程中:()
A、动态产生
B、静态产生
C、无解空间
D、动态或者静态产生
10、在用贪心法解多机调度时的贪心选择策略是:()
A、最优子结构
B、重叠子问题
C、Johnson法则
D、最长处理时间作业优先
11、合并排序和快速排序采用的共同策略是:()
A、分治法
B、蒙特卡罗法
C、拉斯维加斯法
D、单纯形法
12、用回溯法解最大团问题时生成的解空间树是:()
A、子集树
B、排列树
C、二叉树
D、多叉树
13、用分支限界法解装载问题的解空间是:()
A、子集树
B、排列树
C、单向链表
D、多向链表
14、计算定积分的算法:()
A、随机投点法
B、舍伍德法
C、分治法
D、回溯法
15、用随机化算法解同一实例两次得到:()
A、结果和时间都相同
B、结果相同时间不相同
C、结果和时间都不相同
D、以上都不对
主观题部分:
二、改错题(每题2.5分,共2题)
下面有两个二分搜索算法,请判断它们的正确性。
如果算法不正确,请说明产生错误的原因;如果算法正确,请给出算法的正确性证明。
1 public static int binarySearch(int [] a, int x, int n)
{
int left = 0; int right = n - 1;
while (left <= right) {
int middle = (left + right)/2;
if (x == a[middle]) return middle;
if (x > a[middle]) left = middle;
else right = middle;
}
return -1;
}
2 public static int binarySearch(int [] a, int x, int n)
{
int left = 0; int right = n - 1;
while (left <= right-1) {
int middle = (left + right)/2;
if (x < a[middle]) right = middle;
else left = middle;
}
if (x==a[left]) return left;
else return -1;
}
三、写出下列题目的程序(每题5分,共2题)
1. 程序存储问题
问题描述:设有n个程序{1, 2, …, n}要存放在长度为L的磁带上。
程序i存放在磁带
上的长度是l i , n i ≤≤1。
程序存储问题要求确定这n 个程序在磁带上的一个存储方案,使得能够在磁带上存储尽可能多的程序。
编程任务:对于给定的n 个程序存放在磁带上的长度,编程计算磁带上最多可以存储的程序数。
数据输入:由文件input.txt 给出输入数据。
第1行是2个正整数,分别表示文件个数n 和磁带的长度L 。
接下来的1行中,有n 个正整数,表示程序存放在磁带上的长度。
结果输出:将编程计算出的最多可以存储的程序数输出到文件output.txt 。
输入文件示例 输出文件示例
input.txt output.txt
6 50 5
2 3 13 8 80 20
2. 编辑距离问题
问题描述:设A 和B 是2个字符串。
要用最少的字符操作将字符串A 转化为字符串B.这里所说的字符操作包括:
(1) 删除一个字符;
(2) 插入一个字符;
(3) 将一个字符改为另一个字符。
将字符串A 变换为字符串B 所用的最少字符操作数称为字符串A 到B 的编辑距离,记为d(A, B)。
试设计一个有效算法,对任给的2个字符串A 和B ,计算出它们的编辑距离d(A, B)。
编程任务:对于给定的字符串A 和字符串B ,编程计算其编辑距离d(A, B)。
数据输入:由文件input.txt 提供输入数据。
文件的第1行是字符串A ,文件的第2行是字符串B 。
结果输出:程序运行结束时,将编辑距离d(A, B)输出到文件output.txt 的第1行中。
输入文件示例 输出文件示例
input.txt output.txt
fxpimu 5
xwrs。