考研数学一真题及答案解析.pdf
2020年考研数学一真题及答案解析
![2020年考研数学一真题及答案解析](https://img.taocdn.com/s3/m/66b130d3d4d8d15abf234e02.png)
(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1
考研数学一真题及答案解析(完整版)
![考研数学一真题及答案解析(完整版)](https://img.taocdn.com/s3/m/464827a1e518964bce847c93.png)
2021考研数学〔一〕真题完整版一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 〔1〕假设反常积分()11badx x x +∞+⎰收敛,那么〔 〕()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且〔2〕函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,那么()f x 的一个原函数是〔 〕()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩〔3〕假设()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,那么()q x =〔 〕()()()()()()2222313111xx A x x B x x C D x x +-+-++〔4〕函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,那么〔 〕〔A 〕0x =是()f x 的第一类间断点 〔B 〕0x =是()f x 的第二类间断点 〔C 〕()f x 在0x =处连续但不可导 〔D 〕()f x 在0x =处可导〔5〕设A ,B 是可逆矩阵,且A 与B 相似,那么以下结论错误的选项是〔 〕 〔A 〕TA 与TB 相似 〔B 〕1A -与1B -相似 〔C 〕TA A +与TB B +相似 〔D 〕1A A -+与1B B -+相似〔6〕设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,那么()123,,2f x x x =在空间直角坐标下表示的二次曲面为〔 〕〔A 〕单叶双曲面 〔B 〕双叶双曲面 〔C 〕椭球面 〔C 〕柱面〔7〕设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,那么〔 〕〔A 〕p 随着μ的增加而增加 〔B 〕p 随着σ的增加而增加 〔C 〕p 随着μ的增加而减少 〔D 〕p 随着σ的增加而减少 〔8〕随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,那么X 与Y 的相关系数为〔 〕二、填空题:9-14小题,每题4分,共24分,请将答案写在答题纸...指定位置上. 〔9〕()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx〔10〕向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA〔11〕设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,那么()_________1,0=dz〔12〕设函数()21arctan axxx x f +-=,且()10''=f ,那么________=a 〔13〕行列式100010014321λλλλ--=-+____________. 〔14〕设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,那么μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解容许写出文字说明、证明过程或演算步骤.〔15〕〔此题总分值10分〕平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.〔16〕〔此题总分值10分〕设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 假设'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.〔17〕〔此题总分值10分〕设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值〔18〕设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个外表的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑〔19〕〔此题总分值10分〕函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: 〔I 〕级数11()n n n xx ∞+=-∑绝对收敛;〔II 〕lim n n x →∞存在,且0lim 2n n x →∞<<.〔20〕〔此题总分值11分〕设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?〔21〕〔此题总分值11分〕矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭〔I 〕求99A〔II 〕设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2020年考研数学一真题及答案解析(完整版)
![2020年考研数学一真题及答案解析(完整版)](https://img.taocdn.com/s3/m/120651eccf2f0066f5335a8102d276a200296069.png)
2020年考研数学一真题及答案解析(完整版)2020年考研数学一真题及答案解析(完整版)一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
XXX 时,下列无穷小量中最高阶是()A。
$\int_{x^2}^{et-1}dt$B。
$\int_0^x\frac{3\ln(1+tdt)}{t}$C。
$\int_0^x\frac{\sin x}{\sin t^2}dt$D。
$\int_0^x\frac{1-\cos x}{\sin t^2}dt$2.设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义,且$\lim\limits_{x\to 0}f(x)=0$,则()A。
当 $\lim\limits_{x\to 0}\frac{f(x)}{|x|}=0$,$f(x)$ 在$x=0$ 处可导。
B。
当 $\lim\limits_{x\to 0}\frac{f(x)}{x^2}=0$,$f(x)$ 在$x=0$ 处可导。
C。
当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{|x|}=0$。
D。
当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{x^2}=0$。
3.设函数 $f(x,y)$ 在点 $(0,0)$ 处可微,$f(0,0)=0,n=\begin{pmatrix}\frac{\partial f}{\partialx}(0,0)\\\frac{\partial f}{\partial y}(0,0)\\-1\end{pmatrix}$ 非零向量 $d$ 与 $n$ 垂直,则()A。
$\lim\limits_{(x,y)\to(0,0)}n\cdot(x,y,f(x,y))$ 存在。
B。
$\lim\limits_{(x,y)\to(0,0)}n\times(x,y,f(x,y))$ 存在。
2020考研数一真题答案及详细解析
![2020考研数一真题答案及详细解析](https://img.taocdn.com/s3/m/71abbb13a8956bec0975e3a1.png)
一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0X—r•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X3, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
2016考研数学一真题及答案解析完整版
![2016考研数学一真题及答案解析完整版](https://img.taocdn.com/s3/m/77bc45f068dc5022aaea998fcc22bcd126ff42d7.png)
2016考研数学一真题及答案解析(完整版)2016年考研数学一真题及答案解析(完整版)一、单选题1.已知函数 f(x) 在(0, +∞) 上连续,且满足 f(x+y) = f(x) + f(y) +2√[f(x)f(y)],则 f(x) 的解析式是() A. f(x) = x^2 B. f(x) = x^2 + 2x C. f(x) = x^2 + 4x D. f(x) = x^2 + 6x答案:C解析:将 x=y=0 代入方程得到 f(0) = 0,将 y=0 代入方程得到 f(x) = f(x) + f(0),所以 f(0) = 0。
将 y=x 代入方程得到 f(2x) = 4f(x),所以 f(2x) =4f(x) = 4(x^2 + 2x) = (2x + 4)^2。
所以 f(x) = (x + 2)^2 = x^2 + 4x + 4。
2.在等差数列 1, 3, 5, 2015 中,有多少个数能被 3 整除? A. 672 B. 671C. 670D. 669答案:A解析:等差数列的公差是 2,所以第 n 项是 1 + (n-1)2 = 2n-1。
要使 2n-1 能被 3 整除,则 n 必须是 3 的倍数。
2015 ÷ 3 = 671 余 2,所以有 671 个数能被 3 整除。
3.设 A 是m×n 的矩阵,B 是n×m 的矩阵,则 AB 的秩为() A. m B. nC. m + nD. 0答案:D解析:秩的定义是矩阵的非零行的最大数目。
AB 的秩等于 B 的非零行的最大数目,因为 AB 的行是 A 的行与 B 的列的线性组合,所以 AB 的秩不可能超过 B 的非零行的最大数目。
而 B 的非零行的最大数目不可能大于 n,所以 AB 的秩不可能大于 n,所以 AB 的秩为 0。
二、填空题1.设函数 f(x) = x^2 + ax + b,其中 a, b 是常数,f(x) 的图像经过点 (1,2),则 a + b 的值是 ______。
2019考研数学一考试真题答案解析(完整版)
![2019考研数学一考试真题答案解析(完整版)](https://img.taocdn.com/s3/m/978926a58762caaedd33d420.png)
2019考研数学一考试真题答案解析(完整版)来源:文都教育1.3tan 3x x x -- 若要tan x x -与b x 同阶无穷小,3k \=\选C2.①00(0)lim 0x x x f --®-¢==00ln (0)lim lim ln x x x x f x +++¢==不存在0x \=处()f x 不可导②当0x <时2()f x x =-()20f x x ¢=-> ()f x \单增当0x >时()ln f x x x =()ln 1f x x ¢=+ 1(0,e )x -Î时()0f x ¢<.()f x \单减0x \=为()f x 的极值点\选B.3.(D )∵{a n }单调增加有界∴由单调有界收敛定理可得{u n }极限存在,设lim n n u A →∞=.()2211n n n uu ∞+=-∑则的前n 项和为22222112211n u nn S u u u u u u ++=-++-=-…222111lim lim n n n n S u u A u +→∞→∞=-=-.选(D )4.由题意知,积分与路径无关则P Q y x∂∂=∂∂存在u (x ,y )使得(,),(,)u u P x y Q x y x y∂∂==∂∂∵xQ =∴(,)()x u x y c x y =-+则1()u P c x x y∂'==-+∂又∵x 可为0∴排除e ,选(D )5.选(C )解:由22A A E +=得22λλ=+,λ为A 的特征值,2=-l 或1,又1234A =λλλ=,故1231λ=λ=-2λ=,,规范形为222123y y y --,选(C )6.选(A )解:由条件知3张平面无公共交点,方程组无解,故()()r A r A ¹.又两平面交于一条直线,故()2r A =,因此()2,()3,r A r A ==选(A ).7.选(C )解:()()()P AB P A P AB =-()()()P B A P B P AB =-()()()()P A P B P AB P B A =\=选(C )8.解:因为22(,)(,)X N u Y N u s s X 与Y 相互独立2(0,2)X Y N s \-{}121222X YP X Y P s s s -÷ç\-<==F -÷ç÷ç\与u 无关,即与2s 有关选择(A )9.解析:'(sin sin )(cos )'(sin sin )(cos )z f y x x y x z f y x y x y∂=--+∂∂=-+∂所以11111'(sin sin )(cos )cos '(sin sin )cos cos cos cos cos cos cos cos z z x f y x x y yf y x x x y y x x y y y x x y∂∂+⋅=--⋅+⋅+⋅-+∂∂=+10.解析:2222'202'222yy y y y yy dy dx y --=+==+两边积分得2ln(2)ln y x C+=+22xy Ce +=由y (0)=1得C =3所以32x y e =-11.解析:200(1)(1)()()cos (2)!(2)!n n n n n n s x x x x n n ∞∞==--===∑∑12.解析:2222222222242222004444d 4(4)d d ||d d 2d sin 323x y x y x y x z x y x x y x y y x y y x y r d πθθθ+≤+≤+≤--∑=----====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰13.解:∵12,αα线性无关.∴()2r A ≥∵3132ααα=-+∴()3r A <∴()2r A =∴Ax =0为基础解系有()321n r A -=-=∵12320ααα-+=∴1231(,,)201ααα⎛⎫ ⎪-= ⎪ ⎪⎝⎭∴通解为12.1k k R ⎛⎫ ⎪-∈ ⎪ ⎪⎝⎭14.X 的p.d.f 为02()20x x f x else⎧<<⎪=⎨⎪⎩3222200022232231184d d |22236300()024121{()1}{()}{2}2}32d 231412(4)144333x x EX x x x x x x F x x x P F x Ex P F x P x P x x P x x x =⋅====<⎧⎪⎪=≤<⎨⎪≥⎪⎩≥-=≥=≥≠<⎫=<<=⎬⎭==-=-=⎰⎰⎰15.解:22()()e x P x x Q x -==∵()d ()d e ()e d P x x P x x y Q x x c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰22222d d 2222e e e d ee e d e ()x x x x x x x x x x c x c x c -----⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎡⎤=⋅+⎢⎥⎢⎥⎣⎦=+⎰⎰∵y (0)=0∴c=0∴2e x y x -=∴22222222232222()e e ()(1)e ()2e (1)e()(3)e (3)(3)ex x x x x x x y x x x x y x x x x x x x x x -------'=+-=-''=-+--=-=+-令()0y x ''=∴123033x x x ===当30x -<<或3x >()0y x ''>∴y (x )的凹区间为(3,0)和3,)+∞当3x <或03x <<时,()0y x ''<.∴y (x )的凸区间为(,3)3)-∞和所以曲线y (x )的拐点为(0,0),3322(3,3),(3,3--16.解:(1)在点(3,4)处的梯度方向为(3,4)grad |((3,4),(3,4))(6,8)x y z z z a b ''==且(3,4)|grad ||10,z =由题意知36510,48510a b ⎧-=⎪⎪⎨⎪-=⎪⎩故1.1a b =-⎧⎨=-⎩(2)由(1)知222z x y =--,由0z ≥得222x y +≤,令22{,|2}D x y x y =+≤,曲面面积为222222200222032221d 14()d 14d 12144)82(14)|43133x y D DS z z x y x y x ya r r rr r r πθπππ''=++=++=+=⨯++=⨯+=⎰⎰⎰17.解析:(1)22e 2x y xy x ¢-=()222222()d 2222e e d 2e e e d 2e d 2e x x xdx x x x x x x y ex C x x C xx C xx C 通解--÷ç÷ç=×+÷ç÷÷ç÷ç÷ç=×+÷ç÷÷ç÷ç=+÷ç÷ç=òòò由e (e f C +0C =所以22()=e x f x x (2)()2222222121222411e d e d e d e =e -e 222x x x xx V x xx xx p p p p p ÷ç÷ç=÷ç÷÷ç=×==òòò18.设1201(0,1,2,)n a x x dx n =-=⎰…(1)证明:数列{}n a 单调减少,且21(2,3,);2n n n a a n n --==+ (2)求1lim .nn n a a →∞-解析(1)1112212100011(1)10.n n n n a a x x dx x x dx x x x dx ----=---=--<⎰⎰⎰则{}n a 单调递减.1/2/2222200011sin sin cos sin (1sin ),2nn n n n n a x x dxx t t tdt t t dt I I I n ππ+=--⋅=⋅-=-=+⎰⎰⎰则2222111,.(2)(2)n n n n n n n a I a a I n n n n ------===++则(2)由(1)知,{}n a 单调递减,则211111, 1.222n n n n n an n n a a a n n n a ------=><<+++即由夹逼准则知,1lim 1.nn n a a →∞-=19.设W 是由锥面()222(1)(01)x y z z z +-=-与平面0z =围成的锥体,求W 的形心坐标.解:令()(){}222(,)1z D x y x y z z =+-£-,形心为(),x y z ,由于W 关于yOz 面对称.故0x =()1010*******20122300120d d d d d d d d d d z+sin d (1)d 311d (1)(1)sin d 233(1)d 14z z D D z z y x y y vy vzx y z r r r z zz z z z z z p p q q p q q p p p W W-===-=-+-=-=òò11200d 31d d d (1)d d z D z vz z x y z z z vpp p W W ===×-=,故W 的形心坐标为110,,÷ç÷ç÷ç.20.(1)由题意可知,123b c b a a a =++即1111112323112323b c b c a b c ab c ++=×+×+=++++023122b c b c a b c ì+=ïïïï++=íïïï+=-ïî即110023111202b c a ×=-110011001100231101110111120201020013A =----101110111002011101020102001300130013-----2,2,3b c a \==-=2323111111(2),,33100220,,231011ααβααβ==-=≠∴-线性无关.且向数量个数为3个23,,ααβ∴是R3的一个基.2323123123002(,,)2,2)(,,)102011ααβαααααααα⎛⎫ ⎪=-+=- ⎪ ⎪⎝⎭(,,002102011P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭()123123002100102010102010011001011001100100210011010100121001002110101210021101(,,)01(,,)21002P E P ααβααα-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪→- ⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪∴=- ⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪∴-= ⎪ ⎪ ⎪⎝⎭即23(,,)ααβ到123(,,)ααα的过渡矩阵为11010121002⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭21.2212102201000200A x B y --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦与相似(1)1231~413()()242210(2)010(1)(2)(2)00021,2,21211211201242000001210001001000022A Bx y x tr A tr B y x y E B x x A E A E λλλλλλλλλξλ∴-=+=⎧∴=⇒⇒⎨=-+=-⎩---=+=++-=-=-=-=---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-+=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦=-+=T 时, =(-,,)时,()2311321410440125201050211240000000004212122102221200100112004000000211,122040A E P ξλξξξξ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦T T =(-,,)时, =(-,,0), 111122P AP --⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1223310310100000113000100041010022010010001000000010010322030001100004000B E x B E x B E x λλλ⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-=-→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦T T 时, (-,,)时, (,,)时, (,,121232212212121211221()22122()1211030122001040130111212004101100()3000006100011011000P x x x P BP B P P B P P A PP P PP P iE -----⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦=-=---⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦---⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦--→T ) 故=03310010001101100010001100100311000030100011001103⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦22.(1)随机变量X 的分布函数为⎩⎨⎧<≥-=-0,00,1)(x x e x F x X {}{}{}{}())(1)()1(1,1,)(z F p z F p Y z X P Y z X P z XY P z Z P z F X X Z --+-=-=-≥+=≤=≤=≤=当0<z 时,()z X Z pe z F p z F =--=)(1)(当0≥z 时,()p e p z F p z F p z F z X X Z +--=--+-=-)1)(1()(1)()1()(则⎩⎨⎧≤>-=-0,0,)1()(z pe z e p z f z z Z (2)p EY EX XY E EZ EX 21)(,1-=⋅===()())21(221)()()()()(222p p EX DX Y E X E Y X E XZ E -=-+===当())()(2Z E X E XZ E =时,Z X ,不相关.即)21(221p p -=-,可得21=p .(3)因为{}{}01,1,11,1=≥-=≤=-≤≤X Y X P Z X P 又{}111--=≤e X P ,{}11-=-≤peZ P 则{}{}{}111,1-≤⋅≤≠-≤≤Z P X P Z X P ,故不独立.23.(1)由1222222222)(2)(==-=⎰⎰∞+----∞+πσμσμσμσμμA x d e A dx e A x x 可得:π2=A .(2)设n x x x ,,,21 为样本值,似然函数为()()⎪⎩⎪⎨⎧>∑⎪⎪⎭⎫ ⎝⎛==--else x x x e L n x n nn i i ,0,,,,2121212122μπσσμσ 当μ>n x x x ,,,21 时,()()()()2122221ln 2ln 2ln 2ln ∑----==n i i x n n L μσσπσ令()()()0)(2112ln 1222222=∑-+-==n i i x n d L d μσσσσ,可得()nx n i ∑=-=1212μσ故2σ的最大似然估计量为()n X n i ∑=-=1212μσ .。
考研数学一真题及答案解析参考
![考研数学一真题及答案解析参考](https://img.taocdn.com/s3/m/7df2a47d59fafab069dc5022aaea998fcc2240ae.png)
考研数学⼀真题及答案解析参考2019年考研数学⼀真题⼀、选择题,1~8⼩题,每⼩题4分,共32分.下列每题给出的四个选项中,只有⼀个选项是符合题⽬要求的.1.当0→x 时,若x x tan -与k x 是同阶⽆穷⼩,则=k . . ..2.设函数>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.可导点,极值点.B.不可导点,极值点.C.可导点,⾮极值点.D.不可导点,⾮极值点.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是A..1∑∞=n n nu B.nn nu 1)1(1∑∞=-. C.∑∞=+-111n n n u u . D.()∑∞=+-1221n n n u u . 4.设函数2),(y xy x Q =,如果对上半平⾯(0>y )内的任意有向光滑封闭曲线C 都有?=+Cdy y x Q dx y x P 0),(),(,那么函数),(y x P 可取为A.32y x y -.B.321yx y -. C.yx 11-. D.yx 1-. 5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则⼆次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+. C.232221y y y --.D.232221y y y ---.6.如图所⽰,有3张平⾯两两相交,交线相互平⾏,它们的⽅程组成的线性⽅程组的系数矩阵和增⼴矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.).()()(B P A P B A P +=Y B.).()()(B P A P AB P = C.).()(A B P B A P =D.).()(B A P AB P =8.设随机变量X 与Y 相互独⽴,且都服从正态分布),(2σµN ,则{}1<-Y X P A.与µ⽆关,⽽与2σ有关. B.与µ有关,⽽与2σ⽆关.C.与2,σµ都有关.D.与2,σµ都⽆关.⼆、填空题:9~14⼩题,每⼩题4分,共24分. 9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx +11=. 10. 微分⽅程02'22=--y y y 满⾜条件1)0(=y 的特解=y .11. 幂级数nn n x n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S .12. 设∑为曲⾯)0(44222≥=++z z y x 的上侧,则dxdy z x z--2244=.13. 设),,(321αααA =为3阶矩阵.若21αα,线性⽆关,且2132ααα+-=,则线性⽅程组0=x A 的通解为.14. 设随机变量X 的概率密度为<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )(. 三、解答题:15~23⼩题,共94分.解答应写出⽂字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分⽅程2'2x e xy y -=+满⾜条件0)0(=y 的特解.(1)求)(x y ;(2)求曲线)(x y y =的凹凸区间及拐点. 16.(本题满分10分)设b a ,为实数,函数222by ax z ++=在点(3,4)处的⽅向导数中,沿⽅向j i l 43--=的⽅向导数最⼤,最⼤值为10.(1)求b a ,;(2)求曲⾯222by ax z ++=(0≥z )的⾯积. 17.求曲线)0(sin ≥=-x x e y x 与x 轴之间图形的⾯积. 18.设dx x x a n n ?-=1 021,n =(0,1,2…)(1)证明数列{}n a 单调减少,且221-+-=n n a n n a (n =2,3…)(2)求1lim-∞→n nn a a .19.设Ω是锥⾯())10()1(2222≤≤-=-+z z y x 与平⾯0=z 围成的锥体,求Ω的形⼼坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的⼀个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的⼀个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵----=20022122x A 与-=y B 00010012相似(1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独⽴,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独⽴?23.(本题满分11分)设总体X 的概率密度为其中µ是已知参数,0>σ是未知参数,A 是常数,n X …X X ,,21来⾃总体X 的简单随机样本.(1)求A ;(2)求2σ的最⼤似然估计量2019年全国硕⼠研究⽣⼊学统⼀考试数学试题解析(数学⼀)9.yxx y cos cos + 10.23-x e 11.x cos 12.332 13. ,T )1,2,1(-k k 为任意常数. 14. 解:(1))()()(2 222c x ec dx e ee x y x xdxx xdx+=+??=---?,⼜0)0(=y ,故0=c ,因此.)(221x xe x y -=(2)22221221221)1(x x x ex ex ey ----=-=',22222122132121)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(2 3---e ,)3,3(23-e .15. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,⼜()()108622=+=b a z grad ,所以,.1-==b a(2)dxdy y z x z S y x ??≤+??+??+=22222)()(1=dxdy y x y x ??≤+-+-+22222)2()2(1 =dxdy y x y x ??≤+++22222441=ρρρθπd d ??2241=20232)41(12 12ρπ+?= .313π19.由对称性,2,0==y x ,--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--??dz z dz z z20.(1)123=b c βααα++即11112311231b c a ???????? ? ? ? ?++= ? ? ? ? ? ? ? ?????????,解得322a b c =??=??=-?.(2)()23111111=331011231001ααβ→-,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的⼀个基.则()()1231231101=0121002P ααβααα-??=-??,,,,. 21.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+??-=-?,解得3 2x y =??=-?(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α?? ?- ? ;2=1λ-,22=10α-?? ? ? ???;3=2λ-,31=24α-??. 所以存在()1123=P ααα,,,使得111212P AP -??=Λ=-??-. B 的特征值与对应的特征向量分别为1=2λ,11=00ξ?? ? ?;2=1λ-,21=30ξ?? ?- ? ;3=2λ-,30=01ξ??. 所以存在()2123=P ξξξ,,,使得122212P AP -??=Λ=-??-. 所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --??==--. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从⽽当0z ≤时,()z F z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0z zpez f z p e z -. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,⼜()()1,12D X E Y p ==-,从⽽当12p =时,(),0Cov X Z =,即,X Z 不相关.(III )由上知当12p ≠时,,X Z 相关,从⽽不独⽴;当12p =时,121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -≤≤=≤≤=≤≥-+≤≤???==- ?⽽12112P X e -??≤=-,121111112222222P Z P X P X e -≤=≤+≥-=-?????? ?????????,显然1111,2222P X Z P X P Z≤≤≠≤≤,即,X Z 不独⽴.从⽽,X Z 不独⽴.23.解:(I )由()2221x Aedx µσµσ--+∞=?t =201t e dt +∞-==?,从⽽A =(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i n L x x x µσµσσ=--?∑≥= ?=? L L 其他,当,1,2,,i x i nµ≥=L 时,取对数得()22211ln ln ln 22ni i n L n A x σµσ==---∑,求导并令其为零,可得()22241ln 1022nii d L n x d µσσσ==-+-=∑,解得2σ的最⼤似然估计量为()211n ii x n µ=-∑.。
(完整版)2019考研数学一真题及答案解析参考,推荐文档
![(完整版)2019考研数学一真题及答案解析参考,推荐文档](https://img.taocdn.com/s3/m/1d5dc37a4028915f814dc225.png)
2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当时,若与是同阶无穷小,则0→x x x tan -k x =k A.1. B.2.C.3.D.4.2.设函数则是的⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 0=x )(x f A.可导点,极值点. B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设是单调增加的有界数列,则下列级数中收敛的是{}n u A. B...1∑∞=n n nu nn nu 1)1(1∑∞=-C.. D..∑∞=+⎪⎪⎭⎫ ⎝⎛-111n n n u u ()∑∞=+-1221n nn u u4.设函数,如果对上半平面()内的任意有向光滑封闭曲线都2),(y xy x Q =0>y C 有,那么函数可取为⎰=+Cdy y x Q dx y x P 0),(),(),(y x P A..B..32yx y -321yx y -C.. D..y x 11-yx 1-5.设是3阶实对称矩阵,是3阶单位矩阵.若,且,则二次型A E E A A 22=+4=A 的规范形为Ax x T A.. B..232221y y y ++232221y y y -+C.. D..232221y y y --232221y y y ---6.如图所示,有3张平面两两相交,交线相互平行,它们的方程)3,2,1(321==++i d z a y a x a i i i i 组成的线性方程组的系数矩阵和增广矩阵分别记为,则A A ,A..3)(,2)(==A r A r B..2(,2)(==A r A r C..2(,1)(==A r A r D..1)(,1)(==A r A r 7.设为随机事件,则的充分必要条件是B A ,)()(B P A P =A.).()()(B P A P B A P += B.).()()(B P A P AB P =C.((A B P B A P =D.).()(B A P AB P =8.设随机变量与相互独立,且都服从正态分布,则X Y ),(2σμN {}1<-Y X P A.与无关,而与有关.μ2σB.与有关,而与无关.μ2σC.与都有关.2,σμD.与都无关.2,σμ2、填空题:9~14小题,每小题4分,共24分.9.设函数可导,则= .)(u f ,)sin (sin xy x y f z +-=yz cosy x z cosx ∂∂⋅+∂∂⋅1110.微分方程满足条件的特解.02'22=--y y y 1)0(=y =y 11.幂级数在内的和函数 .nn n n ∑∞=-0)!2()1()0∞+,(=)(x S12.设为曲面的上侧,则=.∑)0(44222≥=++z z y x dxdy z x z⎰⎰--224413.设为3阶矩阵.若线性无关,且,则),,(321αααA =21αα,2132ααα+-=线性方程组的通解为.0=x A 14.设随机变量的概率密度为 为的分布函数,X ⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F X 为的数学期望,则 .X E X {}=->1X X F P E )(3、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数是微分方程满足条件的特解.)(x y 2'2x e xy y -=+0)0(=y (1)求;)(x y (2)求曲线的凹凸区间及拐点.)(x y y =16.(本题满分10分)设为实数,函数在点(3,4)处的方向导数中,沿方向b a ,222by ax z ++=的方向导数最大,最大值为10.j i l 43--=(1)求;b a ,(2)求曲面()的面积.222by ax z ++=0≥z 17.求曲线与x 轴之间图形的面积.)0(sin ≥=-x x ey x18.设,n =(0,1,2…)dx x xa nn ⎰-=121(1)证明数列单调减少,且(n =2,3…){}n a 221-+-=n n a n n a (2)求.1lim-∞→n nn a a19.设是锥面与平面围成的锥体,求的形Ω())10()1(2222≤≤-=-+z z y x 0=z Ω心坐标.20.设向量组,为的一个基,T T T a )3,,1(,)2,3,1(,)1,2,1(321===ααα3R 在这个基下的坐标为.T )1,1,1(=βT c b )1,,((1)求.c b a ,,(2)证明,为的一个基,并求到的过度矩阵.32,a a β3R ,,32a a β321,,a a a 21.已知矩阵与相似⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012(1)求.y x ,(2)求可可逆矩阵,使得P .1B AP P =-22.设随机变量与相互独立,服从参数为1的指数分布,的概率分布为X Y X Y 令{}{}),10(,11,1<<-===-=p p Y P p Y P XYZ =(1)求的概率密度.z (2)为何值时,与不相关.p X Z (3)与是否相互独立?X Z 23.(本题满分11分)设总体的概率密度为X ⎪⎩⎪⎨⎧<≥--=,0,2)(),(222μμσσA σx x u x e x f 其中是已知参数,是未知参数,是常数,来自总体的简μ0>σA n X …X X ,,21X 单随机样本.(1)求;A(2)求的最大似然估计量2σ2019年全国硕士研究生入学统一考试数学试题解析(数学一)1.C2.B3.D4.D5.C6.A7.C8.A9.yx x y cos cos +10.23-xe 11.x cos 12.33213.为任意常数.,T)1,2,1(-k k 14.3215.解:(1),又,)()()(2222c x ec dx e ee x y x xdxx xdx+=+⎰⎰=---⎰0)0(=y 故,因此0=c .)(221x xex y -=(2),22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x ex x xe x xey -----=-=---=''令得0=''y 3,0±=x x)3,(--∞3-)0,3(-0)3,0(3),3(+∞y ''-+-+y凸拐点凹拐点凸拐点凹所以,曲线的凹区间为和,凸区间为和)(x y y =)0,3(-),3(+∞)3,(--∞,拐点为,,.)3,0()0,0()33(23---e )3,3(23-e16.解:(1),,)2,2(by ax z =grad )8,6()4,3(b a z =grad 由题设可得,,即,又,4836-=-ba b a =()()108622=+=b a z grad 所以,.1-==b a (2)=dxdy y z x z S y x ⎰⎰≤+∂∂+∂∂+=22222)()(1dxdy y x y x ⎰⎰≤+-+-+22222)2()2(1====dxdy y x y x ⎰⎰≤+++22222441ρρρθπd d ⎰⎰+20224120232)41(1212ρπ+⋅.313π17.18.19.由对称性,,2,0==y x =⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ10212101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ.4131121)1()1(1212==--⎰⎰dz z dz z z 20.(1)即,123=b c βααα++11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解得.322a b c =⎧⎪=⎨⎪=-⎩(2),所以,则()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,()233r ααβ=,,可为的一个基.23ααβ,,3R ()()12323=P αααααβ,,,,则.()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,21.(1)与相似,则,,即,解得A B ()()tr A tr B =A B =41482x y x y -=+⎧⎨-=-⎩32x y =⎧⎨=-⎩(2)的特征值与对应的特征向量分别为A ,;,;,.1=2λ11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭2=1λ-22=10α-⎛⎫ ⎪ ⎪⎪⎝⎭3=2λ-31=24α-⎛⎫⎪ ⎪ ⎪⎝⎭所以存在,使得.()1123=P ααα,,111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦的特征值与对应的特征向量分别为B ,;,;,.1=2λ11=00ξ⎛⎫ ⎪ ⎪ ⎪⎝⎭2=1λ-21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭3=2λ-30=01ξ⎛⎫⎪ ⎪⎪⎝⎭所以存在,使得.()2123=P ξξξ,,122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦所以,即112211=P AP P AP --=Λ1112112B P P APP P AP ---==其中.112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦22.解:(I )的分布函数Z (){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当时,;当时,0z ≤()zF z pe =0z >()()()()1111z zF z p p e p e --=+--=--则的概率密度为.Z ()(),01,0zzpez f z p e z -⎧<⎪=⎨->⎪⎩(II )由条件可得,又()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,从而当时,,即不相关.()()1,12D X E Y p ==-12p =(),0Cov X Z =,X Z (III )由上知当时,相关,从而不独立;当时,12p ≠,X Z 12p =121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭而,,显12112P X e -⎧⎫≤=-⎨⎬⎩⎭121111112222222P Z P X P X e -⎛⎫⎧⎫⎧⎫⎧⎫≤=≤+≥-=-⎨⎬⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎩⎭⎝⎭然,即不独立. 从而不独立.1111,2222P X Z P X P Z ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,X Z ,X Z 23. 解:(I )由,()2221xAedx μσμσ--+∞=⎰t=201t e dt +∞-==⎰从而A =(II )构造似然函数,当()()22112212,,1,2,,,,,,0,ni i n x i n A e x i n L x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩L L 其他,1,2,,i x i n μ≥=L 时,取对数得,求导并令其()22211ln ln ln 22ni i n L n A x σμσ==---∑为零,可得,解得的最大似然估计量为()22241ln 1022ni i d L n x d μσσσ==-+-=∑2σ.()211n ii x n μ=-∑。
2024年考研数学一真题及解析
![2024年考研数学一真题及解析](https://img.taocdn.com/s3/m/587138b505a1b0717fd5360cba1aa81144318fb8.png)
2024年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分。
下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)已知函数cos 0()xtf x edt =⎰,2sin 0()xt g x e dt =⎰,则()(A )()f x 是奇函数,()g x 是偶函数(B )()f x 是偶函数,()g x 是奇函数(C )()f x 与()g x 均为奇函数(D )()f x 与()g x 均为周期函数【答案】C ,【解析】由于cos te 是偶函数,所以()f x 是奇函数;又2(sin )cos ()x xg x e'=是偶函数,所以是()g x 奇函数.(2)设(,,),(,,)P P x y z Q Q x y z ==均为连续函数,∑为曲面0,0)Z x y = 的上侧,则Pdydz Qdzdx ∑+=⎰⎰()(A )()x yP Q dxdy z z ∑+⎰⎰(B )()x yP Q dxdy z z ∑-+⎰⎰(C )()xyP Q dxdy zz∑-⎰⎰(D )()xyP Q dxdy zz∑--⎰⎰【答案】A ,【解析】由,z x z y z x z y z ∂∂==-=-∂∂,1cos cos dS dxdy dS dxdy γγ=→=cos cos cos cos cos cos Pdydz Qdzdx P dS Q dS Pdxdy Q dxdy αβαβγγ∑∑∑+=+=+⎰⎰⎰⎰⎰⎰(()()z z x yP dxdy Q dxdy P Q dxdy x y z z∑∑∂∂=-+-=+∂∂⎰⎰⎰⎰.(3)设幂级数nn nxa ∑∞=0的和函数为)2ln(x +,则∑∞=02n nna()(A )61-(B )31-(C )61(D )31【答案】(A )【解析】法1,∑∞=--+=++=+=+11)21()1(2ln )211ln(2ln )211(2ln )2ln(n nn n x x x x所以⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,当n n n a n 22221,0⋅-=>,所以61411)21(21)2213112112202-=--=-=⋅-⋅==∑∑∑∑∞=+∞=∞=∞=n n n n n n n n n n na na (,故选(A);法2:n n n xx x x )2()1(21)21(2121])2[ln(0∑∞=-=+=+='+C n x C n x x n n n n n n +-=++-=+∑∑∞=-+∞=1110)21()1(1)21()1()2ln(,2ln )02ln()0(=+==C S ,⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,所以)221(112202∑∑∑∞=∞=∞=⋅-==n n n n n n n n na na 61411)21(213112-=--=-=∑∞=+n n (4)设函数()f x 在区间上(1,1)-有定义,且0lim ()0x f x →=,则()(A )当0()limx f x m x→=时,(0)f m '=(B )当(0)f m '=时,0()limx f x m x→=(C )当0lim ()x f x m →'=时,(0)f m '=(D )当(0)f m '=时,0lim ()x f x m→'=【答案】B ,【解析】因为(0)f m '=所以()f x 在0x =处连续,从而0lim ()(0)0x f x f →==,所以0()()(0)limlim 0x x f x f x f m x x →→-==-,故选B .(5)在空间直角坐标系O xyz -中,三张平面:(1,2,3)i i i i i a x b y c z d i π++==的位置关系如图所示,记(),,i i i i a b c α=,(),,,i i i i i a b c d β=若112233,r m r n αβαβαβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()(A )1,2m n ==(B )2m n ==(C )2,3m n ==(D )3m n ==【答案】B ,【解析】由题意知111222333x d x d x d ααα⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭有无穷多解,故1122333r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又由存在两平面的法向量不共线即线性无关,故1232r ααα⎛⎫ ⎪≥ ⎪ ⎪⎝⎭,则1122332r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故2m n ==,故选B.(6)设向量1231111,,1111ab a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若123,,ααα线性相关,且其中任意两个向量均线性无关,则()(A )1,1a b =≠(B )1,1a b ==-(C )2,2a b ≠=(D )2,2a b =-=【答案】D ,【解析】由于123,,ααα线性相关,故1111011a a a =得1a =或2-,当1a =时,13,αα相关,故2a =-,又由112111111201111aa b b -=-=----得2b =故选D .(7)设A 是秩为2的3阶矩阵,α是满足0A α=的非零向量,若对满足0Tβα=的3维向量β均有A ββ=,则()(A )3A 的迹为2(B )3A 的迹为5(C )2A 的迹为8(D )2A 的迹为9【答案】A ,【解析】由0A α=且0α≠,故10λ=,由于A 是秩为2的3阶矩阵,对于0Ax =仅有一个解向量,所以,1λ是一重,0Tβα=可得到所有的β有两个无关的向量构成,A ββ=,故21λ=为两重,故3A 的特征值为0,1,1,故3()2tr A =.(8)设随机变量,X Y 相互独立,且()()~0,2,~2,2X N Y N -,若}{}{2P X Y a P X Y +<>=,则a =()(A)2-(B)2-+(C)2-(D)2-+【答案】B ,【解析】()2~ 2,10;~ (2,4)X Y N Y X N +---,所以{2}P X Y a +<=Φ={0}P Y X -<=02()2+Φ,022+=,2a =-+(9)设随机变量X 的概率密度为2(1)01()0,x x f x -<<⎧=⎨⎩,其他,在(01)X x x =<<的条件下,随机变量Y 服从区间(,1)x 上的均匀分布,则Cov(,)X Y =()(A )136-(B )172-(C )172(D )136【答案】D ,【解析】当01x <<时,|1el 1,(|)1se 0,Y X x y f y x x ⎧<<⎪=-⎨⎪⎩,则2,1,01(,)0,x y x f x y else <<<<⎧=⎨⎩10,1(,)24yx y EXY xyf x y dxdy d y xydx -∞<<+∞-∞<<+∞===⎰⎰⎰⎰112(1)3EX x x dx =-=⎰,,2(,)3x y EY y f x y dxdy -∞<<+∞-∞<<+∞==⎰⎰所以1(,)36Cov X Y EXY EXEY =-=,故选D (10)设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是()(A )X Y +(B )2X Y+(C )2X (D )X【答案】(D )【解析】令{}{}zY X P z Z P z F Y X Z z ≤-=≤=-=)(,则0)(0=<z F z z 时,当当0≥z 时,dxdy e e dxdy y x f z F y x zy x zy x z λλλλ--≤-≤-⎰⎰⎰⎰==),()(zy x zy ye dy e e dy λλλλλ---+∞+-==⎰⎰120所以⎩⎨⎧≥-<=-0,10,0)(z ez z F zz λ,显然Y X Z -=与X 同步,故选(D )二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上。
2023年全国硕士研究生招生考试《数学一》真题及答案解析【完整版】
![2023年全国硕士研究生招生考试《数学一》真题及答案解析【完整版】](https://img.taocdn.com/s3/m/ad0aca35a200a6c30c22590102020740be1ecddd.png)
2023年全国硕士研究生招生考试《数学一》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置。
1.1ln 1y x e x ⎛⎫=+⎪-⎝⎭曲线的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【参考答案】B【参考解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则( )。
A .a <0,b >0 B .a >0,b >0 C .a =0,b >0 D .a =0,b <0 【参考答案】C【参考解析】微分方程y ′′+ay ′+by =0的特征方程为λ2+a λ+b =0,当Δ=a 2-4b >0时,特征方程有两个不同的实根λ1,λ2,则λ1,λ2至少有一个不等于零, 若C 1,C 2都不为零,则微分方程的解1212x x y C e C e λλ--=+在(-∞,+∞)无界; 当Δ=a 2-4b =0时,特征方程有两个相同的实根λ1,2=-a/2, 若C 2≠0,则微分方程的解2212a a x xy C eC e=+在(-∞,+∞)无界;当Δ=a 2-4b <0时,特征方程的根为1,22a λ=-±,则通解为212cossin 22ax y eC x C x -⎛⎫=+ ⎪ ⎪⎝⎭, 此时,要使微分方程的解在(-∞,+∞)有界,则a =0,再由Δ=a 2-4b <0,知b >0.3.设函数y =f (x )由2sin x t t y t t⎧=+⎪⎨=⎪⎩确定,则( )。
2022年考研数学一真题解析
![2022年考研数学一真题解析](https://img.taocdn.com/s3/m/10b4aa3753d380eb6294dd88d0d233d4b04e3f55.png)
2022年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知()f x 满足1()lim1ln x f x x→=,则()(A )(1)0f =.(B )1lim ()0x f x →=.(C )(1)1f '=.(D )1lim ()1x f x →'=.【答案】(B ).【解析】11()lim ()lim ln 0ln x x f x f x x x →→⎡⎤=⋅=⎢⎥⎣⎦,(B )正确,但()f x 连续性未知,故(1)f 未知,其他三项均错.(2)已知()yz xyf x=,且()f u 可导,2(ln ln )z zxy y y x x y∂∂+=-∂∂,则()(A )1(1),(1)02f f '==.(B )1(1)0,(1)2f f '==.(C )1(1),(1)12f f '==.(D )(1)0,(1)1f f '==.【答案】(B ).【解析】21z z y y y y y xy x yf xyf y xf xyf x y x x x x x x ∂∂⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''+=+-++ ⎪ ⎪⎪ ⎪⎢⎥⎢⎥∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦212ln ln ()ln ,22y y y yy xyf y f f u u u x x x x x ⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪⎝⎭⎝⎭1111(1)0,(1)ln 222u f f u =⎛⎫'∴==+=⎪⎝⎭,选(B ).(3)设有数列{}n x ,其中n x 满足ππ22n x -,则()(A )若lim cos(sin )n n x →∞存在,则lim n n x →∞存在.(B )若lim sin(cos )n n x →∞存在,则n n x ∞→lim 存在.(C )若)cos(sin lim n n x ∞→存在,则n n x sin lim ∞→存在,但n n x ∞→lim 不一定存在.(D )若)sin(cos lim n n x ∞→存在,则n n x cos lim ∞→存在,但n n x ∞→lim 不一定存在.【答案】(D ).【解析】取π(1)2nn x =-,则(A )、(B )、(C )均错,且(D )的“lim n n x →∞不一定存在”是正确的;(D )的“lim cos n n x →∞存在”的原因:当ππ22n x - 时,0cos 1n x ,而sin x 在[0,1]上单调,故lim cos n n x →∞存在.(4)已知110d 2(1cos )x I x x =+⎰,120ln(1)d 1cos x I x x +=+⎰,1302d 1sin xI x x=+⎰,则()(A )321I I I <<.(B )312I I I <<.(C )231I I I <<.(D )123I I I <<.【答案】(A ).【解析】令()ln(1)2x f x x =-+,111()212(1)x f x x x -'=-=++,当01x <<时,()0f x '<,所以()f x 在[0,1]上单调递减,当01x <<时()(0)0f x f <=,所以ln(1)2x x <+,ln(1)2(1cos )1cos x x x x +<++,12I I <;又01x 时,ln(1)2111cos 1cos 11sin sin 22x x x x xx x xx +<=++++ ,故23I I <,选(A ).(5)下列4个条件中,3阶矩阵A 可以相似对角化的一个充分但不必要条件为()(A )A 有3个不相等的特征值.(B )A 有3个线性无关的特征向量.(C )A 有3个两两线性无关的特征向量.(D )A 的属于不同特征值的特征向量相互正交.【答案】(A ).【解析】选项(A ):A 有3个互不相同特征值,则A 可对角化,但是A 可相似对角化,A 的特征值可能有重根,正确;选项(B ):A 有3个线性无关的特征向量是A 可对角化的充要条件;选项(C ):3个特征向量两两线性无关,不能保证整体线性无关,故不能推出A 可对角化;选项(D ):实对称矩阵不同特征值的特征向量正交,可对角化的矩阵不一定是实对称矩阵.(6)设A ,B 均为n 阶矩阵,若方程组=0Ax 与x =0B 同解,则()(A )方程组⎛⎫=⎪⎝⎭0A O y E B 只有零解.(B )方程组⎛⎫=⎪⎝⎭0EA y OAB 只有零解.(C )方程组⎛⎫=⎪⎝⎭0A B y O B 与⎛⎫=⎪⎝⎭0BA y OA 同解.(D )方程组⎛⎫=⎪⎝⎭0ABB y OA 与⎛⎫= ⎪⎝⎭0BA A y O B 同解.【答案】(C).【解析】由,A B 为n 阶实矩阵,0=Ax 与0Bx =同解,则⎛⎫==⎪⎝⎭()()A r A r B r B ,即,A B 行向量组等价.由⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 行行A B A O B A B O O B O B OA O A ,则0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫= ⎪⎝⎭A O y O B 同解,0⎛⎫=⎪⎝⎭BA y O A 与0⎛⎫= ⎪⎝⎭B O y O A 同解,令12⎛⎫= ⎪⎝⎭y y y ,12,y y 均为n 维向量,则12000⎧⎛⎫=⇔⎨⎪⎝=⎭⎩=By Ay A O y O B ,12000⎧⎛⎫=⇔⎨ ⎪⎝=⎭⎩=Ay By B O y O A .由1100==,By Ay 同解,2200==,By Ay 通解,故0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫=⎪⎝⎭BA y O A 同解.故选(C).(7)设向量组123241111111λλλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,αααα,若向量组123,,ααα与412,,ααα等价,则λ可取()(A )01{,}.(B )2λλλ∈≠-R {|,}.(C )12λλλλ∈≠-≠-{|,,}R .(D )1λλλ∈≠-{|,}R .【答案】(C).【解析】记123ααα=(,,)A ,142ααα=(,,)B ,由222211λλλ==+--||()(),||()A B ,当21λλ≠-≠±,时,00≠≠,||||B A ,即3==()()r A r B ,则123,,ααα与412,,ααα均为3R 的基,故等价;当1λ=-时,33=<(),()r A r B ,故123,,ααα与412,,ααα不等价;当2λ=-时,33<=(),()r A r B ,故123,,ααα与412,,ααα不等价;当1λ=时,1===()()(,)r A r B r A B ,故123ααα,,,124ααα,,等价;故选(C).(8)设随机变量(0,3)X U ,随机变量Y 服从参数为2的泊松分布,且X 与Y 协方差为1-,则(21)D X Y -+=()(A )1.(B )5.(C )9.(D )12.【答案】(C ).【解析】(21)4()()4(,)D X Y D X D Y Cov X Y -+=+-由(0,3)X U ,2(30)3()124D X -==;(2)Y P ,()2D Y =所以(21)4()()4(,)9D X Y D X D Y Cov X Y -+=+-=,选(C ).(9)设随机变量1234,,,X X X X 独立同分布,且1X 的4阶矩存在.设1(),1,2,3,4kk E X k μ==,则由切比雪夫不等式,对于任意的0ε>,有2211n i i P X n με=⎧⎫-⎨⎬⎩⎭∑ ()(A )2422n μμε-.(B2.(C )2212n μμε-.(D2.【答案】(A ).【解析】记211n i i X Y n ==∑,显然可得2()E Y μ=;则22211()n i i D Y P X n μεε=⎧⎫-⎨⎬⎩⎭∑ ;又22422211142211111()()[()()]()n i i D Y D X D X E X E X n nn n μμ=⎛⎫===-=- ⎪⎝⎭∑所以22422211n i i P X n n μμμεε=⎧⎫--⎨⎬⎩⎭∑ ,选(A ).(10)设随机变量(0,1)X N ,在X x =条件下随机变量(,1)Y N x ,则X 与Y 的相关系数为()(A )14.(B )12.(C)3.(D)2.【答案】(D ).【解析】由题意22(),xf x x -=-∞<<+∞且2()2(),,y x Y X f y x y --=-∞<<+∞所以22()21(,)()()e ,,2x y x X Y X f x y f x f y x x y +--==-∞<<+∞π又22()22()(,)d d d d xy x E XY xyf x y x y xx yy---+∞+∞+∞+∞-∞-∞-∞-∞==⎰⎰⎰⎰222d 1xxx -+∞-∞==⎰又因为222222()2211()(,)d ed eed 22y x xyyx xy Y f y f x y x x x+---+∞+∞+∞---∞-∞-∞===ππ⎰⎰⎰222()4241eed ,2yy yx x y ----+∞-∞==-∞<<+∞π⎰故(0,2),()2Y N D Y = ;所以2XY ρ--==,选(D ).二、填空题:11~16小题,每小题5分,共30分.(11)函数22(,)2f x y x y =+在点(0,1)的最大方向导数为_______.【答案】4.【解析】(,)f x y 在某一点处的最大方向导数是其梯度的模,(0,1)(0,1)20f xx∂==∂,(0,1)(0,1)44f yy∂==∂4=.(12)2e 1x =⎰_______.【答案】4.【解析】2e 1x⎰2e1ln 2d t t t t⋅e 14ln d t t =⎰e14(ln )4t t t =-=(13)当0,0x y 时,22e x yx k y ++ 恒成立,则k 的取值范围是_______.【答案】)24e ,-⎡+∞⎣.【解析】原不等式即22()(0,0)e ,,x y k y y x x -++ 令22()(,))(0,0,e ,x y x y f x y y x -+=+ 当0,0x y >>时,直接求驻点,22()22()(2)e 0(2)e 0x y x y x y f x x y f y x y -+-+''=--==--=,,解得1x y ==,且2(1,1)2e f -=.当0x =时,2e (0()),yf y yg y -==,2()2e e 0,0y y g y y y y --'=-==或2,且2(0)0,(2)4e g g -==.当0y =时,同理解得2(0,0)0,(2,0)4e f f -==.比较可得,(,)f x y 的最大值为2(0,2)(2,0)4e f f -==.于是24e k - .(14)已知级数1!e nnxn n n-=∞∑的收敛域为(),a +∞,则a =_______.【答案】1-.【解析】令e xt -=,11!!e nx nn n n n n n t n n ∞-∞===∑∑,1(1)!11(1)!(1)e1lim lim lim 1n n nn n n nn n n n n n n n +→∞→∞→∞++===+⎛⎫+ ⎪⎝⎭,于是1!n nnn t n =∞∑的收敛区间为e e t -<<,那么e e e x--<<,解得1x >-,于是1a =-.(15)已知矩阵A 和-E A 可逆,其中E 为单位矩阵,若矩阵B 满足1---=(())E E A B A ,则-=_____B A .【答案】-E .【解析】由1---=(())E E A B A ⇒1----=()()E A E A E B A⇒2-=-AB A A ⇒-=-B E A ⇒-=-B A E .(16)设,,A B C 随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立.若1()()()3P A P B P C ===,则()P B C A B C =【答案】58.【解析】因为B 与C 相互独立,有)()()(C P B P BC P ==111339= .又因A 与B 互不相容,A 与C 互不相容,有()()()0P AB P AC P ABC ===.[()()]()(|)()()P B C A B C P B C P B C A B C P A B C P A B C ==()()()()()()()()()()P B P C P BC P A P B P C P AB P BC P AC P ABC +-=++---+1115339111180003339+-==++---+.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y x是微分方程2y y '=+的满足()13y =的解,求曲线()y y x =的渐近线.【答案】斜渐近线2y x =.【解析】(e2ed xxy x C -⎡⎤=++⎢⎥⎢⎥⎣⎦⎰2e x C =+.将()13y =代入可得e C =,即()12e0y x x =+>.由函数解析式可知,曲线没有垂直渐近线;又由于()(12e lim lim x x y x x →+∞→+∞+==+∞,曲线没有水平渐近线;又()1limlim 2e 2x x y x k xx x→+∞→+∞=+==,()()1lim lim 20e 2x x b y x kx x x →+∞→+∞=-==⎡⎤⎣⎦+-,故曲线有斜渐近线2y x =.(18)(本题满分12分)已知平面区域{}(,)22D x y y x y =- ,计算222()d d Dx y I x y x y -=+⎰⎰.【答案】2(π1)-.【解析】将积分区域D 分为两部分12D D D =+,其中:1{(,)2,20,02}D x y y x x y =+- ,222{(,)4,0,0}D x y x y x y =+ ,故1222122222()()d d d d =+D D x y x y I x y x y I I x y x y --=+++⎰⎰⎰⎰记.其中:()()()2ππ22sin cos ππ12222=d cos sin d cos sin d πsin cos I r r θθθθθθθθθθ-⋅-=-⋅=-⎰⎰⎰,()()()πππ22222220=d cos sin d 2cos sin d 21sin 2d π2I r r θθθθθθθθ⋅-=-=-=-⎰⎰⎰⎰---故:()π2π2π1I =-+=-.(19)(本题满分12分)L 是曲面∑:22241x y z ++=,0,0,0x y z 的边界,曲面方向朝上,已知曲线L 的方向和曲面的方向符合右手法则,求()()22cos d 2d 2sin d LI yzz x xz y xyz x z z=-+++⎰ 【答案】0.【解析】由斯托克斯公式可得:()222d d d d d d 2d d d d cos 22sin y zz x x yI xz y z z x yx y z yz zxz xyz x z∑∑∂∂∂==-+∂∂∂-+⎰⎰⎰⎰令1∑:2241,0,0x y x y + ,指向z 轴负向,2∑:2241,0,0x z x z + ,指向y 轴负向,3∑:221,0,0y z y z + ,指向x 轴负向,则()()1231222d d d d 2d d d d I xz y z z x y xz y z z x y ∑+∑+∑+∑∑=-+--+⎰⎰⎰⎰ ()()23222d d d d 2d d d d xz y z z x y xz y z z x y ∑∑--+--+⎰⎰⎰⎰(22)d d d 0000z z x y z Ω=----=⎰⎰⎰.(20)(本题满分12分)设()f x 在()-∞+∞,有二阶连续导数,证明:0()f x '' 的充要条件为对不同实数,a b ()1(d 2b a a b f f x x b a+-⎰ .【证明】()21()()()((22222a b a b a b a b f x f f x f x ξ++++'''=+-+-,ξ介于x 与2a b+之间,()21()d (()(()d 22222bbaa a ba b a b a b f x x f f x f x xξ++++⎡⎤'''=+-+-⎢⎥⎣⎦⎰⎰()21()(d 222b a a b a b f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰必要性:若()0f x '' ,则()0f ξ'' ,有()d (()2baf x x a b f b a +-⎰ .充分性:若存在0x 使得0()0f x ''<,因为()f x 有二阶连续导数,故存在0δ>使得()f x ''在[]00,x x δδ-+内恒小于零,记00,a x b x δδ=-=+,此时()21()d ()()()d 222bb aa ab a b f x x f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰⎰()()2a bf b a +<-,矛盾!故()0f x '' .综上,充分性必要性均得证.(21)(本题满分12分)已知二次型3312311(,,)iji j f x x x ij x x===⋅∑∑.(1)写出123(,,)f x x x 对应的矩阵;(2)求正交变换x =Qy ,将123(,,)f x x x 化为标准形;(3)求123(,,)0f x x x =的解.【答案】(1)123246369⎛⎫ ⎪⎪ ⎪⎝⎭;(2)令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,化为标准形2314f y =;(3)12231605c c --⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭x ,(12,c c 为任意常数)【解析】(1)3312311(,,)iji j f x x x ij x x===⋅∑∑22211213212233132323246369x x x x x x x x x x x x x x x =++++++++222123121323494612x x x x x x x x x =+++++112323123(,,)246369x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭.(2)123246369----=------E A λλλλ2(14)0=-=λλ得1230,14===λλλ;1230000000r⎛⎫ ⎪-−−→ ⎪ ⎪⎝⎭E A ,解得12231,001αα--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;153********r-⎛⎫ ⎪-−−→- ⎪ ⎪⎝⎭E A ,解得3123α⎛⎫ ⎪= ⎪ ⎪⎝⎭;将12,αα进行施密特正交化可得211221123(,)11,6(,)505αβββαβββ--⎛⎫⎛⎫⎪⎪==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;将123(,,)ββα单位化,可得123,,,0γγγ⎛⎛⎪=== ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,将123(,,)f x x x 化为标准形2314f y =;(3)令21233(,,)140f x x x y ==,则112230y k y k y =⎧⎪=⎨⎪=⎩,12kk⎛⎛⎫⎪⎪⎪⎝⎭⎝x=Qy=1212231605k k c c⎛⎛---⎛⎫⎛⎫⎪ ⎪ ⎪=+-=+-⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪ ⎪⎝⎭⎝⎭,(12,c c为任意常数)(22)(本题满分12分)设12,,,nX X X来自均值为θ的指数分布总体的简单随机样本,设12,,,mY Y Y来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中()0θθ>为未知数,利用样本1212,,,,,,,n mX X X Y Y Y,求θ的最大似然估计量θ∧,并求()Dθ∧.【答案】(1)1122ˆ2()2()θ==++==++∑∑n mi ji jX YnX mYm n m n;(2)2m nθ+.【解析】(1)由题意知12,,,nX X X的总体X服从1Eθ⎛⎫⎪⎝⎭,12,,,mY Y Y的总体Y服从12θ⎛⎫⎪⎝⎭E,从而X的概率密度为1e,0,()0,其他.θθ-⎧>⎪=⎨⎪⎩xXxf x,Y的概率密度为21e,0,()20,其他.θθ-⎧>⎪=⎨⎪⎩yYyf y构造最大似然函数为()1111211e e(2)θθθθθ==--∑∑=⋅mnjijiyxn mL,()1111ln ln ln(2)2θθθθθ===----∑∑n mi ji jL n x m y()2211d ln 110d 2θθθθθθ===-+-+=∑∑n mi j i j L n m x y 1122ˆ2()2()θ==++==++∑∑nmi ji j X Y nX mYm n m n (2)221ˆ()(2)2()4()nX mY D D D nX mY m n m n θ⎡⎤+==+⎢++⎣⎦;2222222221144()()44()4()n D X m D Y n m m n m n n m m nθθθ⎡⎤⎡⎤=+=⋅+⋅=⎢⎥⎣⎦+++⎣⎦。
2023 年考研数学一真题及答案解析
![2023 年考研数学一真题及答案解析](https://img.taocdn.com/s3/m/04ba8caf8662caaedd3383c4bb4cf7ec4afeb60a.png)
2023年全国硕士研究生招生考试数学一试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符合题目要求的.1.曲线1ln 1y x e x的斜渐近线为A.y x e B.1y x eC.y xD.1y x e2.若微分方程0y ay by 的解在 , 上有界,则A.0,0a b B.0,0a b C.0,0a b D.0,0a b 3.设函数 y f x 是由2,sin x t t y t t确定,则A. f x 连续, 0f 不存在.B. 0f 存在, f x 在0x 处不连续.C. f x 连续, 0f 不存在.D. 0f 存在, f x 在0x 处不连续.4.已知(1,2,...)n n a b n ,若级数1nn a与1nn b均收敛,则“1nn a绝对收敛”是“1nn b绝对收敛”的A.充分必要条件 B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件5.已知n 阶矩阵,,A B C .满足 ABC O ,E 是n 阶单位矩阵,记矩阵OA BC E ,AB C O E ,E AB ABO 的秩分别为123,,r r r ,则A.123r r r B.132r r r C.312r r r D.213r r r 6.下列矩阵中不能相似于对角矩阵的是A.11022003aB.1112003a aC.11020002aD.11022002a7.已知向量121212212,1,5,03191.若 既可由12, 线性表示,也可由12, 线性表示,则A.33,4k kR B.35,10k k R C.11,2k kR D.15,8k kR 8.设随机变量X 服从参数为1的泊松分布,则E X EXA.1e B.12C.2eD.19.设12,,,n X X X 为来自总体 21,N的简单随机样本,12,,,mY Y Y为来自总体22,2N 的简单随机样本,且两样本相互独立.记1111,,n m i i i i X X Y Y n m221111n i i S X X n ,22111mi i S Y Y m ,则A. 2122~,S F n m S B. 2122~1,1S F n m S C. 21222~,S F n m S D. 21222~1,1S F n m S 10.设12,X X 为来自总体 2,N的简单随机样本,其中(0) 是未知参数.若12ˆa X X为 的无偏估计.则aA.2B.2二、填空题:11~16小题,每小题5分,共30分.11.当0x 时,函数 2ln 1f x ax bx x 与 2cos x g x e x 是等价无穷小,则ab.12.曲面222ln 1z x y x y 在点 0,0,0处的切平面方程为.13.设f x 是周期为2的周期函数,且 1,0,1f x x x ,若01cos 2n n a f x a n x,则21n n a.14.设连续函数 f x 满足: 2f x f x x ,20f x dx ,则 31f x dx.15.已知向量12311010111,,,10111111αααβ,112233k k k γααα,若,(1,2,3)T T i i i γαβα,则222123k k k.16.设随机变量,X Y 相互独立,且1~1,3X B,1~2,2Y B,则 2P X Y .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.设曲线 0y y x x 经过点 1,2,该曲线上任一点 ,P x y 到y 轴的距离等于该点处的切线在y 轴上的截距.(1)求 y y x .(2)求函数 1x f x y t dt在(0,) 的最大值.18.(本题满分12分)求函数 23,f x y y x y x 的极值.19.(本题满分12分)设空间有界区域 由柱面221x y 和平面0z 和1x z 所围成, 为 的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy.20.(本题满分12分)已知 f x 在 ,a a 上具有二阶连续导数.证明:(1)若 00f ,则存在 ,a a ,使得 21f f a f a a.(2)若f x 在,a a 内取得极值,则存在,a a ,使得212f f a f a a.21.(本题满分12分)已知二次型2221231231213,,2222f x x x x x x x x x x ,22212312323,,2g y y y y y y y y .(1)求可逆变换x y P ,将二次型 123,,f x x x 化成 123,,g y y y .(2)是否存在正交变换x y Q ,将二次型 123,,f x x x 化成 123,,g y y y .设二维随机变量 ,X Y 的概率密度为 22222,1,0,x y x y f x y,其他.(1)求,X Y 的协方差.(2),X Y 是否相互独立?(3)求22+Z X Y ,求Z 的概率密度.23考研数一真题答案速查一、选择题1.考点:渐近线答案:B.1y x e2.考点:常系数线性微分方程答案:C.0,0a b 3.考点:参数方程求导,分段函数求导答案:C. f x 连续,但 0f 不存在.4.考点:数项级数敛散性的判定答案:A.充分必要条件5.考点:矩阵的秩答案:B.132r r r 6.考点:相似对角化答案:D.11022002a 7.考点:向量的线性表示答案:D.15,8k kR 8.考点:常见分布答案:C.2e9.考点:三大抽样分布答案:D.21222~1,1S F n m S 10.考点:估计量的评选标准(无偏性)答案:A.2二、填空题11.考点:等价无穷小答案:212.考点:空间曲面的切平面答案:20x y z 13.考点:傅里叶级数答案:014.考点:定积分的换元法答案:1215.考点:向量内积与线性方程组答案:11916.考点:常见分布答案:13三、解答题17.考点:切线方程、一阶线性微分方程、函数求最值答案:(1)ln 2y x x x ;(2) f x 的最大值为241544f e e.18.考点:多元函数求极值答案: ,f x y 在210,327处取极大值2104,327729f.19.考点:第二类曲面积分(高斯公式)答案:5420.考点:泰勒中值定理的证明答案:(1)在0x 处泰勒展开,用介值定理推论处理余项.(2)在极值点处泰勒展开,用介值定理推论处理余项.21.考点:二次型的配方法、合同与相似答案:(1)111010001P ,x y P (2)不存在正交变换,因为两个二次型的系数矩阵不相似.22.考点:协方差、独立性、随机变量函数的分布答案:(1)0.(2)不独立.(3) 2,01,0,Z z z f z其他.。
考研数学(一)历年真题(1990-2021)无水印
![考研数学(一)历年真题(1990-2021)无水印](https://img.taocdn.com/s3/m/a8afaab2fe4733687f21aaa8.png)
1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim(xx x a x a→∞+-=_____________.(3)设函数()f x =1011x x ≤>,则[()]f f x =_____________.(4)积分222e y xdx dy -⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xxF x f t dt -=⎰则()F x '等于(A)e (e )()xx f f x ----(B)e (e )()xx f f x ---+(C)e(e )()x x f f x ---(D)e(e )()xx f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x +(B)1[()]n n f x +(C)2[()]nf x (D)2![()]nn f x (3)设a 为常数,则级数21sin()[n na n ∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a 的取值有关(4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x(A)不可导(B)可导,且(0)0f '≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα(C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分)求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分)设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A 八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -=== 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d y dx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1e x xy --+=-(A)没有渐近线(B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)e ln 2x(B)2e ln 2x(C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3(B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy⎰⎰(B)12D xydxdy⎰⎰(C)14(cos sin )D xy x y dxdy+⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E (C)=BAC E(D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求2lim .x π+→(2)设n是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设函数()y y x =由方程e cos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x-+00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i ia b i n ≠≠= 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2(B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos nn a n ∞=--∑常数0)a >(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线(A)只有1条(B)只有2条(C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为(A)0(B)1(C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求0x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.z x y∂∂∂(3)设()f x =21ex x -+00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =的上侧.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论.(2)(2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出.(2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________.(4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小(B)同价但非等价的无穷小(C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x -+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1(B)6t =时P 的秩必为2(C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sincos ).x x x x →∞+(2)求.x dx (3)求微分方程22,x y xy y '+=满足初始条件11x y==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰ 其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.baa b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞(1)求X 的数学期望EX 和方差.DX (2)求X 与X 的协方差,并问X 与X 是否不相关?(3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011lim cot ()sin x x xπ→-=_____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M<<(B)M P N <<(C)N M P <<(D)P M N<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件(B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d =(B)4b d =-(C)4a c=(D)4a c=-(5)已知向量组1234,,,αααα线性无关,则向量组(A)12233441,,,++++αααααααα线性无关(B)12233441,,,----αααααααα线性无关(C)12233441,,,+++-αααααααα线性无关(D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu ==-⎰,求dy dx 、22d y dx在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222S xdydz z dxdyx y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim0,x f x x→=证明级数11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为X 01P1212则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X YZ =+(1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ(3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰=_____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn n ∞-=+-∑的收敛半径R =_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π(B)在π上(C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件(B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-+则级数(A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散(D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分)(1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx (2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y 七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x =e 0x -00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e xy y y '''-+=的通解为_____________.(4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于(A)-1(B)0(C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值(B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >= 且1n n a ∞=∑收敛,常数(0,2πλ∈则级数21(1)(tan nnn n a n λ∞=-∑(A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与kx 是同阶无穷小,则k 等于(A)1(B)2(C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a ab b b b -(B)12341234a a a ab b b b +(C)12123434()()a ab b a a b b --(D)23231414()()a ab b a a b b --三、(本题共2小题,每小题5分,满分10分)(1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +=== 试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z xy x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a 五、(本题满分7分)求级数211(1)2n n n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2bf c a '≤+八、(本题满分6分)设,TA =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明(1)2=A A 的充分条件是 1.T=ξξ(2)当1T=ξξ时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,(1)求参数c 及此二次型对应矩阵的特征值.(2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ===又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:XY123123(2)求随机变量X 的数学期望().E X1997年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2013sin coslim(1cos )ln(1)x x x x x x →+++=_____________.(2)设幂级数1nnn a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为_____________.(3)对数螺线e θρ=在点2(,)(e ,)2ππρθ=处切线的直角坐标方程为_____________.(4)设12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且,=AB O 则t =_____________.(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)二元函数(,)f x y =22(,)(0,0)0(,)(0,0)xyx y x y x y ≠+=,在点(0,0)处(A)连续,偏导数存在(B)连续,偏导数不存在(C)不连续,偏导数存在(D)连续,偏导数不存在(2)设在区间[,]a b 上()0,()0,()0.f x f x f x '''><>令1231(),()(),[()()](),2ba S f x dx S fb b a S f a f b b a ==-=+-⎰则(A)123S S S <<(B)213S S S <<(C)312S S S <<(D)231S S S <<(3)设2sin ()e sin ,x t xF x tdt π+=⎰则()F x (A)为正常数(B)为负常数(C)恒为零(D)不为常数(4)设111122232333,,,a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ααα则三条直线1112223330,0,0a x b y c a x b y c a x b y c ++=++=++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是:(A)123,,ααα线性相关(B)123,,ααα线性无关(C)秩123(,,)r =ααα秩12(,)r αα(D)123,,ααα线性相关12,,αα线性无关(5)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是(A)8(B)16(C)28(D)44三、(本题共3小题,每小题5分,满分15分)(1)计算22(),I xy dv Ω=+⎰⎰⎰其中Ω为平面曲线220y zx ==绕z 轴旋转一周所成的曲面与平面8z =所围成的区域.(2)计算曲线积分()()(),cz y dx x z dy x y dz -+-+-⎰ 其中c 是曲线2212x y x y z +=-+=从z轴正向往z 轴负向看c 的方向是顺时针的.(3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为,N 在0t =时刻已掌握新技术的人数为0,x 在任意时刻t 已掌握新技术的人数为()(x t 将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求().x t 四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分)(1)设直线:l 030x y b x ay z ++=+--=在平面π上,而平面π与曲面22z x y =+相切于点(1,2,5),-求,a b 之值.(2)设函数()f u 具有二阶连续导数,而(e sin )xz f y =满足方程22222e ,xz z z x y∂∂+=∂∂求().f u五、(本题满分6分)设()f x 连续1,()(),x f xt dt ϕ=⎰且0()lim(x f x A A x→=为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11110,(1,2,),2n n na a a n a +==+= 证明(1)lim n x a →∞存在.(2)级数11(1)nn n a a ∞=+-∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分)(1)设B 是秩为2的54⨯矩阵123,[1,1,2,3],[1,1,4,1],[5,1,8,9]TTT==--=--ααα是齐次线性方程组x =B 0的解向量,求x =B 0的解空间的一个标准正交基.(2)已知111⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ξ是矩阵2125312a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 的一个特征向量.1)试确定,a b 参数及特征向量ξ所对应的特征值.2)问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为.B (1)证明B 可逆.(2)求1.-AB 九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设再各个交通岗遇到红灯的事件是相互独立的,并且概率都是2.5设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为()f x =(1)0x θθ+01x <<其它其中1θ>-是未知参数12,,,,n X X X 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2112limx x→-=_____________.(2)设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y ∂∂∂=_____________.(3)设l 为椭圆221,43x y +=其周长记为,a 则22(234)Lxy x y ds ++⎰ =_____________.(4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值_____________.(5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 连续,则220()x d tf x t dt dx-⎰=(A)2()xf x (B)2()xf x -(C)22()xf x (D)22()xf x -(2)函数23()(2)f x x x x x =---不可导点的个数是(A)3(B)2(C)1(D)0(3)已知函数()y y x =在任意点x 处的增量2,1y xy x α∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于(A)2π(B)π(C)4eπ(D)4eππ(4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A)相交于一点(B)重合(C)平行但不重合(D)异面(5)设,A B 是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有(A)(|)(|)P A B P A B =(B)(|)(|)P A B P A B ≠(C)()()()P AB P A P B =(D)()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z l --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数,λ使在右半平面0x >上的向量42242(,)2()()x y xy x y x x y λλ=+-+A i j 为某二元函数(,)u x y 的梯度,并求(,).u x y 五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度(y 从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为,m 体积为,B 海水密度为,ρ仪器所受的阻力与下沉速度成正比,比例系数为(0).k k >试建立y 与v 所满足的微分方程,并求出函数关系式().y y v =六、(本题满分7分)计算222212(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半平面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦ 八、(本题满分5分)设正向数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11(1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1)试证存在0(0,1),x ∈使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积.(2)又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数,k 使线性方程组kx =A 0有解向量,α且1.k -≠A α0证明:向量组1,,,k -αAαAα 是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).TTTn n n n n n b b b b b b b b b 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n nb y b y b y b y b y b y b y b y b y +++=+++=+++=的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附:标准正态分布表22()t zx dt -Φ=⎰z1.28 1.645 1.962.33()x Φ0.9000.9500.9750.990十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附:t 分布表{()()}p P t n t n p≤=0.950.97535 1.6896 2.0301361.68832.02811999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2011lim(tan x x x x→-=_____________.(2)20sin()x d x t dt dx-⎰=_____________.(3)24e xy y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是_____________.(5)设两两相互独立的三事件,A B和C满足条件:1,()()(),2ABC P A P B P C =∅==<且已知9(),16P A B C =则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则(A)当()f x 是奇函数时,()F x 必是偶函数(B)当()f x 是偶函数时,()F x 必是奇函数(C)当()f x 是周期函数时,()F x 必是周期函数(D)当()f x 是单调增函数时,()F x 必是单调增函数(2)设20()() 0x f x x g x x >=≤⎩,其中()g x 是有界函数,则()f x 在0x =处(A)极限不存在(B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩,01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑其中102()cos n a f x n xdx π=⎰(0,1,2,)n = ,则5()2S -等于(A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式||0≠AB (B)当m n >时,必有行列式||0=AB (C)当n m >时,必有行列式||0≠AB (D)当n m >时,必有行列式||0=AB (5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则(A)1{0}2P X Y +≤=(B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=三、(本题满分6分)设(),()y y x z z x ==是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求.dz dx四、(本题满分5分)求(e sin ())(e cos ),x x LI y b x y dx y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线y =到点(0,0)O 的弧.五、(本题满分6分)设函数()(0)y x x ≥二阶可导且()0,(0) 1.y x y '>=过曲线()y y x =上任意一点。
2020年考研数学一真题详细答案解析
![2020年考研数学一真题详细答案解析](https://img.taocdn.com/s3/m/3be42e1aa4e9856a561252d380eb6294dc882249.png)
一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0Xr•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
2023考研数学一真题及参考答案-完整版
![2023考研数学一真题及参考答案-完整版](https://img.taocdn.com/s3/m/c2a184db4793daef5ef7ba0d4a7302768e996f62.png)
(1)函数1ln(e )1y x x 的渐近线为()(A )e y x .(B )1e y x .(C )y x .(D )1ey x .【答案】(B ).(2)若微分方程0y ay by 的解在(,) 有界,则()(A )0,0a b (B )0,0a b (C )0,0a b (D )0,0a b 【答案】(C ).(3)确定,则().(A )连续,但不存在(B )存在,但不连续(C )连续,但不存在(D )存在,但不连续【答案】(C ).(4)已知n n a b (1,2,)n ,若级数1nn a与1nn b均收敛,则1nn a绝对收敛是1nn b绝对收敛的(A )充分必要条件(B )充分不必要条件(C )必要不充分(D )既不充分也不必要【答案】(A ).(5)已知n 阶矩阵,,A B C 满足0ABC =E 为n 阶单位矩阵,记矩阵A BCE , 0AB C E ,0E AB AB 的秩分别为123,,r r r ,则(A )123r r r (B )132r r r (C )312r r r (D )213r r r 【答案】(B ).(6)下列矩阵中不能相似于对角阵的是()(A )11022003a .(B )1112003a a .(C )11020002a .(D )11022002a.【答案】(D ).(7)121212212,1,5,03191若 既可由12, 线性表示,也可由12 线性表示,则(A)3,4k k R(B)35,10k k R(C)11,2k k R(D)15,8k k R【答案】D(8)设随机变量X服从参数为1的泊松分布,则 =E X EX(A)1e(B)12(C)2e(D)1【答案】(C)(9)为总体的简单随机样本,为总体的简单随机样本,且两样本相互独立.,,则(A)2122(,)S F n mS(B)2122(1,1)S F n mS(C)21222(,)S F n mS(D)21222(1,1)S F n mS【答案】(D)(10)设12,X X为总体2(,)N 的样本,0为未知参数,若12ˆ||a X X为 的无偏估计,则a ()(A)2(B)22(C(D(11)当0x 时,函数2()ln(1)f x ax bx x 与2()cos x g x e x 是等价无穷小,则ab.【答案】2 .(12)曲面222ln 1z x y x y 在 0,0,0处的切平面方程为_______.【答案】20x y z (13)函数()f x 是周期为2的周期函数,且()1,[0,1]f x x x ,若01()cos π2n n a f x a n x,则21n n a.【答案】0.(14)连续函数()f x 满足20(2)(),()d 0,f x f x x f x x 则31()d f x x _______【答案】12(15)向量123(1,0,1,1),(1,1,0,1),(0,1,1,1) ,(1,1,1,1) ,112233k k k ,若T T i i(1,2,3i),则222123k k k【答案】119(16)设随机变量X 与Y 相互独立,且1(1,)3X B ,1(2,2Y B ,则P X Y .【答案】13【解析】由题意可知(,)X Y 联合分布律为:从而 0,01,13P X Y P X Y P X Y 。
2020考研数学一真题及解析【完整版】
![2020考研数学一真题及解析【完整版】](https://img.taocdn.com/s3/m/2536bd9d6429647d27284b73f242336c1eb93005.png)
2020考研数学一真题及解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.x 0 时,下列无穷小阶数最高的是A. 0xe t 21d tB. 0xln 1+t 3d t C.sin 20sin d xt tD.1cos 30sin d x t t1.答案:D解析:A.232001~3xx t x e dt t dtB.35322002ln 1~5x x t dt t dt x C.sin 223001sin ~3xxt dt t dt x D.2311cos 3220sin ~xx tdt t dt25122025x t 5252152x2.设函数()f x 在区间(-1,1)内有定义,且0lim ()0,x f x 则()A.当0()lim 0,()0||x f x f x x x在处可导.B.当2()lim0,()0x f x f x x x在处可导.C.当()()0lim0.||x f x f x x x 在处可导时,D.当2()()0lim 0.x f x f x x x在处可导时,2.答案:B解析:0200()()()()lim 0lim 0lim 0,lim 0||x x x x f x f x f x f x x x x x00()lim 0,lim ()0x x f x f x x00()(0)()lim lim 0(0)0x x f x f f x f x x()f x 在0x 处可导 选B3.设函数(,)f x y 在点(0,0)处可微,(0,0)(0,0)0,,,1f ff x yn 且非零向量d 与n 垂直,则()A.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x y存在n B.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x y存在n C.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x y存在d D.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x yd 3.答案:A 解析:(,)(0,0)f x y 在处可微.(0,0)0f =22(,)(0,0)(0,0)(0,0)lim 0x y x y f x y f f x f yx y即2200(,)(0,0)(0,0)lim 0x yx y f x y f x f y x y,,(,)(0,0)(0,0)(,)x y n x y f x y f x f y f x y22(,)(0,0),,(,)lim 0x y n x y f x y x y存在选A.4.设R 为幂级数1nn n a r的收敛半径,r 是实数,则()A.1nn n a r发散时,||r R B.1nnn a r发散时,||r RC.||r R 时,1n nn a r发散D.||r R 时,1nnn a r发散4.答案:A 解析:∵R 为幂级数1nn n a x的收敛半径.∴1n nn a x在(,)R R 内必收敛.∴1nnn a r发散时,||r R .∴选A.5.若矩阵A 经初等列变换化成B ,则()A.存在矩阵P ,使得PA =BB.存在矩阵P ,使得BP =AC.存在矩阵P ,使得PB =AD.方程组Ax =0与Bx =0同解5.答案:B 解析:A 经初等列变换化成B.存在可逆矩阵1P使得1AP B 1111A BP P P 令..A BPB 选6.已知直线22211112:x a y b c L a b c 与直线33322222:x a y b c L a b c相交于一点,相交于一点,法法向量,1,2,3.i i i i a a b i c则A.1a 可由23,a a 线性表示B.2a 可由13,a a 线性表示C.3a 可由12,a a 线性表示D.123,,a a a 线性无关6.答案:C 解析:令1L的方程222111=x a y b z c t a b c即有21212121=a a x y b t b t z c c由2L 的方程得32323223=a a x yb t b t zc c由直线1L 与2L 相交得存在t 使2132t t 即312(1)t t ,3 可由12, 线性表示,故应选C.7.设A,B,C 为三个随机事件,且1()()(),()04P A P B P C P AB 1()()12P AC P BC,则A,B,C 中恰有一个事件发生的概率为A.34B.23C.12D.5127.答案:D解析:()()()[()]P ABC P ABUC P A P A BUC ()()()()()()111004126P A P AB AC P A P AB P AC P ABC ()()()[()]()()()()111004126P BAC P B AUC P B P B AUC P B P BA P BC P ABC ()()()[()]()()()()111104121212P CBA P CBUA P C P CU BUA P C P CB P CA P ABC()()()()1115661212P ABC ABC ABC P ABC P ABC P ABC选择D8.设12,,,nX X X…为来自总体X 的简单随机样本,其中1(0)(1),()2P X P X x 表示标准正态分布函数,则利用中心极限定理可得100155i i P X的近似值为A.1(1) B.(1) C.1(2) D.(2)8.答案:B解析:由题意11,24EX DX1001001110050.10025i i i i E X X EX D X DX由中心极限定理1001~(50,25)i i X N∴1001001155555055(1)55i i i i X P X P故选择B二、填空题:9—14小题,每小题2分,共24分。
2023考研数学一真题试卷+详细答案解析
![2023考研数学一真题试卷+详细答案解析](https://img.taocdn.com/s3/m/b734a04e793e0912a21614791711cc7931b77816.png)
2023年全国硕士研究生入学统一考试数学(一)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( ) (A )0,0a b <>(B )0,0a b >>(C )0,0ab =>(D )0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(3)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C【解析】当0t =时,有0x y ==①当0t >时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t <时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(4)已知(1,2,)nn a b n <= ,若级数1n n a ∞=∑与1n n b ∞=∑均收敛,则“1n n a ∞=∑绝对收敛”是“1n n b ∞=∑绝对收敛”的( )(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件【答案】A 【解析】因为级数1nn a ∞=∑与1nn b ∞=∑均收敛,所以正项级数1()nn n ba ∞=−∑收敛又因为()()n n n n n n n n n nb b a a b a a b a a =−+≤−+=−+所以,若1nn a∞=∑绝对收敛,则1n n b ∞=∑绝对收敛;同理可得:()()n n n n n n n n n na ab b a b b b a b =−+≤−+=−+所以,若1nn b ∞=∑绝对收敛,则1nn a∞=∑绝对收敛;故答案为充要条件,选(A)(5)已知n 阶矩阵A ,B ,C 满足ABC O =,E 为n 阶单位矩阵,记矩阵OA BC E ⎛⎫ ⎪⎝⎭,ABC O E ⎛⎫⎪⎝⎭,E AB AB O ⎛⎫⎪⎝⎭的秩分别为123,,r r r ,则( ) (A )123r r r ≤≤(B )132r r r ≤≤(C )321r r r ≤≤(D )213r r r ≤≤【答案】B【解析】根据初等变换可得:OA O O O O BC E BC E O E ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭行列,所以1r n =;AB C AB O O E O E ⎛⎫⎛⎫⎯⎯→ ⎪ ⎪⎝⎭⎝⎭行,所以2()r n r AB =+;2()E AB E O E O AB O AB ABAB O AB ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭行列,所以23()r n r AB ⎡⎤=+⎣⎦;又因为20()()r AB r AB ⎡⎤≤≤⎣⎦,所以132r r r ≤≤(6)下列矩阵中不能相似于对角矩阵的是()(A )11022003a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1112003a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )11020002a ⎛⎫⎪ ⎪ ⎪⎝⎭(D )11022002a ⎛⎫⎪ ⎪ ⎪⎝⎭【答案】D【解析】(A )特征值互异,则可对角化;(B )为实对称矩阵,必可对角化; 选项(C ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)312n r E A =−−=−=(几何重数),故矩阵可对角化;选项(D ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)321n r E A ≠−−=−=(几何重数),故矩阵不可对角化;(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A )33,4k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(B )35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C )11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D )15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D(8)设随机变量X 服从参数为1的泊松分布,则()E X EX −=( )(A)1e(B)12(C)2e(D)1【答案】C【解析】因为(1)X P ,所以1EX =,()()1110022112(1)(1)!0!!k k e e e E X EX E X k k E X k k e e−−−∞∞==−=−=−=+−=+−=∑∑,答案为C(9)设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==−−∑, 22211()1mi i S Y Y m ==−−∑,则( ) (A)2122(,)S F n m S (B)2122(1,1)S F n m S −−(C)21222(,)S F n m S (D)21222(1,1)S F n m S −− 【答案】D【解析】由正态分布的抽样性质可得,2212(1)(1)n S n χσ−− ,2222(1)(1)2m S m χσ−− 又因为2212,S S 相互独立,所以212222(1)1(1,1)(1)21n S n F n m m S m σσ−−−−−− ,即21222(1,1)S F n m S −− ,答案为D (10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数,记12a X X σ=−,若()E σσ=,则a =( )(A)2π(B)2π【答案】A【解析】由已知可得,令212(0,2)Z X X N σ=− ,所以22221212()()()z Z E E a X X aE X X aE Z az f z dz a dzσσ−+∞+∞⋅−∞−∞=−=−===⎰⎰2222440z z a zdz aσσ−−+∞+∞==−=⎰若()E σσ=,则有2a π=,答案为A二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =− (12)曲面222ln(1)z x y x y =++++在点(0,0,0)处的切平面方程为________【答案】20x y z +−=【解析】两边微分可得,222221xdx ydydz dx dy x y +=++++,代入(0,0,0)得2dz dx dy =+,因此法向量为(1,2,1)−,切平面方程为20x y z +−=(13)设()f x 是周期为2的周期函数,且()1,[0,1]f x x x =−∈,若01()cos 2n n a f x a n x π∞==+∑,则21nn a∞==∑_________【答案】0【解析】由已知得01(0)12n n a f a ∞==+=∑,01(1)(1)02n n n a f a ∞==+−=∑ 相加可得021(0)(1)21nn f f a a∞=+=+=∑显然()f x 为偶函数,则(0,1,2,)n a n = 为其余弦级数的系数,故1002()1a f x dx ==⎰,因此210n n a ∞==∑.(14)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(15)已知向量11011α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,21101α−⎛⎫ ⎪− ⎪= ⎪ ⎪⎝⎭,30111α⎛⎫ ⎪ ⎪= ⎪− ⎪⎝⎭,1111β⎛⎫ ⎪ ⎪= ⎪ ⎪−⎝⎭,112233k k k γααα=++,若(1,2,3)T T i i i γαβα==,则222123k k k ++=_______【答案】119【解析】由已知可得,123,,ααα两两正交,通过计算可得:11113TT k γαβα=⇒=;2221T T k γαβα=⇒=−;33213T T k γαβα=⇒=−,则222123k k k ++=119(16)设随机变量X 与Y 相互独立,且1(1,3X B ,1(2,2Y B ,则{}P X Y ==________ 【答案】13【解析】212211111{}{0}{1}(323223P X Y P X Y P X Y C ====+===⋅+⋅⋅=三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()(0)L y y x x =>经过点(1,2),该曲线上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)求函数1()()xf x y t dt =⎰在(0,)+∞上的最大值【答案】(1)()(2ln )y x x x =− (2)454e −【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,由题意可得x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入(1,2)可得2C =,从而()(2ln )y x x x =−(2)()(2ln )f x x x ′=−,显然在2(0,)e 上()0f x ′>,()f x 单调递增;在2(,)e +∞上()0f x ′<,()f x 单调递减,所以()f x 在(0,)+∞上的最大值为22422211515()(2ln )ln 424e e ef e t t dt t t t −⎛⎫=−=−=⎪⎝⎭⎰(18)(本题满分12分)求函数23(,)()()f x y y x y x =−−的极值【答案】极小值为2104(,)327729f =−【解析】先求驻点42235(32)020xy f x x x y f y x x ⎧′=−+=⎪⎨′=−−=⎪⎩,解得驻点为(0,0),(1,1),210(,327下求二阶偏导数,3220(62)322xx xy yyf x x yf x xf ⎧′′=−+⎪⎪′′=−−⎨⎪′′=⎪⎩①对于点(0,0),(0,0)0f =,5(,0)f x x =,由定义可得(0,0)不是极值点;②代入点(1,1),解得1252xxxy yy A f B f C f ⎧′′==⎪⎪′′==−⎨⎪′′==⎪⎩,210AC B −=−<,所以(1,1)不是极值点;③代入点210(,)327,解得10027832xx xy yyA fB fC f ⎧′′==⎪⎪⎪′′==−⎨⎪⎪′′==⎪⎩,2809AC B −=>且0A >,所以210(,)327是极小值点,极小值为2104(,)327729f =−(19)(本题满分12分)设空间有界区域Ω由柱面221x y +=与平面0z =和1x z +=围成,Σ为Ω的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy Σ=++⎰⎰【答案】54π【解析】由高斯公式可得,2cos 3sin (2sin 3sin )I xzdydz xz ydzdx yz xdxdy z xz y y x dvΣΩ=++=−+⎰⎰⎰⎰⎰ 因为Ω关于平面xoz 对称,所以(sin 3sin )0xz y y x dv Ω−+=⎰⎰⎰所以1222022(1)(:1)xyxyxxy D D I zdv dxdy zdz x dxdyD x y −Ω===−+≤⎰⎰⎰⎰⎰⎰⎰⎰22221(21)()2xyxyxyD D D x x dxdy x dxdy x y dxdy ππ=−+=+=++⎰⎰⎰⎰⎰⎰ 2130015244d r dr πππθππ=+=+=⎰⎰(20)(本题满分12分)设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈− 两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−= 因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a a ξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间; 代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f a η′′−−≤成立 (21)(本题满分12分)已知二次型2221231231213(,,)2222f x x x x x x x x x x =+++−,22212312323(,,)2g y y y y y y y y =+++(1)求可逆变换x Py =,将123(,,)f x x x 化成123(,,)g y y y ; (2)是否存在正交变换x Qy =将123(,,)f x x x 化成123(,,)g y y y ?【答案】(1)111010001P −⎛⎫ ⎪= ⎪⎪⎝⎭(2)不存在(二者矩阵的迹不相同)【解析】(1)利用配方法将123(,,)f x x x 化成123(,,)g y y y , 先用配方法将123(,,)f x x x 化成标准形:22222212312312131232323(,,)2222()2f x x x x x x x x x x x x x x x x x =+++−=+−+++2212323()()x x x x x =+−++再用配方法将123(,,)g y y y 化成标准形:2222212312323123(,,)2()g y y y y y y y y y y y =+++=++令11232233y x x x y x y x =+−⎧⎪=⎨⎪=⎩,即11232233x y y y x y x y=−+⎧⎪=⎨⎪=⎩, 则在可逆变换112233*********x y x y x y −⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭下,其中111010001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,二次型123(,,)f x x x 即可化成123(,,)g y y y (2)因为二次型123(,,)f x x x 与123(,,)g y y y 的矩阵分别为111120102A −⎛⎫ ⎪= ⎪ ⎪−⎝⎭,100011011B ⎛⎫⎪= ⎪⎪⎝⎭显然()5tr A =,()3tr B =,所以矩阵A ,B 不相似,故不存在正交矩阵Q ,使得1T Q AQ Q AQ B −==, 所以也不存在正交变换x Qy =,将123(,,)f x x x 化成123(,,)g y y y .11 /11 (22)(本题满分12分)设二维随机变量(,)X Y 的概率密度为22222(),1(,)0,x y x y f x y else π⎧++≤⎪=⎨⎪⎩,求 (1)求X 与Y 的斜方差;(2)X 与Y 是否相互独立?(3)求22Z X Y =+概率密度【答案】(1)0 (2)不独立 (3)2,01()0,z z f z else <<⎧=⎨⎩【解析】(1)由对称性可得:222212()0x y EX x x y dxdy π+≤=+=⎰⎰,同理0EY =,0EXY =所以(,)()()()0Cov X Y E XY E X E Y =−=; (2)22)11()(,)0,X x y dy x f x f x y dy else +∞−∞⎧+−≤≤⎪==⎨⎪⎩⎰24(121130,x x elseπ⎧+−≤≤⎪=⎨⎪⎩同理可得,24(1211()30,Y y y f y else π⎧+−≤≤⎪=⎨⎪⎩所以(,)()()X Y f x y f x f y ≠,X 与Y 不独立 (3)先求分布函数22(){}{}Z F z P Z z P X Y z =≤=+≤ 当0z <时,()0Z F z =;当01z ≤<时,2222222320022(){}()Z x y z F z P X Y z x y dxdy d dr z πθππ+≤=+≤=+==⎰⎰⎰;当1z ≤时,()1Z F z =;所以22Z X Y =+概率密度为2,01()()0,Z Z z z f z F z else <<⎧′==⎨⎩。