2019-2020年九年级数学竞赛试题含答案_
初三数学竞赛选拔试题(含答案)
初三数学竞赛选拔试题一、选择题: (每题5分,共 35分)1 .2022减去它的21,再减去剩余的,31再减去剩余的,41……依次类推,一直减去剩余的,20031那么最后剩下的数是〔 B 〕 〔A 〕20031 〔B 〕1 〔C 〕20021〔D 〕无法计算2. 假设 x 3+ax 2+bx+8有两个因式x+1和x+2,那么a+b 的值是 ( D ) 〔A 〕 7 〔B 〕 8 〔C 〕 15 〔D 〕213. ΔABC 的周长是24,M 是AB 的中点,MC=MA=5,那么ΔABC 的面积是〔 C 〕〔A 〕 12 〔B 〕 16 〔C 〕 24 〔D 〕304. DE 为∆ABC 中平行于AC 的中位线,F 为DE 中点,延长AF 交BC 于G ,那么∆ABG 与∆ACG 的面积比为 ( A )〔A 〕1:2〔B 〕2:3〔C 〕3:5〔D 〕4:75. 三角形三条高线的长为3,4,5,那么这三角形是〔 C 〕〔A 〕锐角三角形〔B 〕直角三角形〔C 〕钝角三角形〔D 〕形状不能确定6. 关于x 的方程022=+++m mx x 有不同的实数根,其中m 为整数,且仅有一个实根的整数局部是2,那么m 的值 为〔 A 〕 〔A 〕–2〔B 〕–3〔C 〕–2或–3〔D 〕不存在7. 在凸四边形ABCD 中,DA=DB=DC=BC ,那么这个四边形中最大角的度数是〔 A 〕〔A 〕 120º 〔B 〕 135º 〔C 〕 150º 〔D 〕 165ºC二、填空题: (每题5分,共 35分)1. 假设在方程 y(y+x)=z+120 中, x,y,z 都是质数,而z 是奇数,那么x= 2 .y= 11 .z= 23 .2. 将 2022x 2-(20222-1)x-2022 因式分解得 (x-2022)(2022x+1) .3.正三角形ABC 所在平面内有一点P,使得⊿PAB 、⊿PBC 、⊿PCA 都是等腰三角形,那么这样的P 点有 10 个4.直角梯形ABCD 中,AD ∥BC,AB =BC,∠A =o 90,∠D =o 45,CD 的垂直平分线交CD_________________学区 ___________________中学 姓名_________________ 准考证号_________________………………………………装………………………………订………………………………线………………………………于E,交BA于的延长线于F,假设AD=9cm,那么BF=9 cm;5.四边形的四个顶点为A〔8,8〕,B〔-4,3〕,C〔-2,-5〕,D〔10,-2〕,那么856四边形在第一象限内的局部的面积是156.小明和小刚在长90米的游泳池的对边上同时开始游泳,小明每秒游3米,小刚每秒游2米,他们往返游了12分钟,假设不计转向的时间,那么他们交汇的次数是20.7.一副扑克牌有54张,最少抽取16 张,方能使其中至少有2张牌有相同的点数?三、(此题总分值15分)下表是某学校参加一次数学竞赛中参赛同学做对题目的情况记录表,第一行的值表示做对的题目的题数,第二行的值表示做对相应题目的同学人数.对此次竞赛的情况有如下统计:〔1〕本次竞赛共有12道题目;〔2〕做对3题和3题以上的同学每人平均做对6题;〔3〕做对10题和10题以下的同学每人平均做对5题;问:参加本次竞赛的同学共有多少人?解:设共有x名同学参加了本次竞赛.做对3题和3题以上的人数为x-(1+3)=x-4, 那么,所有同学做对6(x-4)+1⨯1+2⨯3=6x-17题;做对10题和10题以下的人数为x-(1+1)=x-2, 那么,所有同学做对5(x-2)+11⨯1+12⨯1=5x+13题.又做对的总题数相等,所以6x-17=5x+13.解这个方程得 x=30.答:共有30名同学参加了本次竞赛.如图:菱形PQRS 内接于矩形ABCD,使得P 、Q 、R 、S 为AB 、BC 、CD 、DA 上的内点.PB=15、BQ=20、PR=30、QS=40、假设既约分数n m为矩形ABCD 的周长,求m +n.设AS=x 、AP=y ……(2分),由菱形性质知PR SQ,且互相平分,这样得到8个直角三角形,易知PR 与SQ 的交点是矩形ABCD 的中央.由可得其中6个三角形的边长分别为15、20、25.由对称性知CQ 、CR 的长为x 、y .那么Rt △ASP 和Rt △CQR 的三边长分别为x 、y 、25,矩形面积等于8个Rt △的面积之和.那么有:(20+x )(15+y )=6×21×20×15+2×21xy 〔8分〕那么有 3x +4y =120 (1)又 x 2+y 2=625 (2) (2分)得 x 1=20 x 2=544y 1=15 y 2=5117(5分) 当x=20时 BC=x +BQ=40 这与PR=30不合 故 x =544 y =5117 (2分) ∴矩形周长为2(15+20+x +y )= 5672(5分)即:m+n=677 (1分)1、试设计一种方法,把一个正方形不重复不遗漏地分割成8个正方形(分得的正方形大小可以不相同);又问如何把正方形按上要求分成31个正方形?2、试设计一种方法,把一个立方体分割成55个立方体(要求:不重复不遗漏,分得的立方体大小可以不相同).1、容易把一个正方形分成42=16个正方形,再把其中位于一角的9个拼成一个正方形,共得:16-9+1=8个正方形 . (6分)分成16个正方形后,把其中任意5个分成4个小正方形,共有16-5+5×4=31个正方形. (6分)2、把立方体分割成33=27个立方体,再把其中4个各分成23=8个立方体,共27-4+4×23=55个立方体. 〔8分〕。
九年级数学竞赛初赛试卷【含答案】
九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。
A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。
A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。
A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。
()2. 任何数乘以0都等于0。
()3. 二次函数的图像一定是一个抛物线。
()4. 平行四边形的对角线互相平分。
()5. 一元一次方程的解一定是整数。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。
2. 若等差数列的首项为a,公差为d,则第n项为______。
3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。
4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。
5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述二次函数的图像特点。
3. 简述勾股定理。
4. 简述平行线的性质。
5. 简述一元二次方程的解法。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。
2. 已知等差数列的首项为3,公差为2,求第10项。
3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。
4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
(第 3 题图)
(第 4 题图)
4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在 AB 上滚动,切点为 T,⊙O 交 AO,BO 于 M,N,则 弧 MTN( )
A.在 0°到 30°变化
B.在 30°到 60°变化
C.保持 30°不变
D.保持 60°不变
5.如图,AB 是⊙O 的直径,且 AB=10,弦 MN 的长为 8.若 MN 的两端在圆上滑动时,始终与 AB 相交, 记点 A,B 到 MN 的距离分别为 h1,h2,则∣h1-h2∣等于( )
A
C
(P) O
D
B
①
D
A
C P O
B D ①
D
C
PB O
D ①
O
C A
P
①
B
O
C
P
A (B)
①
O
(D)C
A(B)
P ①
(2)已知⊙O 的半径为一定值 r,若点 P 是不在⊙O 上的一个定点,请你过点 P 任作一直线交⊙O 于 不重合的两点 E,F. PE·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文 字叙述出来.
(第 7 题图)
(第 8 题图)
8.如图,设 H 是等腰三角形 ABC 两条高的交点,在底边 BC 保持不变的情况下让顶点 A 至底边 BC 的 距离变小,这时乘积 S△ABC·S△HBC 的值变小、变大,还是不变?证明你的结论.
9.如图,在平面直角坐标系 xOy 中,抛物线 y 1 x 2 4 x 10 与 x 轴的交点为点 A,与 y 轴的交点 18 9
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
【例 1】 如图,已知 P 为正方形 ABCD 的外接圆的劣弧A⌒D上任意一点.求证: PA PC 为定值. PB
九年级数学竞赛初赛试卷【含答案】
九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若函数f(x) = 2x + 3,则f(-1)的值为()。
A. 1B. 2C. 3D. 54. 下列哪个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形5. 若一个圆的半径为r,则它的周长为()。
A. 2rB. 2πrC. πr²D. r²/2二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 任何数乘以0都等于0。
()3. 对角线相等的四边形一定是矩形。
()4. 一元二次方程ax² + bx + c = 0(a≠0)的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。
()5. 任何数都有倒数。
()三、填空题(每题1分,共5分)1. 若一个三角形的两个内角分别为30°和60°,则第三个内角的度数为______°。
2. 若2x 5 = 0,则x的值为______。
3. 若一个圆的直径为10cm,则它的面积为______cm²。
4. 若一个等差数列的首项为3,公差为2,则第5项的值为______。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述一元一次方程的求解方法。
3. 请简述等差数列的定义及通项公式。
4. 请简述平行四边形的性质。
5. 请简述圆的周长和面积的计算公式。
五、应用题(每题2分,共10分)1. 已知一个长方形的长是宽的2倍,且长方形的周长是24cm,求长方形的长和宽。
邵阳九年级上数学竞赛试卷【含答案】
邵阳九年级上数学竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 已知一个等差数列的前三项分别为2,5,8,则第10项是多少?A. 29B. 30C. 31D. 323. 若函数f(x) = 2x + 3,则f(-1)的值为多少?A. -1B. 1C. 2D. 34. 在直角坐标系中,点(3, 4)关于y轴的对称点坐标为?A. (-3, 4)B. (3, -4)C. (-3, -4)D. (3, -4)5. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 若两个角的和为180°,则这两个角互补。
()2. 等边三角形的三条高相等。
()3. 任何两个奇数之和都是偶数。
()4. 一元二次方程ax² + bx + c = 0的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。
()5. 对顶角相等。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第5项为______。
2. 在直角坐标系中,点(2, -3)到原点的距离为______。
3. 若sinθ = 1/2,且θ为锐角,则θ的度数为______。
4. 若一个圆的直径为10cm,则这个圆的周长为______cm。
5. 若一个等比数列的首项为2,公比为3,则第3项为______。
四、简答题(每题2分,共10分)1. 请简要解释勾股定理。
2. 请简要解释等差数列的通项公式。
3. 请简要解释正弦函数的定义。
4. 请简要解释一元二次方程的判别式。
5. 请简要解释等比数列的求和公式。
五、应用题(每题2分,共10分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的通项公式。
-初中数学竞赛题(含答案)
初中数学竞赛一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( B ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( C ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba(b+1)得( ).(A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)=10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是 梨 梨 苹果 苹果 30 梨 型 梨 梨 28 荔枝 香蕉 苹果 梨 20 香蕉 香蕉 荔枝 苹果 ? 19 20 25 3014.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月. 18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+l ; a 2=6×3+2; a 3=6×4+3; a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = . 20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a+1 06. 10.一43.6.11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-1511 6.1. 1 7.1988;1. 18.1022.5;101 8. 1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c=2001,且a+b+c=2001k ,那么k 的值为( )。
“五羊杯”初中数学竞赛初三试题(含答案).
第十二届“五羊杯”初中数学竞赛试题初三试题(考试时间:90分钟 满分:100分)一、选择题(4选l 型,选对得5分,否则得0分.本大题满分50分.)1.方程x =3-5535x3++ 的根是x =( ). (A)4-15 (B)4+15 (C)15-4 (1))3-52.设x =2-3,则x 7+3x 6-10x 5-29x 4++x 3-2x 2+x -l 的值为( ). (A)610-2-323+ (B) 6102323+++ (C) 6102-327-++ (D) 6102327+++ 3.若32x =6·22x -5·6x ,则( ).(A)2x >3x (B)2x <3x , (C)2x >3x 或2x <3x 都有可能 (D)以上三者都不对4.如图,两条平行直线m ,n 上各有4个点和5个点.任选这9个点中的两个连一条直线,则一共可以连( )条直线.(A)20 (B)36 (C)34 (D)225.图中一共可以数出( )个锐角.(A)22 (B)20 (C)18 (D)156.设[x]表示不大于x 的最大整数,例如[3.15]=3,[3.7]=3,E 3]=3,则]200220012000[...5]43[]432[]321[3333⋅⋅++⋅⋅+⋅⋅+⋅⋅=( ).(A)2 000 000 (B)2 001 000 (C)2 002 000 (D)2 003 0017.如图,长方形图中有许多三角形.如果要找全等的三角形,一共可以找出( )对.(A)8 (B)7 (C)6 (D)48.设A 2=0.012 345 678 987 654 321×(1+2+3 +……+9+……+3+2+1),B 2=0,012 345 679,则9·109(1-|A |)B = ( ).(A)10 (B)±10 (C)l (D)±l9.如图,正方形ABCD 外有一点P ,P 在BC 外侧,并夹在平行线AB与CD 之间.若PA =17,PB =2 ,PC =5 ,则PD =( ), (A)25 (B)19 (C)32 (D)1710.如图,D 是△ ABC 的边AB 延长线上一点,DE ∥BC ,E 在AC 延长线上,EF ∥AB ,F 在BC 延长线上,已知S △ADE =m ,S △EFC =n ,则S 四边形BFED=( ). (A)4mn (B)3mn (C)2mn (D) mn二、填空题(每小题填对得5分,不填、多填、少填、填错、仅部分填对均得0分.本大题满分50分)1.分解因式:(x 4+x 2-4)(x 4+x 2+3)+10= .2.已知4a -3c 32c -b 2b a ==+ ,则9b8a 7c -6b 5a ++= .(abc ≠0) 3.方程2x -92x -112x -172x -192x -152x -172x -112x -13+=+ 的解是x = . 4.已知:4zx z x 3zx -z x 3yz z y 2yz -z y 2x y y x x y -y x +++=+++=+++ ,且z1-y 3x 2=,则 x= ,y= ,Z=5,一个多边形的每个外角都等于10°,则它有 条对角线.6.设a ,b ,c ,d 为正实数,a<b ,c<d ,bc>ad .有一个三角形的三边长分别为22c a +,22d b +,22c)-(d a)-(b +,则此三角形的面积为7.如图,设P 为△ ABC 外一点,P 在边AC 之外,在∠B 之内.S △PBC :S △ PCA :S △ PAB =4:2:3.又知△ ABC 三边a ,b ,c 上的高为ha =3,h b =5,hc =6,则P 到三边的距离之和为 .8.已知5 =2.236,那么56-14253-95-3+=9.在三边长为自然数、周长不超过30、最大边与最小边之和恰好等于第三边的2倍的不等边三角形中,互不全等的三角形有 个.10.如图,已知凸四边形ABCD 的两对角线BD 与AC 之比为k ,菱形EFGH 各顶点位于四边形ABCD 的顺次四边之上,且EF ∥AC ,FG∥BD ,则四边形ABCD 与菱形EFGH 的面积之比为 .答案一、1.B. 2.A.3.D.4.D.任选两点都在m(或n)上,只能连出直线m(或n).若任选两点分别在m,n上,则可连4×5=2O条.所以一共可以连2 2条直线.5.C.如图,以A为顶点的锐角总共有1+2+3=6个,以B为顶点的锐角也有6个,以C,D,F为顶点的锐角各有2个,所以图中一共可以数出1 8个锐角.6.B.设n(n≥2)为自然数,有n-1<5.5 94.设该多边形有n条边,则其n个外角之和为3 60°,即n·1 0°一3 6 0°,n=3 6.此3 6边形的每个顶点都可向其他3 3个顶点(除了2个相邻顶点)连一条对角线,又因为一条对角线有2个顶点,因此,对角线数目1 8 X 3 3=594.第十三届“五羊杯”初中数学竞赛试题初三试题(考试时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.)1.方程2-7x227x)(17+++=0的根是x=( ), (A)97-14 (B)914-7 (C)311497-+ (D) 311497+ 2.设x =3-2,则x 6+3x 5+11x 3+2x+1=( ). (A)143 +24 (B)143 -24 (C)143-32 (D)32-1433.要使分式|4-x ||8-x |3-3-x 有意义,则x 的取值范围是( ). (A)x ≥12 (B)x ≥12或x =3,6,7,8,9,10(C)x ≥3且x ≠4,5,11 (D)x ≥34.如图,∠AOB 的两边分别有5个点A 1,A 2,A 3,A 4,A 5和4个点B 1,B 2,B 3,B 4,线段AiB j (1≤i ≤5, 1≤j ≤4) 之中,在∠AOB内及其边上不相交的一对线段称为“和睦线对”(不分顺序),例如A 5B 4和A 4B 3便是和睦线对,那么图中一共有 ( )个“和睦线对”.(A)100 (B)90 (C)66 (D)605.一块木板上钉有9枚铁钉,钉尖向上(如图).用橡皮筋套住其中4枚铁钉,构成一个平行四边形,共有( )种套法.(A)82 (B)40 (C)22 (D)216.如图,按给定的点和边,一共可以数出( )个多边形,(A)24 (B)30 (C)36 (D)407.设 x 表示不大于x 的最大整数, x ✍表示不小于x 的最小整数, x ✍表示最接近x 的整数(x≠n+0.5,n 为整数).例如 3.4 =3, 3.4✍=4,3.4✍=3,则方程3 x +2 x ✍ +[ x ✍=8的解为( ).(A)满足l<x<1.5的全部实数(B)满足l<x<2的全部实数(C)满足l<x<l.5或1.5<x<2的全部实数(D)以上答案都不对8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则]36[]3[]2[]1[+∙∙∙+++=( ),(A)131 (B)146 (C)161 (D)6669.如图,梯形ABCD 两腰DA ,CB 的延长线交于O .已知S △AOB =4,S △AOC =9,则S 梯形ABCD =( ).(A )25(B )16.25(C )16(D )15.2510.如图,设梯形两对角线交于 M ,且 S △AOB=c 2,S △AMB=a 2,c>a>0,则S 梯形ABCD =( )(A )22242)(4a c c a +(B )22224a c c a +(C )22242)(4a c c a -(D )22224a c c a - 二、填空题(本大题共10小题,每小题5分,共50分)1.分解因式:(x 4-4x 2+1)(x 4+3x 2+1)+10x 4=2. 已知42b 3a c 33c 2c -b 23c -2b a ++=+=+,则2c-3b a 3c 2b -a ++= .(a ≠0) 3.不等式3-4x 2-x -1-4x x 1-4x x -34x 2x >++的解是 4.设41y 3-x 2=,x ,y 都是正整数,则方程有 组正整数解.5.一个多边形一共有14条对角线,则它的内角和为6.上图是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E = .(用度数表示)7.把7个两两不同的球分给两个人,使得每人至少分得2个球,则不同的分法共有 种.8.如图,∠AOB =45°,角内有点P ,PO =10.在两边上有点Q ,R(均不同于O),则△ PQR 的周长的最小值为 .9.在三边长为自然数、周长不超过100、最长边与最短边之差不大于2的三角形中,互不全等的三角形共有 个.10.如图,△ ABC 的面积为S ,在BC 上有点A',且BA':A'C =m(m>0);在CA 的延长线有点B ’,且CB':AB'=n(n>1);在AB 的延长线有点C',且AC',BC ’=k(k>1).则S △A ’B ’C ’=初三答案7.1 1 2.因为把7件彼此相异的物件分给两个人,每件物件都有2种分法,故不同的分法共有27=1 2 8种.其中,使得有一个人没有分得物件的分法有2种,使得有一个人恰好分得一件物件的分法有2 ×7=1 4种,故使得每人至少分得2件物件的分法共有1 28—2—1 4=112种.2002年第1 4届“五羊杯”数学竞赛初三试题一、选择题(4选1型,每小题选对得5分,否则得0分.本大题满分50分) 1.方程的根是x= ( )2.设x3-33 x2+6x-22 -8=O,则x5-41x2+1的值为 ( )A .13-2B .-13+2 C.13 D .1 33.绝对值方程|(x-2)(x+3)|=4+| x-1|的不同实数解共有 ( )A .1个B 2个 C,3个D .4个4.设 x 表示不大于x 的最大整数, x ✍表示不小于x 的最小整数, x ✍表示最接近x 的整数(x≠n+0.5,n 为整数).例如 3.4 =3, 3.4✍=4, 3.4✍=3.,则不等式8≤2x+ x +3 x ✍+4 x ✍≤14的解为 ( )A .0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C .O .5<x<1.5D .1.5<x<25.设 x ✍表示最接近x 的整数(x ≠n+O .5,n 为整数),则21⨯✍ + 32⨯✍+ 43⨯✍+…+ 101100⨯✍的值为 ( )A 51 51 B.5150 C 5050 D. 50496.图中,按给定的点和边,可以数出的多边形共有 ( )A .31个B. 48个 C. 63个D .1 5个7.如图在等边△ABC 中,D 、E 、F 是三边中点.在图中可以数出的三角形中,任选一对三角形(不计顺序),如果这2个三角形至少有一条边相等,便称之为一对“友好三角形”.那么,从图中选出“友好三角形”共有( )A .120对 B.240对 C .234对 D .114对8.图中正方形ABCD 边长为2,从各边往外作等边三角形ABE 、BCF 、CDG 、DAH ,则四边形AFGD 的周长为 ( ) A.4+26+22 B. 2+26+22 C. 4+23 +42 D .4+23+429.如图,已知凸四边形ABCD 的面积为S ,四边AB ,BC ,CD,DA 的第1个三等分点是E 、F 、G 、H ,连AF 、BG 、CH 、DE ,相邻两连线交于I 、.J 、K 、L ,又△AEL,、△BFI、△CGJ、△DHK 的面积分别为a 、b 、c 、d ,S 1=a+b+c+d ,则四边形IJKL 的面积为 ( ) A.194S S - B. 195S S - C. 192S S + D .131S S +10.设S=+,则S —T= ( )二、填空题(每小题答对得5分,否则得O 分,本大题满分共50分.)11.在实数范围内的分解因式:x8-1=1 2.已知,a、b,c≠0,a≠b,b≠c,c≠a,则=.(5a≠2b+9c)13.不等式的满足x>O的解是.14.5位数n,满足以下4个条件:1.n是回文数(数字逆排仍等于自身的正整数称为回文数,例如33,252,10601);2.n是完全平方数;3.n的各位数字之和k也是完全平方数;4.k是2位数,k的2位数字之和r也是完全平方数.那么,n= .15.平面上n条直线,它们恰有2002个交点,n的最小值是.16.三边长为整数、周长等于20的互不全等的锐角三角形共有个.17.五羊大学建立分校,校本部与分校隔着两条平行的小河.如图l1∥l2表示小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门.为方便人员来往,要在两条小河上各建一条桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离40米,B到乙河垂直距离20米,两河距离100米,A.B两点水平距离(与小河平行方向)120米.为使A、B两点间来往路程最短,两条桥都按这个目标而建,那么,此时A、B两点间来往的路程是米.18.把7本不同的书分给甲、乙两人,甲至少要分到2 本,乙至少要分到1本,两人的本数不能只相差1,则不同的分法共有种.19.已知正整数n大于30,且使得4n-1整除2002n,则n等于.20.设2002!=1×2×3×4×…×2002,那么计算2002!的得数末尾有个0.2002年第14届“五羊杯’’数学竞赛初三一、选择题:1.B 2.C 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.B2003年第15届“五羊杯”初中数学竞赛初三试题一、选择题(4选1型,每小题选对得5分,否则得O 分.本大题满分50分)1.方程223232323=+-+-+xx的根是 ( ) A.-3 B. 2 C.-1 D .0。
人教版九年级上册数学竞赛专题:平行线分线段成比例(含答案)
人教版九年级上册数学专题:平行线分线段成比例竞赛试题【例1】如图,□ABCD 中,P 为对角线BD 上一点,过点P 作一直线分别交BA ,BC 的延长线于Q ,R ,交CD ,AD 于S ,T .求证:PQ •PT =P R •PS .【例2】梯形ABCD 中,AD //BC ,AB =DC .(1)如图1,如果P ,E ,F 分别是BC ,AC ,BD 的中点,求证:AB =PE +PF ;(2)如图2,如果P 是BC 上的任意一点(中点除外),PE ∥AB ,PF ∥DC ,那么AB =PE +PF 这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.【例3】如图,在梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,E ,F 分别是AD ,BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____.QA BCDEFPA BCD EF P图2A BCD EF P图1QARBCD SP【例4】如图,在△ABC中,D,E是BC的三等分点,M是AC的中点,BM交AD,AE于G,H,则BG︰GH:HM等于()A.3︰2︰1 B.4︰2︰1 C.5︰4︰3 D.5︰3︰2【例5】如图,已知AB∥CD,AD∥CE,F,G分别是AC和FD的中点,过G的直线依次交AB,AD,CD,CE于点M,N,P,Q.求证:MN+PQ=2PN.【例6】已知:△ABC是任意三角形.(1)如图1,点M,P,N分别是边AB,BC,CA的中点,求证:∠MPN=∠A;(2)如图2,点M,N分别在边AB,AC上,且AMAB=13,ANAC=13,点P1,P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由;能力训练AB CM NP图1AB CM N1P2P图2AM NB C1P2P2009P图3QA BC DEFGMNPAB CD EG HMA 卷1.如图,工地上竖立着两根电线杆AB ,CD ,它们相距15cm ,分别自两杆上高出地面4m ,6m 的A ,C 处,向两侧地面上的E ,D 和B ,F 点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD 与BC 的交点P 离地面的高度为____m .2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰FA =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD =____.4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .186.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- 7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .168.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .1ABCD EFG第7题 ABCDEF第8题 ABCD E F M NP第9题A BCDE F第5题 ABC D E F L K MN第4题ABDEFM 第6题 ABCDEF O第2题ABCD EF 第3题QABCD EF 第1题9.如图,P是梯形ABCD的中位线MN所在直线上的任意一点,直线AP,BP分别交直线CD于E,F.求证:MNNP=1()2AE BFEP FP+.10.如图,在四边形ABCD中,AC与BD相交于O,直线l平行于BD且与AB,DC,BC,AD及AC的延长线分别交于点M,N,R,S和P.求证:PM·PN=P R·PS.11.如图,AB⊥BC,CD⊥BC,B,D是垂足,AD和BC交于E,EF⊥BD于F.我们可以证明:11 AB CD+=1EF成立(不要求证出).以下请回答:若将图中垂直改为AB∥CD∥EF,那么,(1)11AB CD+=1EF还成立吗?如果成立,请给出证明;如果不成立,请说明理由.(2)请找出S△ABD,S△BED和S△BDC的关系式,并给出证明.12.在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过D点的直线PQ交边AC于点P,交边AB的延长线于点Q.(1)如图1,当PQ⊥AC时,求证:11AQ AP+;(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)AQ B CDP图1AQB CDP图2AQB CDP图3ABCDEF第11题SARBCDM NOPl第10题B 卷1.设K =a b c c +-=a b c b -+=a b ca-++,则K =____. 2.如图,AD ∥EF ∥BC ,AD =15,BC =21,2AE =EB ,则EF =____.3.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____.4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =FA =b (a >b ),当BF 平分AE 时,则ab 的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰29.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)ABCDE F第6题QABCP第7题AB CDEF 第8题A BCD E F 第2题ABD M N第3题ABCDEFGH第4题A BCEFG第5题10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ; (2)求OE AD +OEBC的值; (3)求证:1AD +1BC =2EF.12.如图,四边形ABCD 是梯形,点E 是上底边AD 上的一点,CE 的延长线与BC 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,MB 与AD 交于点N .求证:∠AFN =∠DME .QABCDEF M NP ABCDE FGO第9题ABCDEG第10题ABCD EFO第11题参考答案例1 提示:PQ PB PRPS PD PT==例2 (1)略 (2)结论仍然成立 提示:,PF BP PE CPCD BC AB BC==. 例3aba b+ 提示:由AP DQ a PF QF b ==,推得PQ ∥AD 。
第15届WMO世界奥林匹克数学竞赛(中国区)选拔赛9年级B卷含答案
A.7 B.9 C.13 D.5 7.如图,直线 y1=kx+b 过点 A(0,2),且与直线 y2=mx 交于点 P(1,m),则不等式组 mx>kx+b>mx-2 的解集是( ) A.x>1 B.0<x<2 C.0<x<1 D.1<x<2 8.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O 为 AC 中 点,若点 D 在直线 BC 上运动,连接 OE,则在点 D 运动过程中,线段 OE 的最小值是为( ) A.
1 k2 (x<0)图象上一点,AO 的延长线交函数 y= (x>0, x x
第 12 题图 第 13 题图 2 2 13.如图,抛物线 y=ax -4 和 y=-ax +4 都经过 x 轴上的 A、B 两点,两条抛物线的顶点分别 为 C、D.当四边形 ACBD 的面积为 40 时,a 的值为_____________. 14.m、n 是两个连续自然数,且 q=mn,p= q n q m ,则 p 的值是 .(填 “奇数”、“偶数”或“奇偶都可以”) 15.甲、乙、丙三个箱子原本各装有相同数量的小球,已知甲箱内的红球占甲箱内小球总数的
16.如图,正方形 ABCD 的边 CD 在正方形 ECGF 的边 CE 上,O 是 EG 的中点,∠EGC 的平 分线 GH 过点 D,交 BE 于点 H,连接 OH,FH,EG 与 FH 交于点 对于下面三个结论:①GH⊥BE;②S 正方形 ABCD:S 正方形 ECGF=1:
第 7 题图 第 8 题图 第 9 题图 9.如图,已知 AD∥BC,AB⊥AD,点 E、F 分别在射线 AD、BC 上,若点 E 与点 B 关于 AC 对称,点 E 与点 F 关于 BD 对称,AB=1,则 cos∠AGB 等于( )
九年级数学竞赛试题(含答案)
初三数学竞赛试题(本卷满分:120分,时间:120分钟)一、选择题(每小题5分、共40分)1、如果多项式200842222++++=b a b a p ,则p 的最小值是( )(A) 2005 (B) 2006 (C) 2007 (D) 20082、菱形的两条对角线之和为L,面积为S,则它的边长为( ). (A)2124L S - (B)2124L S + (C)21S L 42- (D)21S L 42+3、方程1)1(32=-++x x x 的所有整数解的个数是( )(A )5个 (B )4个 (C )3个 (D )2个 4、已知梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于O ,△AOD 的面积为4, △BOC 的面积为9,则梯形ABCD 的面积为( )(A )21 (B )22 (C )25 (D )26 5、方程|xy |+|x+y|=1的整数解的组数为( )。
(A )8 (B) 6 (C) 4 (D) 2 6、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。
其中正确的说法是( )(A) ①② (B) ①③ (C) ②④ (D )③④7、一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。
被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )(A) 7 2° (B )108°或14 4° (C )144° (D ) 7 2°或144°8、如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切.若⊙A、⊙B、⊙C 的半径分别为a 、b 、c(0<c<a<b),则a 、b 、c 一定满足的关系式为 ( ) (A )2b=a+c (B )=b c a +(C )b ac 111+= (D)ba c 111+=二、填空题(每小题5分,共30分)9、已知a ﹑b 为正整数,a=b-2005,若关于x 方程x 2-ax+b=0有正整数解,则a 的最小值是________. 10、如图,在△ABC 中,AB=AC, AD ⊥BC, CG ∥AB, BG 分别交AD,AC 于E,F.若b a BE EF =,那么BEGE等于 .A BCG F E D11、已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x1,0),且1<x1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中正确的结论是_____________.(填写序号)12、如图,⊙O 的直径AB 与弦EF 相交于点P ,交角为45°, 若22PF PE +=8,则AB 等于 .13、某商铺专营A ,B 两种商品,试销一段时间,总结得到经营利润y 与投人资金x(万元)的经验公式分别是yA=x 71,yB=x 73。
初三数学竞赛试题(含答案)-
初三数学竞赛试题 班级 姓名 一、选择题(共8小题,每小题5分,共40分)1.要使方程组⎩⎨⎧=+=+23223y x a y x 的解是一对异号的数,则a 的取值范围是( )(A )334<<a (B )34<a (C )3>a (D )343<>a a 或 2.一块含有︒30角的直角三角形(如图),它的斜边AB =8cm, 里面空 心DEF ∆的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm,那么DEF ∆的周长是( )(A)5cm (B)6cm (C) cm )(36- (D) cm )(33+3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5种 (B) 6种 (C)7种 (D)8种4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1122-+=)x (y ,则抛物线A 所对应的函数表达式是 ( )(A)2322-+-=)x (y (B) 2322++-=)x (y(C) 2122---=)x (y (D) 2322++-=)x (y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)32 (B) 31 (C) 21 (D) 61 6.如图,一枚棋子放在七边形ABCDEFG 的顶点处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。
如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 。
依这样的规则,在这10次移动的过程中,棋子不可能分为两停到的顶点是( )(A)C,E,F (B)C,E,G (C)C,E (D)E,F.7.一元二次方程)a (c bx ax 002≠=++中,若b ,a 都是偶数,C 是奇数,则这个方程( )(A)有整数根 (B)没有整数根 (C)没有有理数根 (D)没有实数根8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由54⨯ 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32 (C) 48 (D) 64二、填空题:(共有6个小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3cm,4cm ,那么以两直角边为直径的两圆公共弦的长为 cm.10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数,现有一组数据共100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是11.ABC ∆中,c ,b ,a 分别是C ,B ,A ∠∠∠的对边,已知232310-=+==C ,b ,a ,则C sin c B sin b +的值是等于 。
湖南省怀化市沅陵县2020届九年级上学期知识竞赛数学试题(含答案)
2019年初中学科知识竞赛数学试卷第Ⅰ卷(填空题)一.填空题(共12小题,满分60分,每小题5分)1.已知直角三角形的两边x,y的长满足|x﹣4|+=0,则第三边的长为.2.若关于x的不等式组有且只有四个整数解,则实数a的取值范围是.3.要使关于x的方程﹣=的解为负数,则m的取值范围是.4.已知|m﹣2018|+m=,则m+20182的值是.5.若实数a、b满足a+b2=2,则a2+5b2的最小值为.6.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.7.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.8.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.9.如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.10.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.11.如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是.(11题图)(12题图)12.如图,半径为2cm,圆心角为90°的扇形OAB的上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在上从点A运动到点B 时,内心I所经过的路径长为.第Ⅱ卷(非选择题)二.解答题(共7小题,满分90分,13-15题每小题10分,16-19题每题15分)13.已知关于x的方程mx2﹣(m+3)x+3=0(m≠0).(1)求证:不论m为何值,方程总有实数根;(5分)(2)当m为何整数时,方程有两个不相等的正整数根?(5分)14.某电器超市根据市场需求,计划采购A、B两种型号的电风扇共40台.该超市准备采购这两种电风扇的金额不少于9000元,但不超过9100元,且所采购的这两种电风扇可以全部销售完,现已知A、B两种型号的电风扇的进价和售价如下表:(1)该电器超市这两种型号的电风扇有哪几种采购方案?(3分)(2)该电器超市如何采购能获得最大利润?(3分)(3)据市场调查,每台A型电风扇的售价将会提高a元(a>0),每台B型电风扇售价不会改变,该电器超市应该如何采购才可以获得最大利润?(注:利润=售价﹣进价)(4分)15.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2分)(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(4分)(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.(4分)16.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(3分)(2)连接EF,求∠EFC的正切值;(5分)(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.(7分)17.如图,AB为⊙O的直径,C,G是⊙O上两点,过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连接BC,交OD于点F,且BC平分∠ABD.(1)求证:CD是⊙O的切线;(4分)(2)若=,求∠E的度数;(5分)(3)连结AD,在(2)的条件下,若CD=2,求AD的长.(6分)18.如图1:在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠F AE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(4分)(2)设AB=12,求线段FC的长.(5分)(3)如图2:过AE中点G的直线分别交AB、CD于P、Q;求的值.(6分)19.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2分)(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;(5分)②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.(8分)参考答案一.填空题(共12小题)1.已知直角三角形的两边x,y的长满足|x﹣4|+=0,则第三边的长为3或.【解答】解:∵|x﹣4|+=0,∴x=4,y=5,①x、y是直角边时,第三边为.②当y=5是斜边时,第三边为3,故答案为3或2.若关于x的不等式组有且只有四个整数解,则实数a的取值范围是12<a ≤14.【解答】解:解①得x>2,解②得x<a,∴2<x,∵不等式组有且只有四个整数解,即3,4,5,6;∴6<a≤7,即12<a≤14.故答案为12<a≤14.3.要使关于x的方程﹣=的解为负数,则m的取值范围是m>﹣1且m≠3.【解答】解:去分母得:x2﹣1﹣x2﹣2x=m即﹣2x﹣1=m解得x=根据题意得:<0解得:m>﹣1∵x+2≠0,x﹣1≠0∴x≠﹣2,x≠1,即≠﹣2,≠1∴m≠±3,故答案是:m>﹣1且m≠3.4.已知|m﹣2018|+m=,则m+20182的值是2017.【解答】解:∵2017﹣m≥0,∴m≤2017.∴由|m﹣2018|+m=得到:2018﹣m+m=,则=2018,∴m+20182=m+2017﹣m=2017.故答案是:2017.5.若实数a、b满足a+b2=2,则a2+5b2的最小值为4.【解答】解:∵a+b2=2,∴b2=2﹣a,a≤2,∴a2+5b2=a2+5(2﹣a)=a2﹣5a+10=(a﹣)2+,当a=2时,a2+5b2可取得最小值为4.故答案为:4.6.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于9.【解答】解:∵m2﹣3m+1=0,∴m2=3m﹣1,∴m2+=3m﹣1+=3m﹣1+=====9,故答案为:9.7.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.【解答】解:连接BP,作EF⊥BC于点F,则∠EFB=90°,由正方形的性质可知∠EBF=45°,∴△BEF为等腰直角三角形,又根据正方形的边长为1,得到BE=BC=1,在直角三角形BEF中,sin∠EBF=,即BF=EF=BE sin45°=1×=,又PM⊥BD,PN⊥BC,∴S△BPE+S△BPC=S△BEC,即BE×PM+×BC×PN=BC×EF,∵BE=BC,PM+PN=EF=;故答案为:.8.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是2.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=4,∴AD=4,∴MN=AD=2,故答案为:2.9.如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.【解答】解:如图1,过A作AD⊥BC于D∵∠BAC=120°,AB=AC=4,∴AD=2,BD=CD=2∴BC=4∵根据旋转的性质知∠BCB'=∠ACA'=60°,△ABC≌△A'B'C,∴S△ABC=S△A'B'C,∴S阴影=S扇形CB'B+S△A'B'C﹣S△ABC﹣S扇形CA'A=﹣=.故答案是:π.10.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.11.如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是②④⑤.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.12.如图,半径为2cm,圆心角为90°的扇形OAB的上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在上从点A运动到点B 时,内心I所经过的路径长为cm.【解答】解:如图,连OI,PI,AI,∵△OPH的内心为I,∴∠IOP=∠IOA,∠IPO=∠IPH,∴∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣(∠HOP+∠OPH),而PH⊥OA,即∠PHO=90°,∴∠PIO=180°﹣(∠HOP+∠OPH)=180°﹣(180°﹣90°)=135°,又∵OP=OA,OI公共,而∠IOP=∠IOA,∴△OPI≌△OAI,∴∠AIO=∠PIO=135°,所以点I在以OA为弦,并且所对的圆周角为135°的一段劣弧上;过A、I、O三点作⊙O′,如图,连O′A,O′O,在优弧AO取点P,连P A,PO,∵∠AIO=135°,∴∠APO=180°﹣135°=45°,∴∠AO′O=90°,而OA=2cm,∴O′O=OA=×2=,∴弧OA的长==(cm),所以内心I所经过的路径长为cm.故答案为:cm.二.解答题(共7小题)13.已知关于x的方程mx2﹣(m+3)x+3=0(m≠0).(1)求证:不论m为何值,方程总有实数根;(5分)(2)当m为何整数时,方程有两个不相等的正整数根?(5分)【解答】解:(1)当m=0时,方程为﹣3x+3=0,其解为x=1;当m≠0时,∵△=[﹣(m+3)]2﹣4m×3=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0即△≥0,∴不论m为何值,方程总有实数根.(2)(mx﹣3)(x﹣1)=0x1=,x2=1,∵方程有两个不相等的正整数根,∴m=114.某电器超市根据市场需求,计划采购A、B两种型号的电风扇共40台.该超市准备采购这两种电风扇的金额不少于9000元,但不超过9100元,且所采购的这两种电风扇可以全部销售完,现已知A、B两种型号的电风扇的进价和售价如下表:型号A B进价(元/台)200250售价(元/台)240300(1)该电器超市这两种型号的电风扇有哪几种采购方案?(3分)(2)该电器超市如何采购能获得最大利润?(3分)(3)据市场调查,每台A型电风扇的售价将会提高a元(a>0),每台B型电风扇售价不会改变,该电器超市应该如何采购才可以获得最大利润?(注:利润=售价﹣进价)(4分)【解答】解:(1)设该电器超市采购A、B两种型号的电风扇的台数分别为x台、(40﹣x)台,9000≤200x+250(40﹣x)≤9100,解得,18≤x≤20∵x为正整数∴x=18或19或20,∴40﹣x=22或21或20,∴该电器超市共有3种采购方案:①购买A型电风扇18台、B型电风扇22台;②购买A型电风扇19台、B型电风扇21台;③购买A型电风扇20台、B型电风扇20台;(2)方案①的利润为:(240﹣200)×18+(300﹣250)×22=720+1100=1820(元);方案②的利润为:(240﹣200)×19+(300﹣250)×21=760+1050=1810(元);方案③的利润为:(240﹣200)×20+(300﹣250)×20=800+1000=1800(元);∴能获得最大利润的购买方案是方案①:购买A型电风扇18台、B型电风扇22台.(3)利润为:(240﹣200+a)x+(300﹣250)×(40﹣x)=40x+ax+2000﹣50x=(a﹣10)x+2000,当0<a<10时,a﹣10<0∴x越小,利润越大,∴能获得最大利润的购买方案是方案①:购买A型电风扇18台、B型电风扇22台;当a=10时,a﹣10=0,∴3种方案的利润相同;当a>10时,a﹣10>0∴x越大,利润越大∴能获得最大利润的购买方案是方案③:购买A型电风扇20台、B型电风扇20台.15.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2分)(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(4分)(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.(4分)【解答】解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).16.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(3分)(2)连接EF,求∠EFC的正切值;(5分)(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.(7分)【解答】解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为3,∴E(2,3);(2)∵F点的横坐标为4,∴F(4,),∴CF=BC﹣BF=3﹣=∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==,(3)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴=,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.17.如图,AB为⊙O的直径,C,G是⊙O上两点,过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连接BC,交OD于点F,且BC平分∠ABD.(1)求证:CD是⊙O的切线;(4分)(2)若=,求∠E的度数;(5分)(3)连结AD,在(2)的条件下,若CD=2,求AD的长.(6分)【解答】证明:(1)连接OC,∵OC=OB,BC平分∠ABD,∴∠OCB=∠OBC,∠OBC=∠DBC,∴∠DBC=∠OCB,∴OC∥BD,∴∠BDC=∠ECO,∵CD⊥BD,∴∠BDC=90°,∴∠ECO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)由(1)知,OC∥BD,∴∠OCF=∠DBF,∠COF=∠BDF,∴△OCF∽△DBD,∴,∵=,∴,∵OC∥BD,∴△EOC∽△EDB,∴,∴,设OE=2a,EB=3a,∴OB=a,∴OC=a,∵∠OCE=90°,OC=OE,∴∠E=30°;(3)∵∠E=30°,∠BDE=90°,BC平分∠DBE,∴∠EBD=60°,∠OBC=∠DBC=30°,∵CD=2,∴BC=4,BD=6,∵,∴OC=4,作DM⊥AB于点M,∴∠DBM=90°,∵BD=6,∠DBM=60°,∴BM=3,DM=3,∵OC=4,∴AB=8,∴AM=5,∵∠DMA=90°,DM=3,∴AD==.18.如图1:在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠F AE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(4分)(2)设AB=12,求线段FC的长.(5分)(3)如图2:过AE中点G的直线分别交AB、CD于P、Q;求的值.(6分)【解答】解:(1)AF=BC+FC,证明如下:如图1,过E作EM⊥AF交AF于点M,∵∠BAE=∠F AE,∴BE=ME,在Rt△ABE和Rt△AME中,,∴Rt△ABE≌Rt△AME(HL),∴AM=AB=BC,ME=BE=EC,在Rt△MFE和Rt△CFE中,,∴Rt△MFE≌Rt△CFE(HL),∴MF=FC,∴AF=AM+MF=BC+FC;(2)设FC=x,由(1)可知MF=x,AM=AD=AB=12,则DF=12﹣x,AF=12+x,在Rt△AFD中,由勾股定理可得:AD2+DF2=AF2,即122+(12﹣x)2=(12+x)2,解得x=3,即FC=3;(3)如图2,过G作RS∥BC,交AB于点R,交CD于点S,∵G为AE中点,∴R为AB中点,∴RG=BE=BC,GS=RS﹣RG=BC﹣RG=BC﹣BC=BC,∵AB∥CD,∴===.19.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2分)(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;(5分)②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.(8分)【解答】解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;(2)①如图,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),过D作DM⊥x轴交AC于点M,过B作BN⊥x轴交于AC于N,∴DM∥BN,∴△DME∽△BNE,∴==,设D(a,﹣a2﹣a+2),∴M(a,a+2),∵B(1,0),∴N(1,),∴==(a+2)2+;∴当a=﹣2时,的最大值是;②∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(﹣,0),∴P A=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=﹣,点D的横坐标为﹣2或﹣.。
初三数学竞赛试题(含答案)
初三数学竞赛试题(含答案)8个时,即第4个数)称为()。
A)中位数(B)平均数(C)众数(D)极差11.如图,在正方形ABCD中,E、F分别是AB、CD的中点,连接AE、BF,交于点G,则△ABG的面积是()。
A)1/4(ABCD)(B)1/6(ABCD)(C)1/8(ABCD)(D)1/12(ABCD)12.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=1/2在区间(0,1)内至少有()个实根。
A)0(B)1(C)2(D)313.如图,在三角形ABC中,D、E分别是AB、AC的中点,F是BC上一点,且AF平分△ABC的周长,则△ABC的面积是()。
A)4S△ADE(B)2S△ADE(C)S△ADE(D)S△ABC14.如图,正方形ABCD中,点E、F分别在AB、BC上,且AE=CF,则△DEF的面积是()。
A)1/4AB2(B)1/6AB2(C)1/8AB2(D)1/12AB2三、解答题:(共有3个小题,每小题20分,满分60分)15.已知函数f(x)=x3-3x2+2x+1,g(x)=f(x)-2x+3,h(x)=g(x)-2x+3,求h(x)的最高项系数。
16.如图,ABCD是一个正方形,O是BD上一点,且OD=2BD,连接AC、CO,交于点E,求△ABE的面积。
17.如图,在长方形ABCD中,点E、F分别在AB、BC 上,且AE=CF,连接EF,交AC于点G,求证:△ADG与△CDF的面积相等。
解:根据题意,可以得到以下方程组:begin{cases}frac{6-2a}{5}=y \\3a-4<x<6-2aend{cases}$要使方程组的解是一对异号的数,只需 $y3$ 或 $a3$ 时,$x$ 的取值范围为 $3a-40$,即 $0<x<6-2a$。
因此,答案为$\boxed{\frac{3}{2}<a<3}$。
2019-初中数学竞赛(海南赛区)初赛试题(含答案)
2019-2020 年初中数学比赛 ( 海南赛区 ) 初赛试题 ( 含答案 )题号 一二三总 分(1 — 10)(11 — 18)1920得 分题号 12345678910答案A .1B .2C .6D .2425 25 25 255、一辆公共汽车从车站开出,加快行驶一段时间后匀速行驶,过了一段时间,汽车抵达下一个车站.乘客上下车后汽车开始加快,一段时间后又开始匀速行驶,下边能够近似地刻画出汽车在这段时间内的速度变化状况的图象是()速度速度 速度速度O时间O时间O时间O时间A1BCD6、要使3 x存心义,则 x 的取值范围为2x1A .1x3B . 1<x 3C .1x < 3D . 1<x < 322227、菱形的两条对角线之和为L 、面积为 S ,则它的边长为()AA .1L24SB .1L22SC .12L 4SD .14S L 2E222 2 D8、如图 2,将三角形纸片 ABC 沿 DE 折叠,使点 A 落在 BC 边上的点F 处,且 DE ∥ BC ,以下结论中,必定正确的个数是( )BF C①△ CEF 是等腰三角形②四边形 ADFE 是菱形图 2y③四边形 BFED 是平行四边形④∠ BDF +∠ CEF = 2∠ AA . 1B . 2C . 3D . 41x9、如图 3,直线 x = 1 是二次函数y = ax 2+ bx + c 的图象的对称轴,则有 ()A . a + b + c = 0>a + cC .b = 2aD . abc > 0图 3B . b10、铁板甲形状为直角梯形,两底边长分别为 4cm , 10cm ,且有一内角为 60°;铁板乙形状为等腰三角形,其顶角为45°,腰长 12cm .在不改变形状的前提下,试图分别把它 们从一个直径为8.5cm 的圆洞中穿过,结果是()A .甲板能穿过,乙板不可以穿过B .甲板不可以穿过,乙板能穿过C .甲、乙两板都能穿过D .甲、乙两板都不可以穿过y 二、填空题 (本大题满分 40 分,每题 5 分)ox- 1图 411、 x 与 y 互为相反数,且x y 3 ,那么x22xy 1的值为__________.12、一次函数 y=ax+b 的图象如图 4 所示,则化简 a b b 1得 ________.13、若 x= -1 是对于 x 的方程 a2 x2+2011ax- 2012=0 的一个根,则 a 的值为 __________.14、一只船从 A 码头顺流航行到 B 码头用 6 小时,由 B 码头逆水航行到 A 码头需 8 小时,则一块塑料泡沫从 A 码头顺流漂流到 B 码头要用 ______小时(设水流速度和船在静水中的速度不变).15、如图 5,边长为 1 的正方形 ABCD 的对角线订交于点O,过点 O 的直线分别交AD、BC于 E、 F ,则暗影部分的面积是.16、如图 6,直线 l 平行于射线AM ,要在直线l 与射线 AM 上各找一点 B 和 C,使得以A、B、 C 为极点的三角形是等腰直角三角形,这样的三角形最多能画_______个.A EA DlEO B CB FC A M D图 5图 6图 717、如图 7,△与△均是等边三角形,若∠=145°,则∠的度数是 ________.ABC CDE AEB DBE18、如图 8 所示,矩形纸片ABCD 中, AB= 4cm, BC= 3cm,把∠ B、∠ D 分别沿 CE、 AG 翻折,点 B、D 分别落在对角线AC 的点 B'和 D'上,则线段EG 的长度是 ________.D G CB'D'AEB图 8三、解答题 (本大题满分30 分,每题15 分 )19、某市道路改造工程,假如让甲工程队独自工作,需要30 天达成,假如让乙工程队独自工作,则需要60 天方可达成;甲工程队施工每日需付施工费 2.5 万元,乙工程队施工每日需付施工费 1 万元 . 请解答以下问题:(1)甲、乙两个工程队一同合作几日就能够达成此项工程?(2)甲、乙两个工程队一同合作 10 天后,甲工程队因还有任务调离,剩下的部分由乙工程队独自做,请问共需多少天才能达成此项工程?(3)假如要使整个工程施工费不超出65 万元,甲、乙两个工程队最多能合作几日?(4)假如工程一定在 24 天内(含 24 天)达成,你怎样安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图 9,四边形 ABCD 是矩形,点P 是直线 AD 与 BC 外的随意一点,连结PA、 PB、PC、 PD.请解答以下问题:(1)如图 9( 1),当点P在线段BC的垂直均分线 MN 上(对角线 AC 与 BD 的交点Q除外)时,证明△ PAC ≌△ PDB ;(2)如图 9( 2),当点 P 在矩形 ABCD 内部时,求证: PA2+PC2=PB2+PD 2;(3)若矩形 ABCD 在平面直角坐标系 xoy 中,点 B 的坐标为( 1,1),点 D 的坐标为( 5,3),如图9( 3)所示,设△PBC 的面积为y,△ PAD 的面积为x,求 y 与 x 之间的函数关系式.MPA DQB N C图 9(1)A DPB C图9 (2)yA DB CO x图 9(3)参照答案一、选择题(本大题满分50 分,每题 5 分)题号12345678910答案C D D A C B A B D B7、提示:可设菱形的两条对角线长分别为、b,利用对角线相互垂直进行解答 . a9、剖析 :由函数的图象可知:当x=1时有a+b+c<0,当x=-1时有a-b+c>0,即a+c>b,即b<a+c,函数的对称轴为x b,则 b=-2a,由于抛物线的张口向上,因此 a>0,抛物线12a与 y 轴的交点在负半轴,因此c<0,由 b=-2a 可得 b<0.因此 abc>0,因此正确答案为 D10、剖析:分别计算铁板的最窄处即可知,如图A,直角梯形, AD=4cm,BC=10cm,∠ C=60°,过点 A过 AE// CD,交 BC于点 E,过点 B作 BE⊥ CD于点 F,可求得 AB=6 3 cm>cm,BE=5 3 cmA D AFDB EC BC图B>8.5 cm 铁板甲不可以穿过,如图 B,等腰三角形 ABC 中,顶角∠ A =45°,作腰上的高线 BD ,可求得 BD =6 2 cm < 8.5 cm ,因此铁板乙能够穿过;因此选择 B二、填空题 (本大题满分 40 分,每题5 分)11、5 12 、 a+1 13、a=2012,a2=-114、 48A4115、 1单位面积16、3个17、85° 18、 10E4BC17、剖析: 易证△ CEA 与△ CDB 全等,进而有∠ DBC =∠ EAC ,由于,∠ABE +∠ BAE =180°- 145° =35°因此有∠ EAC +∠ EBC =120°- 35° =85°,D图 7因此∠ EBD =∠ EBC +∠DBC =85°18、剖析: AB = 4cm , BC =3cm ,可求得 AC=5cm ,由题意可知GCC B '=BC=3 cm ,A B ' =2cm 设 BE=x ,则 AE=4-x ,则有 (4-x)2- x 2 =2 2,DB,即,过点 G 作 GF ⊥ AB 于点 F ,则' D 'FAB可求出 EF=1 cm ,因此 EG=123210图 8E三、解答题 (本大题满分 30 分,每题 15 分)19 、此题满分 15 分,第( 1)、( 2)、( 3)小题,每题 4 分,第( 4)小题 3 分 .解:( 1)设甲、乙两个工程队一同合作x 天就能够达成此项工程,依题意得:(11)x 1 ,解得: x=20答:甲、乙两个工程队一同合作20 天就能够达成此项工程 .30 60(2)设达成这项道路改造工程共需y 天,依题意得:110 y 1 ,解得 y=40 。
初三数学竞赛选拔试题(含答案)
初三数学竞赛选拔试题(含答案)初三数学竞赛选拔试题(含答案)一、选择题1. 若 3x + 2 = 17,则 x 的值是A. 5B. 7C. 9D. 112. 在一个几何图形中,有一个正方形,边长为 x 厘米,另有一个等腰直角三角形,直角边的长为 y 厘米。
已知正方形的面积是等腰直角三角形面积的 20 倍,下列等式成立的是A. x² = 20y²B. x² + y² = 20C. 20x² = y²D. x + y = 203. 若 a² - b² = 15 且 a + b = 5,则 a 的值是A. 10B. 5C. 3D. -104. 某校参加比赛的男女生比例为 5:3 ,男生比女生多 48 人,那么该校一共有多少学生?A. 320B. 480C. 800D. 9605. 以下各数中,最小的是A. -0.5B. -1/2C. -50%D. 1/-2二、填空题6. 将 120 分钟化为小时的形式,填入空白:____小时。
7. 三个角相加是 180°,如果有两个角是 50°和 80°,那么第三个角的度数是____°。
8. 分数 7/10 是小数____。
9. 甲、乙两地相距 150 公里,有两辆车同时相向而行,如果两车速度一样,则若干小时后两车相遇,填入空白:____小时。
10. (-a) ×(-a) ×(-a) ×(-a) ×(-a) ×(-a)表示的结果是____。
三、解答题11. 某衣服打对折后价格为 420 元,原价是多少元?12. 小丽拥有一些小球,其中有红球、蓝球和绿球。
红球比蓝球的 3 倍多 2 个,蓝球比绿球的 2 倍少 4 个。
如果小丽总共有 51 个球,求小丽拥有的绿球数量。
13. 若 a + b = 5 ,a - b = 3 ,求 a 和 b 的值。
2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷(含答案)
2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷一、选择题(共6小题,每小题4分,满分24分)1.如果分式的值等于0,则x的值是()A.2B.﹣2C.﹣2或2D.2或32.已知a、b、c为一个三角形的三边长,则4b2c2﹣(b2+c2﹣a2)2的值为()A.恒为正B.恒为负C.可正可负D.非负3.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处4.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七.八.九三个年级共有学生800人.甲,乙,丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲,乙,丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙5.若方程组的解为x,y,且2<k<4,则x﹣y的取值范围是()A.0<x﹣y<B.0<x﹣y<C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<6.如图,已知AD是△ABC的外接圆的直径,AD=13cm,cos B=,则AC的长等于()A.5cm B.6cm C.10cm D.12cm二、填空题(共6小题,每小题4分,满分24分)7.已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=.8.已知m,n是有理数,且(+2)m+(3﹣2)n+7=0,则m=,n=.9.如图,在△ABC中,O是∠ABC与外角∠ACD的平分线BO、CO的交点,则∠O与∠A 的关系是.10.如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′上,EC′交AD于点G,已知∠EFG=58°,那么∠BEG=度.11.如图,直线y=kx﹣2(k>0)与双曲线在第一象限内的交点R,与x轴、y轴的交点分别为P、Q.过R作RM⊥x轴,M为垂足,若△OPQ与△PRM的面积相等,则k 的值等于.12.如图,BD:DC=5:3,E为AD的中点,延长BE交AC于F,则BE:EF=.三、解答题(共7小题,满分72分)13.解方程:.14.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.15.已知方程x2﹣kx﹣7=0与x2﹣6x﹣(k+1)=0有公共根.求k的值及两方程的所有公共根和所有相异根.16.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于F,点E是AB的中点,连接EF.(1)求证:.(2)若四边形BDFE的面积为8,求△AEF的面积.17.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.18.某厂现有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有几种方案请你设计出来;(2)设生产A、B两种产品总利润是y元,其中一种产品的生产件数是x.试写出y与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大,最大利润是多少?19.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题(共6小题,每小题4分,满分24分)1.【解答】解:由题意可得|x|﹣2=0且x2﹣5x+6≠0,解得x=±2,代入x2﹣5x+6≠0检验得到x=﹣2.故选:B.2.【解答】解:4b2c2﹣(b2+c2﹣a2)2=(2bc﹣b2﹣c2+a2)(2bc+b2+c2﹣a2)=[a2﹣(b﹣c)2][(b+c)2﹣a2]=(a﹣b+c)(a+b﹣c)(b+c+a)(b+c﹣a)>0.故4b2c2﹣(b2+c2﹣a2)2的值恒为正.故选:A.3.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.4.【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;七年级的达标率为×100%=87.8%;九年级的达标率为×100%=97.9%;八年级的达标率为.则九年级的达标率最高.则乙、丙的说法是正确的,故选B.5.【解答】解:①﹣②得,7x﹣7y=k+1﹣3整理得x﹣y=又因为2<k<4所以<x﹣y<即0<x﹣y<.故选:A.6.【解答】解:由圆周角定理知,∠D=∠B,∴cos D=cos B==CD:AD.又∵AD=13,∴CD=5.在Rt△ACD中,由勾股定理得,AC=12.故选:D.二、填空题(共6小题,每小题4分,满分24分)7.【解答】解:∵x2+y2+z2﹣2x+4y﹣6z+14=0,∴x2﹣2x+1+y2+4y+4+z2﹣6z+9=0,∴(x﹣1)2+(y+2)2+(z﹣3)2=0,∴x﹣1=0,y+2=0,z﹣3=0,∴x=1,y=﹣2,z=3,故x+y+z=1﹣2+3=2.故答案为:2.8.【解答】解:由且(+2)m+(3﹣2)n+7=0,得(m﹣2n)+2m+3n+7=0,∵m、n是有理数,∴m﹣2n、2m+2n+7必为有理数,又∵是无理数,∴当且仅当m﹣2n=0、2m+3n+7=0时,等式才成立,∴n=﹣1,m=﹣2.故答案为:﹣2、﹣1.9.【解答】解:∵OB、OC是∠ABC与∠ACD的平分线,∴∠OCD=∠ACD=∠O+∠OBC=∠O+∠ABC,∠O=∠OCD﹣∠OBC=∠ACD﹣∠ABC,∠A=180°﹣∠ABC﹣∠ACB,∠ACB=180°﹣∠ACD,∴∠A=180°﹣∠ABC﹣180°+∠ACD=∠ACD﹣∠ABC,又∠O=∠ACD﹣∠ABC,∴∠O=∠A.故答案为∠O=∠A.10.【解答】解:∵AD∥BC,∴∠EFG=∠CEF=58°,∵∠FEC=∠FEG,∴∠FEC=∠FEG=∠EFG=58°,∴∠BEG=180°﹣58°﹣58°=64°.11.【解答】解:∵y=kx﹣2,∴当x=0时,y=﹣2,当y=0时,kx﹣2=0,解得x=,所以点P(,0),点Q(0,﹣2),所以OP=,OQ=2,∵RM⊥x轴,∴△OPQ∽△MPR,∵△OPQ与△PRM的面积相等,∴△OPQ与△PRM的相似比为1,即△OPQ≌△MPR,∴OM=2OP=,RM=OQ=2,所以点R(,2),∵双曲线经过点R,∴=2,即k2=8,解得k1=2,k2=﹣2(舍去).故答案为:2.12.【解答】解:过D作DG∥AC交BF于G,∵E是AD的中点,∴△AEF≌△DEG,∴EG=EF,∵DG∥AC,BD:DC=5:3,∴BG:GF=5:3,∴BE:EF=(5+1.5):1.5=13:3.故答案为:13:3.三、解答题(共7小题,满分72分)13.【解答】解:方程两边各自通分,得,整理得:,即x2﹣11x+30=x2﹣17x+72,解得x=7.检验:把x=7代入原方程各分母,显然(x﹣5)(x﹣6)(x﹣8)(x﹣9)≠0,∴原方程的解为x=7.14.【解答】解:探究结论:BM+CN=NM.证明:延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ABD=∠DCE=90°,∴在△DCE和△DBM中,∴Rt△DCE≌Rt△DBM(SAS),∴∠BDM=∠CDE,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC﹣∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°∴DM=DE(上面已经全等)在△DMN和△DEN中∵∴△DMN≌△DEN(SAS),∴BM+CN=NM.15.【解答】解:,②﹣①得,(﹣6+k)x+(6﹣k)=0,当﹣6+k=0,即k=6时,x取任意值,两个方程得解都相同.两个方程是同一个式子.方程得解是x1=7,x2=﹣1;当k≠6时,解得x=1.把x=1代入x2﹣kx﹣7=0得,1﹣k﹣7=0,k=﹣6.于是两方程为:x2+6x﹣7=0③,x1=1,x2=﹣7.x2﹣6x+5=0④,x1=1,x2=5.故答案为:k=6,有公共根,公共根为7和﹣1.k=﹣6;其公共根为1,相异根为:﹣7和5.16.【解答】解:(1)∵DC=AC,∠ACB的平分线CF交AD于F,∴F为AD的中点,∵点E是AB的中点,∴EF为△ABD的中位线,∴,(2)∵EF为△ABD的中位线,∴,EF∥BD,∴△AEF∽△ABD,∵S△AEF:S△ABD=1:4,∴S△AEF:S四边形BDEF=1:3,∵四边形BDFE的面积为8,∴S△AEF=.17.【解答】解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.18.【解答】解:(1)设安排生产A种产品x件,则生产B种产品为(50﹣x)件,根据题意,得解得30≤x≤32.因为x是自然数,所以x只能取30,31,32.所以按要求可设计出三种生产方案:方案一:生产A种产品30件,生产B种产品20件;方案二:生产A种产品31件,生产B种产品19件;方案三:生产A种产品32件,生产B种产品18件;(2)设生产A种产品x件,则生产B种产品(50﹣x)件,由题意,得y=700x+1200(50﹣x)=﹣500x+60000因为a<0,由一次函数的性质知,y随x的增大而减小.因此,在30≤x≤32的范围内,因为x=30时在的范围内,所以当x=30时,y取最大值,且y最大值=45000.19.【解答】解:(1)因为抛物线的对称轴是x=,设解析式为y=a(x﹣)2+k.把A,B两点坐标代入上式,得,解得a=,k=﹣.故抛物线解析式为y=(x﹣)2﹣,顶点为(,﹣).(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x﹣)2﹣,∴y<0,即﹣y>0,﹣y表示点E到OA的距离.∵OA是OEAF的对角线,∴S=2S△OAE=2××OA•|y|=﹣6y=﹣4(x﹣)2+25.因为抛物线与x轴的两个交点是(1,0)和(6,0),所以自变量x的取值范围是1<x<6.①根据题意,当S=24时,即﹣4(x﹣)2+25=24.化简,得(x﹣)2=.解得x1=3,x2=4.故所求的点E有两个,分别为E1(3,﹣4),E2(4,﹣4),点E1(3,﹣4)满足OE=AE,所以平行四边形OEAF是菱形;点E2(4,﹣4)不满足OE=AE,所以平行四边形OEAF不是菱形;②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,此时点E的坐标只能是(3,﹣3),而坐标为(3,﹣3)的点不在抛物线上,故不存在这样的点E,使平行四边形OEAF为正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学竞赛试题含答案_
班级: 姓名:
说明:竞赛时间:2007年3月9日上午9:00~10:00。
考试时间:60分钟.总分120分.每小题4分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填在下面的答题卡上。
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 题号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 答案
1.某校为了解学生的体能情况,随机抽查30名初三学生,测试1分钟内仰卧起坐的次数,并绘制成如图1所示的频数分布直方图,则仰卧起坐次数在25~30次的频率是( )
A 、0.1
B 、0.2
C 、0.3
D 、0.4 2.若26321n
n a
a =-,则的值为( )
A 、17
B 、35
C 、53
D 、1457
3.从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有( )
A 、1张
B 、2张
C 、3张
D 、4张
4.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( ) A 、上午12时 B 、上午10时 C 、上午9时30分 D 、上午8时 5.如图2所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是( ) A 、
525 B 、625 C 、1025 D 、19
25
6.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以 BC 为公共边的“共边三角形”有( )
A 、2对
B 、3对
C 、4对
D 、6对
7.点M (sin 60cos60-,)关于x 轴对称的点的坐标是( )
61
234
54
321E 图3
D
C
B
A
A 、1
22
,) B
、1(2-) C 、1(2,) D
、12-(, 8.从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,
1.7,1.5,1.8,1.3,1.4(单位:kg ),依此估计这300尾草鱼的总质量大约是( ) A 、450kg B 、150kg C 、45kg D 、15kg
9
.下列实数0
22
1 sin 60 3.141597
π-),,,属于无理数有( ) A 、1个 B 、2个 C 、3个 D 、4个 10.在函数 0)k
y k x
=
>(的图像上有三点111222333(,) (,) (,)A x y A x y A x y ,
,,已知1230x x x <<<,则下列各式中正确的是( )
A 、120y y <<
B 、310y y <<
C 、213y y y <<
D 、312y y y <<
11.如果关于1)11x a x a x a +>+<的不等式(的解集为,那么的取值范围是( )
A 、0a >
B 、0a <
C 、1a >-
D 、1a <-
12.如图4,E ,F 分别是正方形ABCD 的边CD ,AD 上的点,且CE=DF ,AE ,BF 相交于点O ,下列结论①AE=BF ;②AE ⊥BF ;③AO=OE ;④
DEOF ABC
S
S =四边形中错误的有( )
A 、1个
B 、2个
C 、3个
D 、4个
13.某市在“旧城改造”中计划在市内一块如图5所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价为a 元,则购买这种草皮至少需要( )
A 、450a 元
B 、300a 元
C 、225a 元
D 、150a 元
14.观察下列算式:1
2
3
4
5
6
7
2=22=42=82=162=322=642=128=2568
,
,,,,,,2……通过观察,用你所发现的规律写出11
8的末位数字是( ) A 、2 B 、4 C 、6 D 、8
15.已知22
1
25a b a b a b -=+=+,,的值为( ) A 、7 B 、-7 C 、±7 D 、±9
16.某单位购买甲、乙两种纯净水若干桶,共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水桶数是甲种水桶数的75%。
设买甲种水x 桶,买乙种水y 桶,则所列方程组中正确的是( ) A 、8625075%x y y x +=⎧⎨
=⎩ B 、8625075%x y x y +=⎧⎨=⎩ C 、6825075%x y y x +=⎧⎨=⎩ D 、68250
75%x y x y
+=⎧⎨=⎩
图5
150°20米30米
C
B
A
17.已知△ABC 如图6,则下列4个三角形中,与△ABC 相似的是( )
图6
6
65
5
55555
75°
75°
30°
A
B
C
D C
B A
40°
55
18.下列命题中正确的是( )
A 、22
a b a b <<若,则 B 、00 0ab a b >>>若,则,
C 、22 a b a b <<若,则
D 、11 a b a b
<>若,
则 19.小明外出注游玩,带上棕色、蓝色、淡黄色3件上衣和蓝色、白色2条长裤,他任意拿出1件上衣和1条长裤正好是棕色上衣和蓝色长裤的概率是( ) A 、
13 B 、15 C 、16 D 、19
20.如图7,抛物线2
A B y ax bx c x =++与轴交于点、,与y 轴交于C 。
如果OB=OC=1
OA 2
b ,那么的值为( )
A 、-2
B 、-1
C 、12-
D 、1
2
21.如图8,将图中的阴影部分剪下来,围成一个几何体的侧面,
使AB 、DC 重合,则所围成的几何体图形是( )
22.已知1111110 0 ()()()a b c a b c a b c b c c a a b
⨯⨯≠++=+++++,并且,则的值为( )
A 、0
B 、1
C 、-1
D 、-3
23.如图9,正方形的网格中,∠1+∠2+∠3+∠4+∠5=( ) A 、175° B 、180° C 、210° D 、225°
24.一个半径为r 的圆内切于一个等腰直角三角形,另一个半径为R 的
圆外接于这个三角形,则R
r
等于( )
A
O
B
C
x
y
图7
A B C D 图9
5
4321
图8
A 、21+
B 、21-
C 、2
D 、3
25.小莉与小明一起用A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x,小明掷的B 立方体朝上的数字为y ,来确定点P (x,y ),那么他们各掷一次所确定的点P (x,y )落在已知抛物线2
4y x x =-+上的概率为( ) A 、
118 B 、112 C 、19 D 、16
26.5 5a b a b +⋅的整数部分为,小数部分为,则()为( )
A 、15+
B 、1
C 、51-
D 、2
27.如图10,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线l 上取一点P ,使得∠APB=30,则满足条件的点P 的个数是( )
A 、3个
B 、2个
C 、1个
D 、不存在 28.将一个无盖正方体纸盒展开(如图11),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图12),则所剪得的直角三角形较短的与较长的直角边的比是( ) A 、
12 B 、13 C 、23 D 、45
29.如图13,两块重合的正方形纸片,上面正方形绕正方形的中心旋转0°~90°,旋转时露出的△ABC 的面积(S )会随着旋转角度(n )的变化而变化,那么S 与n 关系的图像大致是( )
30.在直角坐标平面中,已知点P a b a b ≠(,)(),设点P 关于直线y=x 的对称点为Q ,点P 关于原点的对称点为R ,则△PQR 的形状是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、不能确定
l
图10
C
B
A
P
图12
图11S n O S n O S n O S n
O A B C D 图13
2006年从化二中九年级数学竞赛试题参考答案。