信号与线性系统分析_(吴大正_第四版)第四章习题答案

合集下载

信号与线性系统分析_(吴大正_第四版)习题答案12264精编版

信号与线性系统分析_(吴大正_第四版)习题答案12264精编版

第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析_(吴大正_第四版)习题答案

信号与线性系统分析_(吴大正_第四版)习题答案

1-1绘出下列各旗号的波形【式中)()(t t t r ε=】为斜降函数.之阳早格格创做(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=解:各旗号波形为(2)∞<<-∞=-t e t f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+= 1-2 绘出下列各旗号的波形[式中)()(t t t r ε=为斜降函数].(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε解:各旗号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 1-3 写出图1-3所示各波形的表白式.1-4 写出图1-4所示各序列的关合形式表白式.1-5 判别下列各序列是可为周期性的.如果是,决定其周期.(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知旗号)(t f 的波形如图1-5所示,绘出下列各函数的波形. (1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6))25.0(-t f(7)dt t df )( (8)dx x f t⎰∞-)(解:各旗号波形为(1))()1(t t f ε-(2))1()1(--t t f ε(5))21(t f -(6))25.0(-t f(7)dt t df )((8)dx x f t ⎰∞-)(1-7 已知序列)(k f 的图形如图1-7所示,绘出下列各序列的图形.(1))()2(k k f ε- (2))2()2(--k k f ε(3))]4()()[2(---k k k f εε (4))2(--k f(5))1()2(+-+-k k f ε (6))3()(--k f k f解:1-9 已知旗号的波形如图1-11所示,分别绘出)(t f 战dt t df )(的波形. 解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对于)23(t f -的波形展宽为本去的二倍而得).将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示.再将)3(+t f 的波形左移3个单位,便得到了)(t f ,如图1-12(c)所示.dt t df )(的波形如图1-12(d)所示.1-10 估计下列各题.(1)[]{})()2sin(cos 22t t t dt d ε+ (2))]([)1(t e dt d t t δ--(5)dt t t t )2()]4sin([2++⎰∞∞-δπ (8)dx x x t)(')1(δ⎰∞--1-12 如图1-13所示的电路,写出(1)以)(t u C 为赞同的微分圆程.(2)以)(t i L 为赞同的微分圆程.1-20 写出图1-18各系统的微分或者好分圆程.1-23 设系统的初初状态为)0(x ,激励为)(⋅f ,各系统的齐赞同)(⋅y 与激励战初初状态的关系如下,试分解各系统是可是线性的.(1)⎰+=-tt dx x xf x e t y 0)(sin )0()( (2)⎰+=tdx x f x t f t y 0)()0()()((3)⎰+=tdx x f t x t y 0)(])0(sin[)( (4))2()()0()5.0()(-+=k f k f x k y k(5)∑=+=kj j f kx k y 0)()0()(1-25 设激励为)(⋅f ,下列是各系统的整状态赞同)(⋅zs y .推断各系统是可是线性的、时没有变的、果果的、宁静的?(1)dt t df t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π=(4))()(t f t y zs -= (5))1()()(-=k f k f k y zs (6))()2()(k f k k y zs -=(7)∑==kj zs j f k y 0)()( (8))1()(k f k y zs -=1-28 某一阶LTI 得集系统,其初初状态为)0(x .已知当激励为)()(1k k y ε=时,其齐赞同为若初初状态没有变,当激励为)(k f -时,其齐赞同为)(]1)5.0(2[)(2k k y k ε-=若初初状态为)0(2x ,当激励为)(4k f 时,供其齐赞同.第二章2-1 已知形貌系统的微分圆程战初初状态如下,试供其整输进赞同.(1)1)0(',1)0(),()(6)('5)(''-===++-y y t f t y t y t y(4)0)0(',2)0(),()()(''===+-y y t f t y t y2-2 已知形貌系统的微分圆程战初初状态如下,试供其+0值)0(+y 战)0('+y .(2))()(,1)0(',1)0(),('')(8)('6)(''t t f y y t f t y t y t y δ====++--(4))()(,2)0(',1)0(),(')(5)('4)(''2t e t f y y t f t y t y t y t ε====++-- 解:2-4 已知形貌系统的微分圆程战初初状态如下,试供其整输进赞同、整状态赞同战齐赞同.(2))()(,2)0(',1)0(),(3)(')(4)('4)(''t e t f y y t f t f t y t y t y t ε---===+=++ 解:2-8 如图2-4所示的电路,若以)(t i S 为输进,)(t u R 为输出,试列出其微分圆程,并供出冲激赞同战阶跃赞同.2-12 如图2-6所示的电路,以电容电压)(t u C 为赞同,试供其冲激赞同战阶跃赞同.2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试供下列卷积,并绘出波形图.(1))(*)(21t f t f (2))(*)(31t f t f (3))(*)(41t f t f(4))(*)(*)(221t f t f t f (5))3()(2[*)(341--t f t f t f波形图如图2-9(a)所示.波形图如图2-9(b)所示.波形图如图2-9(c)所示.波形图如图2-9(d)所示.波形图如图2-9(e)所示.2-20 已知)()(1t t t f ε=,)2()()(2--=t t t f εε,供)2('*)1(*)()(21--=t t f t f t y δ2-22 某LTI 系统,其输进)(t f 与输出)(t y 的关系为dx x f e t y t x t )2()(1)(2-=⎰∞--- 供该系统的冲激赞同)(t h .2-28 如图2-19所示的系统,试供输进)()(ttfε=时,系统的整状态赞同.2-29 如图2-20所示的系统,它由几身材系统推拢而成,各子系统的冲激赞同分别为供复合系统的冲激赞同.第三章习题、试供序列的好分、战.、供下列好分圆程所形貌的LTI得集系统的整输进相映、整状态赞同战齐赞同.1)3)5)、供下列好分圆程所形貌的得集系统的单位序列赞同. 2)5)、供图所示各系统的单位序列赞同.(a)(c)、供图所示系统的单位序列赞同.、各序列的图形如图所示,供下列卷积战.(1)(2)(3)(4)、供题图所示各系统的阶跃赞同.、供图所示系统的单位序列赞同战阶跃赞同.、若LTI得集系统的阶跃赞同,供其单位序列赞同.、如图所示系统,试供当激励分别为(1)(2)时的整状态赞同.、如图所示的得集系统由二身材系统级联组成,已知,,激励,供该系统的整状态赞同.(提示:利用卷积战的分离律战接换律,不妨简化运算.) 、如图所示的复合系统有三身材系统组成,它们的单位序列赞同分别为,,供复合系统的单位序列赞同.第四章习题4.6 供下列周期旗号的基波角频次Ω战周期T.(1)t j e 100 (2))]3(2cos[-t π(3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++(5))4sin()2cos(t t ππ+ (6))5cos()3cos()2cos(t t t πππ++ 4.7 用间接估计傅里叶系数的要领,供图4-15所示周期函数的傅里叶系数(三角形式或者指数形式).图4-154.10 利用奇奇性推断图4-18示各周期旗号的傅里叶系数中所含有的频次分量.图4-184-11 某1Ω电阻二端的电压)(t u 如图4-19所示,(1)供)(t u 的三角形式傅里叶系数.(2)利用(1)的停止战1)21(=u ,供下列无贫级数之战(3)供1Ω电阻上的仄衡功率战电压灵验值.(4)利用(3)的停止供下列无贫级数之战图4-194.17 根据傅里叶变更对于称性供下列函数的傅里叶变更(1)∞<<-∞--=t t t t f ,)2()]2(2sin[)(ππ (2)∞<<-∞+=t t t f ,2)(22αα (3)∞<<-∞⎥⎦⎤⎢⎣⎡=t t t t f ,2)2sin()(2ππ4.18 供下列旗号的傅里叶变更(1))2()(-=-t e t f jt δ (2))1(')()1(3-=--t e t f t δ(3))9sgn()(2-=t t f (4))1()(2+=-t e t f t ε (5))12()(-=t t f ε4.19 试用时域微积分本量,供图4-23示旗号的频谱.图4-234.20 若已知)(j ])([ωF t f F =,试供下列函数的频谱:(1))2(t tf (3)dt t df t )( (5))-1(t)-(1t f (8))2-3(t f e jt (9)t dt t df π1*)(4.21 供下列函数的傅里叶变更(1)⎩⎨⎧><=000,1,)(j ωωωωωF (3))(3cos 2)(j ωω=F(5)ωωωω1)(2n -20sin 2)(j +=∑=j n e F4.23 试用下列办法供图4-25示旗号的频谱函数(1)利用延时战线性本量(门函数的频谱可利用已知停止).(2)利用时域的积分定理.(3)将)(t f 瞅做门函数)(2t g 与冲激函数)2(+t δ、)2(-t δ的卷积之战.图4-254.25 试供图4-27示周期旗号的频谱函数.图(b )中冲激函数的强度均为1.图4-274.27 如图4-29所示旗号)(t f 的频谱为)(ωj F ,供下列各值[没有必供出)(ωj F ](1)0|)()0(==ωωj F F (2)ωωd j F ⎰∞∞-)( (3)ωωd j F 2)(⎰∞∞-图4-294.28 利用能量等式估计下列积分的值.(1)dt t t 2])sin([⎰∞∞- (2)⎰∞∞-+22)1(x dx4.29 一周期为T 的周期旗号)(t f ,已知其指数形式的傅里叶系数为n F ,供下列周期旗号的傅里叶系数(1))()(01t t f t f -= (2))()(2t f t f -=(3)dt t df t f )()(3= (4)0),()(4>=a at f t f4.31 供图4-30示电路中,输出电压电路中,输出电压)(2t u 对于输进电流)(t i S 的频次赞同)()()(2ωωωj I j U j H S =,为了能无得果然传输,试决定R 1、R 2的值.图4-304.33 某LTI 系统,其输进为)(t f ,输出为式中a 为常数,且已知)()(ωj S t s ↔,供该系统的频次赞同)(ωj H .4.34 某LTI 系统的频次赞同ωωωj j j H +-=22)(,若系统输进)2cos()(t t f =,供该系统的输出)(t y . 4.35 一理念矮通滤波器的频次赞同4.36 一个LTI 系统的频次赞同 若输进)5cos()3sin()(t t t t f =,供该系统的输出)(t y .4.39 如图4-35的系统,其输出是输进的仄圆,即)()(2t f t y =(设)(t f 为真函数).该系统是线性的吗? (1)如t t t f sin )(=,供)(t y 的频谱函数(或者绘出频谱图). (2)如)2cos(cos 21)1(t t f ++=,供)(t y 的频谱函数(或者绘出频谱图).4.45 如图4-42(a)的系统,戴通滤波器的频次赞同如图(b)所示,其相频个性0)(=ωϕ,若输进 供输出旗号)(t y .图4-424.48 有限频戴旗号)(t f 的最下频次为100Hz ,若对于下列旗号举止时域与样,供最小与样频次s f .(1))3(t f (2))(2t f (3))2(*)(t f t f (4))()(2t f t f +4.50 有限频戴旗号)4cos()2cos(25)(11t f t f t f ππ++=,其中kHz f 11=,供Hz f s 800=的冲激函数序列)(t T δ举止与样(请注意1f f s <).(1)绘出)(t f 及与样旗号)(t f s 正在频次区间(-2kHz ,2kHz )的频谱图.(2)若将与样旗号)(t f s 输进到停止频次Hz f c 500=,幅度为的理念矮通滤波器,即其频次赞同绘出滤波器的输出旗号的频谱,并供出输出旗号)(t y .图4-47图4-48图4-494.53 供下列得集周期旗号的傅里叶系数.(2))4)(30()21()(=≤≤=N k k f k第五章5-2 供图5-1所示各旗号推普推斯变更,并证明支敛域. 5-3 利用时常使用函数(比圆)(t ε,)(t e at ε-,)()sin(t t εβ,)()cos(t t εβ等)的象函数及推普推斯变更的本量,供下列函数)(t f 的推普推斯变更)(s F .(1))2()()2(-----t e t e t t εε (3))]1()()[sin(--t t t εεπ(5))24(-t δ(7))()42sin(t t επ- (9)⎰tdx t 0)sin(π(11))]()[sin(22t t dt d επ (13))(22t e t tε-(15))1()3(---t te t ε1235-4 如已知果果函数)(tf的象函数11)(2+-=sssF,供下列函数)(ty的象函数)(sY.(1))2(tfe t-(4))12(-ttf5-6 供下列象函数)(sF的本函数的初值)0(+f战末值)(∞f.(1)2)1(32)(++=sssF(2))1(13)(++=ssssF5-7 供图5-2所示正在=t时接进的有初周期旗号)(tf的象函数)(sF.图5-25-8 供下列各象函数)(sF的推普推斯变更)(tf.(1))4)(2(1++ss(3)235422++++ssss(5))4(422++sss(7)2)1(1-ss(9))52(52+++ssss5-9 供下列象函数)(sF的推普推斯变更)(tf,并大略绘出它们的波形图.(1)11+--s e Ts (3)3)3(2++-s e s (6)222)1(ππ+--s e s其波形如下图所示:其波形如下图所示:其波形如下图所示:5-10 下列象函数)(s F 的本函数)(t f 是0=t 接进的有初周期旗号,供周期T 并写出其第一个周期(T t <<0)的时间函数表白式)(t f o .(1)s e -+11(2))1(12s e s -+5-12 用推普推斯变更法解微分圆程)(3)(6)('5)(''t f t y t y t y =++的整输进赞同战整状态赞同.(1)已知2)0(',1)0(),()(===--y y t t f ε. (2)已知1)0(',0)0(),()(===---y y t e t f t ε.5-13 形貌某系统的输出)(1t y 战)(2t y 的联坐微分圆程为 (1)已知0)(=t f ,1)0(1=-y ,2)0(2=-y ,供整状态赞同)(1t y zs ,)(2t y zs . 5-15 形貌某LTI 系统的微分圆程为)(4)(')(2)('3)(''t f t f t y t y t y +=++供正在下列条件下的整输进赞同战整状态赞同.(1)1)0(',0)0(),()(===--y y t t f ε.(2)1)0(',1)0(),()(2===---y y t e t f t ε. 5-16 形貌形貌某LTI 系统的微分圆程为)(4)(')(2)('3)(''t f t f t y t y t y +=++ 供正在下列条件下的整输进赞同战整状态赞同.(1)3)0(',1)0(),()(===++y y t t f ε.(2)2)0(',1)0(),()(2===++-y y t e t f t ε. 5-17 供下列圆程所形貌的LTI 系统的冲激赞同)(t h 战阶跃赞同)(t g .(1))(3)(')(3)('4)(''t f t f t y t y t y -=++5-18 已知系统函数战初初状态如下,供系统的整输进赞同)(t y zi .(1)656)(2+++=s s s s H ,1)0(')0(==-y y(3))23(4)(2+++=s s s s s H ,1)0('')0(')0(===--y y y5-22 如图5-5所示的复合系统,由4身材系统对接组成,若各子系统的系统函数或者冲激赞同分别为11)(1+=s s H ,21)(2+=s s H ,)()(3t t h ε=,)()(24t e t h t ε-=,供复合系统的冲激赞同)(t h .5-26 如图5-7所示系统,已知当)()(t t f ε=时,系统的整状态赞同)()551()(32t e e t y t t zs ε--+-=,供系数a 、b 、c.5-28 某LTI 系统,正在以下百般情况下起初初状态相共.已知当激励)()(1t t f δ=时,其齐赞同)()()(1t e t t y t εδ-+=;当激励)()(2t t f ε=时,其齐赞同)(3)(2t e t y t ε-=.(1)若)()(23t e t f tε-=,供系统的齐赞同.5-29 如图5-8所示电路,其输进均为单位阶跃函数)(t ε,供电压)(t u 的整状态赞同. 5-42 某系统的频次赞同ωωωj j j H +-=11)(,供当输进)(t f 为下列函数时的整状态赞同)(t y zs .(1))()(t t f ε= (2))(sin )(t t t f ε=5-50 供下列象函数的单边推普推斯变更.(1)3]Re[1,)3)(1(2<<---s s s (2)1]Re[3,)3)(1(2-<<-++s s s4 2<+ss(4)]Re[1,)1)(4(42<<-+++-ssss(3)] Re[,4。

信号与线性系统分析-(吴大正-第四版)习题答案

信号与线性系统分析-(吴大正-第四版)习题答案

信号与系统习题解析C1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信与线性系统分析习题答案吴大正第四版高等教育出版社

信与线性系统分析习题答案吴大正第四版高等教育出版社

第一章信号与系统(二)1-1画出下列各信号的波形【式中r(t)t(t)】为斜升函数。

(2)f(t) et t(3)f(t)sin( t) (t)(4)f (t) (sint)(5)f(t)r(sin t)(7)f(t) 2k (k)(10f(k) [1 ( 1)k] (k))解:各信号波形为(2)f(t) e N, t(3)f(t)sin( t)(t)(4)f(t)(s int)(5)f(t)r(si n t)(7)f(t)2k (k)(10)f(k)[1 (1)k] (k)1-2画出下列各信号的波形[式中r(t) t (t)为斜升函数]。

(1)f(t) 2 (t 1) 3 (t 1) (t 2) (2)f (t) r(t) 2r(t 1) r(t 2)(5)f (t) r(2t) (2 t) (8)f(k) k[ (k) (k 5)](11) f(k) ksin( )[ (k) (k 7)]6(12)f(k) 2k[ (3 k) ( k)]解:: 各信号波「形为(1) f(t) 2 (t 1) 3 (t 1) (t 2)(2) f(t) r(t) 2r(t 1) r(t2)(5) f(t)r(2t) (2 t)(8)f(k)k[ (k) (k 5)](11)f(k)ksin( § )[ (k) (k7)](12) f(k) 2k [ (3 k) ( k)]1-3写出图1-3所示各波形的表达式。

1-4写出图1-4所示各序列的闭合形式表达式。

1-5判别下列各序列是否为周期性的。

如果是,确定其周期。

Q■(2) f 2(k) cos(- k ) cos(—k )(5) f 5(t)3cost 2sin( t)4 4 3 6解:1-6已知信号f(t)的波形如图1-5所示,画出下列各函数的波形。

(6)f(0.5t 2)(1) f(t 1) (t) (2) f(t 1) (t 1) (5) f (1 2t)df (t) t(7) K ( 8) f(X)dx解:各信号波形为(1)f(t 1) (t)(2)f(t 1) (t 1)(5)f(1 2t)(6) f (0.5t 2)df(t)(7)dtt(8) f (x)dx1-7已知序列f(k)的图形如图1-7所示,画出下列各序列的图形。

信号和线性系统分析(吴大正第四版)第四章习题答案解析

信号和线性系统分析(吴大正第四版)第四章习题答案解析

第四章习题4.6求下列周期信号的基波角频率Ω和周期T解 ⑴角频率为Ω = IOO rad∕s,周期丁=盲=p÷ξ ⑵角频率为I fi=号■rad∕s,周期= 4 s(3) 角频率为Ω = 2 rad 倉,周期T = ~ = Tr S (4) 角频率为Q =兀rad∕ s,周期T=^ = 2 sΩ(5) 角频率为 Ω — rad∕s*周期 T=-^ = 8 s4 12⑹角频率为C =話rad∕s,周期T = -jy = 60 s4.7用直接计算傅里叶系数的方法, 求图4-15所示周期函数 的傅里叶系数(三角形式或指数形式)(1) e j100t(2) cos[,t - 3)](3) cos(2t) sin(4t) ⑷ cos(2 兀 t) +cos(3πt) +cos(5 兀 t)(5)π π cos( t) sin( t)2 4(6)JEJITEcos( t) cos( t) cos( t)2 35-2 -1 O 12 3 r(IJ)图4-15f>~ 十解 ⑴周期T = 4,1Ω = Y =亍r 则有H ,4⅛ - 1 ≤ r ≤ 4⅛+ 1/⑺=II∣07 4⅛ + 1 < r < 4⅛ + 3由此可得-Tu rt = ~∖ ' τ fit) cost nΩt)dt= -∣^∣ /(f)cos(^ψ^)df J- J —⅛ 乙-.:—2 I(2}周期丁=2・0 =年=兀,则有由此可得1 + e -jrhr2π( I - √ )所含有的频率分量)dr =2 J -[2『亍=Wl f(t)sm(ττΩt)dt =1 J -T2——SInnπ (才),= om 小山(竽)出ISin(Jrt) 9fm=! 0,2⅛ ≤ r ≤ 2⅛ + 12⅛ + 1 < r < 2⅛ + 2F ri ]ft1 Γl=TJV Cf)^dr =⅛J r ∣/(r)e-7iβ,dr — -7- Sin(^f)e -dr -I ZJV4.10利用奇偶性判断图4-18示各周期信号的傅里叶系数中扣 =O* ± 1 * + 2・・图 4-18解 (1)由旳⑺的波形可矩Λ<r) =√√-n =-∕l (f ⊂f)亠 IU Jr = f(t)cos( riΩt )df 则有丿 丁人 ,jj = 0.1,2,-[仇=0"[J =盘?=应丄=*" =QE=仇=仏=*八=0 则∕√r)的傅里叶级数中含有的频率分量为奇次余弦波亠 (2)由f 2(t)的波形可知则有— ■ ??f(t)s}n(tιΩt )d r ⅛ =A rz fl , J Tni JJO则f 2(t)的傅里叶级数中含有的频率分量为正弦波*(3)由 f 3(t)的波形可⅛l∕3<f) = f 3(~r)则有Γ⅛ = 0, n/(z)cos( fiΩt >d;(4)% 4召=亍即ΛG)的傅里叶级数中含有的频率分量为偶次余弦波* 由/<(0的波形可知,人⑺为奇谐函数■即fdι) =一 fZ 土 £)b 2 = h A = b 6 =・*・=0则有 U即人")的傅里叶级数中只含有奇次谐波•包括正弦波和余弦披"4-11 求u(t)的三角形式傅里叶系数。

实用文档之信号与线性系统分析_(吴大正_第四版)习题答案

实用文档之信号与线性系统分析_(吴大正_第四版)习题答案

实用文档之"1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

" (2)∞<<-∞=-t e t f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))=tfε)(sin(t(5))rf=t(t)(sin(7))f kεt=2()(k(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析第四版(吴大正)习题答案

信号与线性系统分析第四版(吴大正)习题答案

第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】 为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t (5))tf=r(sin)(t(7))tf kε(k=(2)(10))f kεk-=(k+]()1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析_(吴大正_第四版)习题答案

信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t(7))t=(kf kε(2)(10))f kεk=(k+-((])1)1[1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析吴大正第四版习题答案第四章修订版

信号与线性系统分析吴大正第四版习题答案第四章修订版

信号与线性系统分析吴大正第四版习题答案第四章修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第四章习题4.6 求下列周期信号的基波角频率Ω和周期T 。

(1)t j e 100 (2))]3(2cos[-t π(3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++ (5))4sin()2cos(t t ππ+ (6))5cos()3cos()2cos(t t t πππ++ 4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。

图4-154.10 利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率分量。

图4-184-11 某1Ω电阻两端的电压)(t u 如图4-19所示,(1)求)(t u 的三角形式傅里叶系数。

(2)利用(1)的结果和1)21(=u ,求下列无穷级数之和(3)求1Ω电阻上的平均功率和电压有效值。

(4)利用(3)的结果求下列无穷级数之和图4-194.17 根据傅里叶变换对称性求下列函数的傅里叶变换(1)∞<<-∞--=t t t t f ,)2()]2(2sin[)(ππ(2)∞<<-∞+=t t t f ,2)(22αα(3)∞<<-∞⎥⎦⎤⎢⎣⎡=t t t t f ,2)2sin()(2ππ4.18 求下列信号的傅里叶变换(1))2()(-=-t e t f jt δ (2))1(')()1(3-=--t e t f t δ(3))9sgn()(2-=t t f (4))1()(2+=-t e t f t ε(5))12()(-=tt f ε4.19 试用时域微积分性质,求图4-23示信号的频谱。

图4-234.20 若已知)(j ])([ωF t f F =,试求下列函数的频谱:(1))2(t tf (3)dt t df t )( (5))-1(t)-(1t f(8))2-3(t f e jt (9)t dt t df π1*)(4.21 求下列函数的傅里叶变换(1)⎩⎨⎧><=000,1,)(j ωωωωωF (3))(3cos 2)(j ωω=F(5)ωωωω1)(2n -20sin 2)(j +=∑=j n e F4.23 试用下列方式求图4-25示信号的频谱函数(1)利用延时和线性性质(门函数的频谱可利用已知结果)。

吴大正《信号与线性系统分析》(第4版)章节题库(傅里叶变换和系统的频域分析)【圣才出品】

吴大正《信号与线性系统分析》(第4版)章节题库(傅里叶变换和系统的频域分析)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 4 章 傅里叶变换和系统的频域分析
一、选择题 1.图 4-1 所示系统由两个 LTI 子系统组成,已知子系统 H1 和 H2 的群时延分别为 τ1 和 τ2,则整个系统的群时延 τ 为( )。
图 4-1 A.τ1+τ2 B.τ1-τ2 C.τ1·τ2 D.max(τ1,τ2) 【答案】A
9.如图 4-2 所示信号 f1(t)的傅里叶发换 F1(jω)已知,求信号 f2(t)的傅里叶发 换为( )。
图 4-2
【答案】A
【解析】由题意知, f2 (t) f1(t t0 ) 。由于 f2(t)=f1(-(t+t0)),根据傅里叶 发换的反转性质和时秱性质可知, F2 ( j) F1( j)e jt0 。
4.设 f(t)的频谱函数为 F(jω),则
的频谱函数等于( )。
【答案】D
2 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台

【解析】
可写为 f[-1/2(t-6)],根据傅里叶发换的尺度发换性质,
x(at)
|
1 a
|
[x(w
/
a)],得
f[-1/2(t)]
A.x(t)=-4Sa[2π(t-3)]
B.x(t)=4Sa[2π(t+3)]
C.x(t)=-2Sa[2π(t-3)]
D.x(t)=2Sa[2π(t+3)]
【答案】A
【解析】常用的傅里叶发换对
Sa(ct)
c
G2c
()
令c 2 ,则有 4Sa(2t) 2G4 ()
ቤተ መጻሕፍቲ ባይዱ
再由傅里叶发换的时秱性质,有
4Sa[2 (t 3)] 2G4 ()e j3

信号与线性系统分析习题答案吴大正第四版高等教育出版社

信号与线性系统分析习题答案吴大正第四版高等教育出版社

41 / 255
42 / 255
2-8 如图 2-4 所示的电路,若以 i S(t ) 为输入, uR (t ) 为输出,试列出其微分方程,并求出冲激响应和阶跃响
应。
43 / 255
44 / 255
2-12 如图 2-6 所示的电路,以电容电压 uC (t ) 为响应,试求其冲激响应和阶跃响应。
70 / 255
71 / 255
3.13、求题 3.9 图所示各系统的阶跃响应。
72 / 255
73 / 255
74 / 255
75 / 255
3.14、求图所示系统的单位序列响应和阶跃响应。
76 / 255
3.15、若 LTI 离散系统的阶跃响应 g( k)
k
0.5
k ,求其单位序列响应。
第一章 信号与系统(二)
1-1 画出下列各信号的波形【式中 r (t ) t (t) 】为斜升函数。
( 2) f (t ) e t ,
t
(3) f (t ) sin( t) (t )
( 4) f (t ) (sin t )
( 5) f (t) r (sin t)
( 7) f (t ) 2k ( k)
析各系统是否是线性的。
(1) y(t) e t x(0)
t
sin xf ( x)dx
0
t
(2) y(t)
f (t ) x(0)
f (x) dx
0
t
(3) y(t ) sin[ x(0)t]
f (x)dx
0
(4) y(k ) (0.5)k x(0) f (k) f (k 2)
k
(5) y(k) kx(0)
的两倍而得)。将 f (3 t ) 的波形反转而得到 f (t 3) 的波形,如图 1-12(b) 所示。再将 f (t 移 3 个单位,就得到了 f (t ) ,如图 1-12(c) 所示。 df (t) 的波形如图 1-12(d) 所示。

信号与线性系统分析_(吴大正_第四版)习题答案

信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数.之五兆芳芳创作(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=解:各信号波形为(2)∞<<-∞=-t e t f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数].(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=ttttfεεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=kkkkfεε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式.1-4 写出图1-4所示各序列的闭合形式表达式.1-5 判别下列各序列是否为周期性的.如果是,确定其周期.(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形. (1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6))25.0(-t f(7)dt t df )( (8)dx x f t⎰∞-)(解:各信号波形为(1))()1(t t f ε-(2))1()1(--t t f ε(5))21(t f -(6))25.0(-t f(7)dt t df )((8)dx x f t ⎰∞-)(1-7 已知序列)(k f 的图形如图1-7所示,画出下列各序列的图形.(1))()2(k k f ε- (2))2()2(--k k f ε(3))]4()()[2(---k k k f εε (4))2(--k f(5))1()2(+-+-k k f ε (6))3()(--k f k f解:1-9 已知信号的波形如图1-11所示,辨别画出)(t f 和dt t df )(的波形. 解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来的两倍而得).将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示.再将)3(+t f 的波形右移3个单位,就得到了)(tf,如图1-12(c)所示.dttdf)(的波形如图1-12(d)所示.1-10 计较下列各题.(1)[]{})()2sin(cos22tttdtdε+(2))]([)1(tedtdt tδ--(5)dtttt)2()]4sin([2++⎰∞∞-δπ(8)dxxxt)(')1(δ⎰∞--1-12 如图1-13所示的电路,写出(1)以)(tuC为响应的微分方程.(2)以)(tiL为响应的微分方程.1-20 写出图1-18各系统的微分或差分方程.1-23 设系统的初始状态为)0(x,鼓励为)(⋅f,各系统的全响应)(⋅y与鼓励和初始状态的关系如下,试阐发各系统是否是线性的.(1)⎰+=-tt dx x xf x e t y 0)(sin )0()( (2)⎰+=tdx x f x t f t y 0)()0()()((3)⎰+=tdx x f t x t y 0)(])0(sin[)( (4))2()()0()5.0()(-+=k f k f x k y k(5)∑=+=kj j f kx k y 0)()0()(1-25 设鼓励为)(⋅f ,下列是各系统的零状态响应)(⋅zs y .判断各系统是否是线性的、时不变的、因果的、稳定的?(1)dt t df t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π=(4))()(t f t y zs -= (5))1()()(-=k f k f k y zs (6))()2()(k f k k y zs -=(7)∑==kj zs j f k y 0)()( (8))1()(k f k y zs -=1-28 某一阶LTI 离散系统,其初始状态为)0(x .已知当鼓励为)()(1k k y ε=时,其全响应为若初始状态不变,当鼓励为)(k f -时,其全响应为)(]1)5.0(2[)(2k k y k ε-=若初始状态为)0(2x ,当鼓励为)(4k f 时,求其全响应.第二章2-1 已知描述系统的微分方程和初始状态如下,试求其零输入响应.(1)1)0(',1)0(),()(6)('5)(''-===++-y y t f t y t y t y(4)0)0(',2)0(),()()(''===+-y y t f t y t y2-2 已知描述系统的微分方程和初始状态如下,试求其+0值)0(+y 和)0('+y .(2))()(,1)0(',1)0(),('')(8)('6)(''t t f y y t f t y t y t y δ====++--(4))()(,2)0(',1)0(),(')(5)('4)(''2t e t f y y t f t y t y t y t ε====++-- 解:2-4 已知描述系统的微分方程和初始状态如下,试求其零输入响应、零状态响应和全响应.(2))()(,2)0(',1)0(),(3)(')(4)('4)(''t e t f y y t f t f t y t y t y t ε---===+=++ 解:2-8 如图2-4所示的电路,若以)(t i S 为输入,)(t u R 为输出,试列出其微分方程,并求出冲激响应和阶跃响应.2-12 如图2-6所示的电路,以电容电压)(t u C 为响应,试求其冲激响应和阶跃响应.2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试求下列卷积,并画出波形图.(1))(*)(21t f t f (2))(*)(31t f t f (3))(*)(41t f t f(4))(*)(*)(221t f t f t f (5))3()(2[*)(341--t f t f t f波形图如图2-9(a)所示.波形图如图2-9(b)所示.波形图如图2-9(c)所示.波形图如图2-9(d)所示.波形图如图2-9(e)所示.2-20 已知)()(1t t t f ε=,)2()()(2--=t t t f εε,求)2('*)1(*)()(21--=t t f t f t y δ2-22 某LTI 系统,其输入)(t f 与输出)(t y 的关系为dx x f e t y t x t )2()(1)(2-=⎰∞--- 求该系统的冲激响应)(t h .2-28 如图2-19所示的系统,试求输入)()(ttfε=时,系统的零状态响应.2-29 如图2-20所示的系统,它由几个子系统组合而成,各子系统的冲激响应辨别为求复合系统的冲激响应.第三章习题、试求序列的差分、和.、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应.1)3)5)、求下列差分方程所描述的离散系统的单位序列响应. 2)5)、求图所示各系统的单位序列响应.(a)(c)、求图所示系统的单位序列响应.、各序列的图形如图所示,求下列卷积和.(1)(2)(3)(4)、求题图所示各系统的阶跃响应.、求图所示系统的单位序列响应和阶跃响应.、若LTI离散系统的阶跃响应,求其单位序列响应.、如图所示系统,试求当鼓励辨别为(1)(2)时的零状态响应.、如图所示的离散系统由两个子系统级联组成,已知,,鼓励,求该系统的零状态响应.(提示:利用卷积和的结合律和互换律,可以简化运算.) 、如图所示的复合系统有三个子系统组成,它们的单位序列响应辨别为,,求复合系统的单位序列响应.第四章习题4.6 求下列周期信号的基波角频率Ω和周期T.(1)t j e 100 (2))]3(2cos[-t π(3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++(5))4sin()2cos(t t ππ+ (6))5cos()3cos()2cos(t t t πππ++ 4.7 用直接计较傅里叶系数的办法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式).图4-154.10 利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率份量.图4-18 4-11 某1Ω电阻两端的电压)(t u如图4-19所示,(1)求)(t u的三角形式傅里叶系数.(2)利用(1)的结果和1)21(=u,求下列无穷级数之和(3)求1Ω电阻上的平均功率和电压有效值.(4)利用(3)的结果求下列无穷级数之和图4-19 4.17 按照傅里叶变换对称性求下列函数的傅里叶变换(1)∞<<-∞--=ttttf,)2()]2(2sin[)(ππ(2)∞<<-∞+=tttf,2)(22αα(3)∞<<-∞⎥⎦⎤⎢⎣⎡=ttttf,2)2sin()(2ππ4.18 求下列信号的傅里叶变换(1))2()(-=-t e t f jt δ (2))1(')()1(3-=--t e t f t δ (3))9sgn()(2-=t t f (4))1()(2+=-t e t f t ε (5))12()(-=t t f ε4.19 试用时域微积分性质,求图4-23示信号的频谱.图4-234.20 若已知)(j ])([ωF t f F =,试求下列函数的频谱:(1))2(t tf (3)dt t df t )( (5))-1(t)-(1t f (8))2-3(t f e jt (9)t dt t df π1*)(4.21 求下列函数的傅里叶变换(1)⎩⎨⎧><=000,1,)(j ωωωωωF (3))(3cos 2)(j ωω=F(5)ωωωω1)(2n -20sin 2)(j +=∑=j n e F4.23 试用下列方法求图4-25示信号的频谱函数(1)利用延时和线性性质(门函数的频谱可利用已知结果).(2)利用时域的积分定理.(3)将)(t f 看作门函数)(2t g 与冲激函数)2(+t δ、)2(-t δ的卷积之和.图4-254.25 试求图4-27示周期信号的频谱函数.图(b )中冲激函数的强度均为1.图4-274.27 如图4-29所示信号)(t f 的频谱为)(ωj F ,求下列各值[不必求出)(ωj F ](1)0|)()0(==ωωj F F (2)ωωd j F ⎰∞∞-)( (3)ωωd j F 2)(⎰∞∞-图4-294.28 利用能量等式计较下列积分的值.(1)dt t t 2])sin([⎰∞∞- (2)⎰∞∞-+22)1(x dx4.29 一周期为T 的周期信号)(t f ,已知其指数形式的傅里叶系数为n F ,求下列周期信号的傅里叶系数(1))()(01t t f t f -=(2))()(2t f t f -= (3)dt t df t f )()(3= (4)0),()(4>=a at f t f4.31 求图4-30示电路中,输出电压电路中,输出电压)(2t u 对输入电流)(t i S 的频率响应)()()(2ωωωj I j U j H S =,为了能无失真的传输,试确定R 1、R 2的值.图4-304.33 某LTI 系统,其输入为)(t f ,输出为式中a 为常数,且已知)()(ωj S t s ↔,求该系统的频率响应)(ωj H .4.34 某LTI 系统的频率响应ωωωj j j H +-=22)(,若系统输入)2cos()(t t f =,求该系统的输出)(t y . 4.35 一理想低通滤波器的频率响应4.36 一个LTI 系统的频率响应 若输入)5cos()3sin()(t t t t f =,求该系统的输出)(t y .4.39 如图4-35的系统,其输出是输入的平方,即)()(2t f t y =(设)(t f 为实函数).该系统是线性的吗? (1)如t t t f sin )(=,求)(t y 的频谱函数(或画出频谱图). (2)如)2cos(cos 21)1(t t f ++=,求)(t y 的频谱函数(或画出频谱图).4.45 如图4-42(a)的系统,带通滤波器的频率响应如图(b)所示,其相频特性0)(=ωϕ,若输入求输出信号)(t y .图4-424.48 有限频带信号)(t f 的最高频率为100Hz ,若对下列信号进行时域取样,求最小取样频率s f .(1))3(t f (2))(2t f (3))2(*)(t f t f (4))()(2t f t f +4.50 有限频带信号)4cos()2cos(25)(11t f t f t f ππ++=,其中kHz f 11=,求Hz f s 800=的冲激函数序列)(t T δ进行取样(请注意1f f s <).(1)画出)(t f 及取样信号)(t f s 在频率区间(-2kHz ,2kHz )的频谱图.(2)若将取样信号)(t f s 输入到截止频率Hz f c 500=,幅度为的理想低通滤波器,即其频率响应画出滤波器的输出信号的频谱,并求出输出信号)(t y .图4-47图4-48图4-494.53 求下列离散周期信号的傅里叶系数.(2))4)(30()21()(=≤≤=N k k f k第五章5-2 求图5-1所示各信号拉普拉斯变换,并注明收敛域. 5-3 利用经常使用函数(例如)(t ε,)(t e at ε-,)()sin(t t εβ,)()cos(t t εβ等)的象函数及拉普拉斯变换的性质,求下列函数)(tf的拉普拉斯变换)(sF.(1))2()()2(-----tete ttεε(3))]1()()[sin(--tttεεπ(5))24(-tδ(7))()42sin(ttεπ-(9)⎰t dxt)sin(π(11))]()[sin(22ttdtdεπ(13))(22tet tε-(15))1()3(---tte tε1235-4 如已知因果函数)(tf的象函数11)(2+-=sssF,求下列函数)(ty的象函数)(sY.(1))2(tfe t-(4))12(-ttf5-6 求下列象函数)(sF的原函数的初值)0(+f和终值)(∞f.(1)2)1(32)(++=sssF(2))1(13)(++=ssssF5-7 求图5-2所示在=t时接入的有始周期信号)(tf的象函数)(sF.图5-25-8 求下列各象函数)(sF的拉普拉斯变换)(tf.(1))4)(2(1++ss(3)235422++++ssss(5))4(422++sss(7)2)1(1-ss(9))52(52+++ssss5-9 求下列象函数)(sF的拉普拉斯变换)(tf,并粗略画出它们的波形图.(1)11+--se Ts(3)3)3(2++-se s(6)222)1(ππ+--se s其波形如下图所示:其波形如下图所示:其波形如下图所示:5-10 下列象函数)(sF的原函数)(tf是=t接入的有始周期信号,求周期T并写出其第一个周期(Tt<<0)的时间函数表达式)(tfo.(1)se-+11(2))1(12ses-+5-12 用拉普拉斯变换法解微分方程)(3)(6)('5)(''tftytyty=++的零输入响应和零状态响应.(1)已知2)0(',1)0(),()(===--yyttfε.(2)已知1)0(',0)0(),()(===---yytetf tε.5-13 描述某系统的输出)(1ty和)(2ty的联立微分方程为(1)已知)(=tf,1)0(1=-y,2)0(2=-y,求零状态响应)(1tyzs,)(2tyzs.5-15 描述某LTI系统的微分方程为)(4)(')(2)('3)(''tftftytyty+=++求在下列条件下的零输入响应和零状态响应.(1)1)0(',0)0(),()(===--yyttfε.(2)1)0(',1)0(),()(2===---yytetf tε.5-16 描述描述某LTI系统的微分方程为)(4)(')(2)('3)(''tftftytyty+=++求在下列条件下的零输入响应和零状态响应.(1)3)0(',1)0(),()(===++y y t t f ε.(2)2)0(',1)0(),()(2===++-y y t e t f t ε. 5-17 求下列方程所描述的LTI 系统的冲激响应)(t h 和阶跃响应)(t g .(1))(3)(')(3)('4)(''t f t f t y t y t y -=++5-18 已知系统函数和初始状态如下,求系统的零输入响应)(t y zi .(1)656)(2+++=s s s s H ,1)0(')0(==-y y(3))23(4)(2+++=s s s s s H ,1)0('')0(')0(===--y y y5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应辨别为11)(1+=s s H ,21)(2+=s s H ,)()(3t t h ε=,)()(24t e t h t ε-=,求复合系统的冲激响应)(t h .5-26 如图5-7所示系统,已知当)()(t t f ε=时,系统的零状态响应)()551()(32t e e t y t t zs ε--+-=,求系数a 、b 、c.5-28 某LTI 系统,在以下各类情况下起初始状态相同.已知当鼓励)()(1t t f δ=时,其全响应)()()(1t e t t y t εδ-+=;当鼓励)()(2t t f ε=时,其全响应)(3)(2t e t y t ε-=. (1)若)()(23t e t f t ε-=,求系统的全响应.5-29 如图5-8所示电路,其输入均为单位阶跃函数)(t ε,求电压)(t u 的零状态响应.5-42 某系统的频率响应ωωωj j j H +-=11)(,求当输入)(t f 为下列函数时的零状态响应)(t y zs .(1))()(t t f ε= (2))(sin )(t t t f ε= 5-50 求下列象函数的双边拉普拉斯变换.(1)3]Re[1,)3)(1(2<<---s s s (2)1]Re[3,)3)(1(2-<<-++s s s4 2<+ss(4)]Re[1,)1)(4(42<<-+++-ssss(3)] Re[,4。

信号与线性系统分析习题答案_(吴大正_第四版__高等教育出版社)

信号与线性系统分析习题答案_(吴大正_第四版__高等教育出版社)

第一章 信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))tf=r)(sin(t(7))f kε=t)(2(k(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

信号与线性系统分析 (吴大正 第四版)第四章习题答案(完整资料).doc

信号与线性系统分析 (吴大正 第四版)第四章习题答案(完整资料).doc

【最新整理,下载后即可编辑】 第四章习题 4.6 求下列周期信号的基波角频率Ω和周期T 。

(1)t j e 100 (2))]3(2cos[-t π (3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++(5))4sin()2cos(t t ππ+ (6))5cos()3cos()2cos(t t t πππ++ 4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。

图4-154.10 利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率分量。

图4-184-11 某1Ω电阻两端的电压)(t u 如图4-19所示,(1)求)(t u 的三角形式傅里叶系数。

(2)利用(1)的结果和1)21(=u ,求下列无穷级数之和 ......7151311+-+-=S (3)求1Ω电阻上的平均功率和电压有效值。

(4)利用(3)的结果求下列无穷级数之和 (7)151311222++++=S图4-194.17 根据傅里叶变换对称性求下列函数的傅里叶变换(1)∞<<-∞--=t t t t f ,)2()]2(2sin[)(ππ(2)∞<<-∞+=t t t f ,2)(22αα (3)∞<<-∞⎥⎦⎤⎢⎣⎡=t t t t f ,2)2sin()(2ππ4.18 求下列信号的傅里叶变换(1))2()(-=-t e t f jt δ (2))1(')()1(3-=--t e t f t δ(3))9sgn()(2-=t t f (4))1()(2+=-t e t f t ε(5))12()(-=tt f ε4.19 试用时域微积分性质,求图4-23示信号的频谱。

图4-234.20 若已知)(j ])([ωF t f F =,试求下列函数的频谱:(1))2(t tf (3)dt t df t )( (5))-1(t)-(1t f (8))2-3(t f e jt (9)tdt t df π1*)(4.21 求下列函数的傅里叶变换(1)⎩⎨⎧><=0,1,)(jωωωωωF(3))(3cos2)(jωω=F(5)ωωωω1)(2n-2sin2)(j+=∑=jneF4.23 试用下列方式求图4-25示信号的频谱函数(1)利用延时和线性性质(门函数的频谱可利用已知结果)。

信号与线性系统分析(吴大正第四版)第四章习题答案

信号与线性系统分析(吴大正第四版)第四章习题答案

第四章习题4.6求下列周期信号的基波角频率Ω和周期T O(1) e j100t( 2)cos[^(t—3)](3) cos( 2t) —Sin(4t)( 4)cos( 2nt) +cos(3πt) +cos( 5nt)(5)cosC t) - Sin( t) ( 6)cos(:t)∙ cos( t) cosC t)2 4 23 5亠?Tr 解(I)角频率为Ω= IOO rad∕s.周期T=三=÷⅛SIoU⑵角频率为Ω =rad∕sτ周期= 4 s⑶角频率为Ω = 2 rad厂周期T = ~ = π S(4)角频率为Ω = πrad∕s,周期 T=I^ = 2 sΩ(5)角频率为Ω —rad∕s∙周期T =-^ — 8 S4 £2⑹角频率为C =盒r^d∕s,周期T = = 60 s4.7用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。

—4 —IO 1 4图4-15C ¢)解 (1 )周期T = 4 ι∩ ==于F 则有U 4⅛ — 1 ≤ r ≤ 4⅛+ 1 口)=[∣07 4⅛ + 1 < r 〈 4⅛ + 3由此可得。

T *U rt = ~ f TT/(z ) cos (fiΩr) dt = -∣—f /(r )cos(^)drJ ・』—⅛Z ・』—2 乙=£ I sin = 0,?J = 12—ZJ —I 24.10利用奇偶性判断图 4-18示各周期信号的傅里叶系数中 所含有的频率分量。

∕∣∖fΛ -√ 1 √√f /)—rV 1 WZ T "T/1r¥Λlr>/VVVYV NT]/AtJVN*1幷TCOS(^y^)Clr = 2 .——SIn 打Tr窗川=0,12・・ τ f{t)s ∖n(fi∩t)dt = -∣-j ^∕C^)sin(^y^)df (2)周期 T= 2.Ω =■ sin(πf)・0,"≤ r ≤加十1 2⅛ + 1 < r < 2⅛ + 2由此可得=⅛ τ∕(r)^dr = ^J. J —T 艺呢1 + e^pfir ■1r ∣/(t)e"HFFtnidf =SinaCE Or dr—1 Z 」*?! = 0,±1, 土2,…nκ» = O , ± 1. + 2—图4—18=∕1C-z) =—∕l(r⊂ j)/(r)cos(τιΩt) drT n = 0 * 1 * 2 * …du = 盘?= 盘$= *”= 血=久=仏=…・=0 则fΛt)的傅里叶级数中含有的频率分量为奇次余弦波亠(2)由∕2Cr)的波形可知y⅛ (f) =Z-fz(—t)严I J - I J则有丿 4 CT ^ 小=1,2,…I b rt=亍y(f )sιn(^iΩf )df则fz(t>的傅里叶级数中含有的频率分量为正弦波G ¢3)rfl ∕3cn的波形可知人⑺=∕3(-r)则有牛=0Jl 4 「壬・耐=0・1 * 2 *・”*应Ff =〒f(t)co^(ιiΩt )dzJiJG即∕s(r)的傅里叶级数中含有的频率分量为偶次余弦波*⑷ 由Λ(r)的波形可知/⑴ 为奇谐函数,即T.行⑴=—∕√r ± T)则有J = az = a A= = b2= ⅛= ⅛= φ,φ = 0即人(门的博里叶级数中只含有奇次谐波•包拈正弦波和余弦波”4—11某1 Ω电阻两端的电压u(t)如图4-19所示,(1 )求u(t)的三角形式傅里叶系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章习题4.6求下列周期信号的基波角频率Q和周期T。

(1 ) e j100t( 2) cos^td)](3) cos(2t) sin( 4t) ( 4) cos(2p cos(3二t) cos(5「:t)(5) cos^-t) sinqt) ( 6) cos^t) cos^t) cos铸t)解(l)角频率为0=100 rad/s,周期丁=三=亍2 s0 100o⑵角频率为Q =今rad/s T周期T = -^ = 4 s(3) 角频率为Q = 2rad豊,周期T =—=沢s(4) 角频率为Q = Jr rad/s,周期T = ^ = 2 s12(5) 角频率为Q =耳rad/s*周期T = = 8 s4 £2⑹角频率为C =盒rad/s,周期T = yy = 60 S4.7用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。

图4-159 ft1啓料十b n = -= /(r)sin(nOr)dt =万 /(f)sin(-^-)dj=£ I stn 年Q == 1,2"・2 J-L 2(2)周期丁 = 2』=年=兀,则有:sin(rtz),心0,由此可得1 ft^i ri^ i ri . 帀 T )e _ r ^' dr = — /(r )e _:rlfirdr —可 sin( n-f )e _ dfJ J —-Jr —『=|2 J 01上厂檢2iz( 1 — ?i 2)所含有的频率分量mkvv_T _f i 7 f 2 2 1NT ;VN~T/^i J.it/子/"Tk/I'r(h >(1)周期 T = 4/=2囂=h—亍—戈円则有 由此可得a n = -^= f T T /(t )cos (riflt )dz = /(Z)cos( J J —苗 乙J —2] ■j] T /= —sin2?j;r2 >drJ??r2J-j 4.10利用奇偶性判断图4-18示各周期信号的傅里叶系数中» = 0, ± 1, + 2 …(t)(1)rtr 化⑺的波形可知=厲(一小=一八匕二寻)“G =盘?=盘』=*"=佻=仇=% = *八=0 则fAn 的傅里叶级数中含有的频率分量为奇次余弦波亠(2)由/2(r )的波形可知b 2 = b A = Z?6 == 0即人")的傅里叶级数中只含有奇次谐波•包括正弦波和余弦波"利用(1)的结果和u (2)「,求下列无穷级数之和求1 Q 电阻上的平均功率和电压有效值 。

图 4-18h =未 I b rl = 0/( .r)cos( ) dr(3)(4) 则有 务=0广工b =土” T J O则f 2a )的傅里叶级数中含有的频率分量为正弦彼&由f 3(t )的波形可知人⑺=则看 僦=0r#* ny (z )cos ( JiQt >dz\_ 4卜=T即AG )的傅里叶级数中含有的频率分量为偶次余弦波〜由ACO 的波形可知/⑷ 为奇谐函数•即人⑴=—/Jr 土壬)4-11 某1 Q 电阻两端的电压u (t )如图4-19所示, (1) 求u (t )的三角形式傅里叶系数。

(4)利用(3)的结果求下列无穷级数之和S=1丄321 152 72图4-19(1)由uU)的披形图可知T = 2,Q =y = 7T •则0,则有)df =一Idf = 1Q? j千| t u (/)cos(?if^r) dz = 丄J ~jrcas( FE〉ckJ 0«(/)COS(?27T/)df-I4T ^(r)sin( =匸一亍1 —CQ5( ?I7C)pisinC?iT;r)ck则Mf)三角形式的傅里叶级数为则可得无穷级数 S=l-£ +丄一£ + ・・=手 ooi 4(3) 1 fi 电阻上的平均功率为11 *1] 「1 ]P =' «*(r )dr = — u 2(t)dt = — dr =—J - —y/J/ J QZ则电压有效值为匕有敕="■=世72(4) 由idt)的波形图可知w(f) = / U)30y^^sint WTTf)=Ff = I1 =*+工 _ 丹 1 — eg (心)• #小、(2) u (t)波形图可知w(T } =T +Sn= I1 - (― 1}"“ sin(T ) = 1则有 即1 — (— l)fl ]sin<yir>n7C zTV2冷1『:_u 2 (r)dz =— -t2j_:将捉(『)的傅里叶级数代入上式得]一1 1 — COS (W7r )■n|_1[T + 厶一頑一sm(T r)]dz = 12-f (t)二二厂」::::t 厂: ::£ 亠 t f(t)二注 2IL 2 二trij —i4.17 空1 —(—1户Ff= 1OCSFf= 1UTZsin(^^)drW7T■壬冷十寺十97C"— _根据傅里叶变换对称性求下列函数的傅里叶变换(1)f(t)Jin [2「([「2)]厂:口…:二(2)(3)⑴ 由于宽度为“偏度为1的门函数珀⑴ 的频谱函数为rSa^y),即sin(^)阿r 〔f )——» rSa(^) = --------------Z a>取r = 2,幅度为亍•根据傅里叶变换线性性质有=寺 X 2Sa(u») — SaU-ygs ⑴ "一Sa(o ))注意到是偶甬数•根据对称性可得Sa(/) -~*2n X -y^2(3)=丸劭(cv)根据时移性和尺度变换性可知 菟沁2E —2)]]= 珈皿)宀/°、 = 2Sa_2^(r — 2)"可知£ 一 i J知⑴一她匕 3根据对称性可知血;:「)一根据频域卷积积分性质可得-stn( 2?:f)-■9■w1r 1 (1)2TZ I*—―> -- ----22?弘(3)又有(2) 由于可知 即 /(f)2aw £ 2亢 rad/s|0,1 w | > 2/r rad/s..2Q .> —2疋rf = 2 a _ + r宀厂一 *『"的傅里叶变换为汰e"由于4.18求下列信号的傅里叶变换解 (1)已知由时移性质可得执r —2) —「弧再由频移性质可得八门的傅里叶变换hdh — 2) —「就卄门即F(j w )=厂圖”门(2) /(r)=严7扩"一1) = y (z- 1) - <-3)^(r- 1}=y (:-1)+ 3»(t-1)又dd) — — js 由时移特性可知/(r)的傅里叶变换为F<jw) = (j 如+ 3)ff(3) /(?) = sgn(r 2 — 9> = 1 — 2畑⑺又乳职<门]=「和(打丁却血=P 「击="EGJ —™J —33< rad/s〉4r rad/ s即 /Cr)=-sinX2r riy >_Qc</<TC的傅里叶变换为F(jaj) = J 2Io.ifa>(U< 4式 rad> 4r rad/s(1 ) f(t) 71(t -2) (3)f (t) =sgn(t 2- 9)(5)f(t)八(2-1)(2) f (tHe J3(t_1h'(t -1)(4)f(tr e*(t 1)孔fg = 2恋(妆)一5(3小(r ) —►丸$(仞)+Jtu利用时移特性可得1 _ : 亡一购) + ■:—_ e --^ = 戒(3)+ — Jw _J印再由尺度变换特性可得即f (n 的傅里叶变换为则有戒十—e _J -w购4.19试用时域微积分性质1F ( jo ;)=杠机⑷)+ A L 曲j®图 4-23解(1)由八⑴的波形可得其闭合表达式为/i(r)= —[e(t + r> -e(r —r>]由此可得f i(t)= —+ r)—e(t—r)K —8( t—r)—讯 f — r)_—r r 又有£( f )f*■北$(3〉+ -、—皿5<f)—1可得e^jwre( f i r)—* ^5(cv)十——J®(5(r±r)—尸呎则有缸八⑺]=-•沁辺一2s就加)r g当3=0时上式值为X则有心1(门]=F-八⑺]=j闷2t£jcos((^r)— 2sin((^r)54.20若已知F[f (t )] = Fj ),试求下列函数的频谱C2)由/,(?)的波形可得其闭合表达式为—(r--^)e (r-4> — G —ja — p44ZZ由此可得/2(r )= 生)(上一手)一£(上十手)一百“一手〉+凯上一手) r 24 4 2又有 可得则有(F ) Y -----------> 戒(3 ) —7—闷 一p±jwtE (f土 可)Y --- ” 7T$(3)— ------------------- -------/JQJE ( f土 Y ------- » 兀 $( 3 ) —二 -----------=_8_ j ⑷芒COS (^)-CQS(^) J4当03 = 0时•上式为0,则有(1 ) tf(2t) (3) tdf(t) dt (5 )(1-t)f (1-t)(8 ) e jtf (3-2t)(9 )df(tk 1dt -t解(1)根拥频域微分特性可知■y—F( j@)GOJ 则有r/(r)一j 羊F(jGdco根据尺度变换特性可得纤⑵)一j*£F(j号)则可得牴m]…j ££弘号)(3)市时域微分持性可得巴F…(jGF(闷)又由频域微分持性可得(―血警…荻申⑺]^-_jo>F(joj)_ =- F( joj) +oj^-F(joj) d/ - JUOJ(5)由频域微分特性可得屮打一罟尸3口3由反转特性可得-f/(-r) *又由时移性质可得(-z+l)/(-z + l) —5^(1 —z)/( 1 —=一je_3w(—讪)dct>(8)由尺度变换特性可得理一盒)一£F(—j号)由时移特性可得卅3—加一*于汁(一j号)又由频移特性可得打(3 - 2z)昇•沖F(jW* 即MeV(3 一2D] = -|e--:^F(j 肯^)(9)rti时域徴分特性可得又有则由时域卷积定理可得—*_> jsF(jcu)・(—j}sgn(<u)兀f4.21求下列函数的傅里叶变换(3)F(j J =2cos(3 )(5)2F(j .)八2sin e-j(2n 1)"n=0 特F (冋f0,网疳• ’0'■'■ 0(1)傅里叶逆变换为4 ]a)F (]&))—-―啓—jsgn(oj) refF(js)(1)2TT,*1 ‘ F(JOJ) dw—乂空也•则由时移特性可知QJ总"-1 \2 月 incu一一;如 如& -\ 2sino/ 一j九3) *——a e - i-、 2sin (7j -証则F(jG 的傅里叶逆变换为f(F)=戶-F(juf)-=耳E (F — 1) g 2(t — 3) +gg(f —5〉4.23试用下列方式求图4-25示信号的频谱函数 (1 )利用延时和线性性质 (门函数的频谱可利用已知结果)。

相关文档
最新文档