(新课标)高考数学二轮总复习1.2.2数列递推关系综合应用专题限时训练文

合集下载

2020新课标高考数学(文)二轮总复习课件:1-2-2 数列递推关系综合应用

2020新课标高考数学(文)二轮总复习课件:1-2-2 数列递推关系综合应用
15,n≥7.
上一页
返回导航
下一页
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
类型三 递推关系的实际应用 突破数列在生活实际中的应用 [例 3] 2018 年底某县的绿化面积占全县总面积的 40%,从 2019 年开始,计划每 年将非绿化面积的 8%绿化,由于修路和盖房等用地,原有绿化面积的 2%被非绿 化.
上一页
返回导航
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
所以 Tn=1132-64n×+33n.(11 分) 经检验,n=1 时也适合.综上可得 Tn=1132-64n×+33n.
(12 分)
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
【知规则·规范解答】 缺少一步,则扣该步相应分数.
——采点得分说明
返回导航
下一页
新课标高考第二轮总复习•文科数学
(2)设 cn=4n2-bn 12n,求数列{cn}的前 n 项和 Sn. [解析] (2)由(1)知 bn=1×2n-1=2n-1. 因为 cn=4n2-bn 12n, 所以 cn=22n+112n-1=142n1-1-2n1+1.
所以 an=33, n-1n,=n1≥,2.
(4 分)
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
(2)若数列{bn}满足 anbn=log3an,求{bn}的前 n 项和 Tn. [解析] (2)因为 anbn=log3an,所以 b1=13.(5 分) 当 n≥2 时,bn=31-nlog33n-1=(n-1)·31-n, 所以 T1=b1=13.(6 分) 当 n≥2 时,Tn=b1+b2+b3+…+bn=13+[1×3-1+2×3-2+…+(n-1)×31-n],(7 分)

2023年高考数学二轮复习第二篇经典专题突破专题二数列第2讲数列求和及其综合应用

2023年高考数学二轮复习第二篇经典专题突破专题二数列第2讲数列求和及其综合应用

返回导航
专题二 数列
高考二轮总复习 • 数学
返回导航
5.(2022·全国新高考Ⅰ卷)记 Sn 为数列{an}的前 n 项和,已知 a1=1, Sann是公差为13的等差数列.
(1)求{an}的通项公式; (2)证明:a11+a12+…+a1n<2.
专题二 数列
高考二轮总复习 • 数学
【解析】 (1)∵a1=1,∴S1=a1=1,∴Sa11=1, 又∵Sann是公差为13的等差数列, ∴Sann=1+13(n-1)=n+3 2,∴Sn=(n+32)an, ∴当 n≥2 时,Sn-1=(n+13)an-1, ∴an=Sn-Sn-1=(n+32)an-(n+13)an-1,
返回导航
【解析】(1)设等比数列{an}的公比为q,由a1,a2,a3-2成等差数 列,得2a2=a1+a3-2,
即4q=2+2q2-2,解得q=2(q=0舍去), 则an=a1qn-1=2n,n∈N*.
专题二 数列
高考二轮总复习 • 数学
返回导航
(2)bn=a1n+2log2 an-1=21n+2log2 2n-1=21n+2n-1, 则数列{bn}的前 n 项和 Sn=12+14+…+21n+(1+3+…+2n-1) =1211--2121n+12n(1+2n-1)
专题二 数列
高考二轮总复习 • 数学
n(n1+1)=1n-n+1 1; n(n1+k)=1k1n-n+1 k; n2-1 1=12n-1 1-n+1 1; 4n21-1=122n1-1-2n1+1.
返回导航
专题二 数列
高考二轮总复习 • 数学
返回导航
2.如果数列{an}是等差数列,{bn}是等比数列,那么求数列{an·bn} 的前n项和Sn时,可采用错位相减法.用错位相减法求和时,应注意: (1)等比数列的公比为负数的情形;(2)在写出“Sn”和“qSn”的表达式时应特 别注意将两式“错项对齐”,以便准确写出“Sn-qSn”的表

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。

最新高考数学第二轮专题复习- 数列的综合运用(含答案)

最新高考数学第二轮专题复习- 数列的综合运用(含答案)
地满足 .按此预测,在本年度内,需求量超过1.5
万件的月份是( )
A.5月、6月B.6月、7月C.7月、8月D.8月、9月
二. 填空题
7.数列 前n项和为__________.
8.设 是首项为1的正项数列,且 ,则它的
通项公式是 _________.
9.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,求这个
A. B.
C. D.
4.若数列 前8项的值各异,且 对任意 都成立,则下列数列中可取遍
前8项值的数列为( )
A. B. C. D.
5.已知数列 ,那么“对任意的 ,点 都在直线 上”是“
为等差数列”的( )
A.必要而不充分条件B. 充分而不必要条件
C. 充要条件D. 既不充分也不必要条件
6.根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量 (万件)近似
数列的公比,项数为.
10.在各项均为正数的等比数列 中,若 则
.
三. 解答题
11.数列 的前n项和为 ,且 , 求
(1) , , 的值及数列 的通项公式;(2) 的值.
12. 有穷数列 的前n项和Sn=2n2+n, 现从中抽取某一项(不是首项和末项)后, 余下项的
平均值是79.(1)求数列 的通项;(2)求数列 的项数及抽取的项数.
常数项为0, 那么 一定是公差不为0的等差数列.
通项 与前n项和 之间的关系:
2.分析高考趋势
数列是初等数学与高等数学衔接和联系最密切的内容之一, 是进一步学习高等数学的基础, 数列的题目形态多变, 蕴含丰富的数学思想和数学方法, 是高考的热点之一. 在近几年新教材的高考试题中, 对数列的考查多以解答题的形式出现, 数列与函数, 数列与不等式等的综合知识, 在知识的交汇点处设计题目, 成为高考对能力和素质考查的重要方面. 在数列方面的考查, 对能力方面的要求, 呈现越来越高的趋势, 对知识考查的同时, 伴随着对数学思想方法的考查. 在近几年新教材的高考试题中, 数列约占 %左右, 考查的内容主要有: ①等差数列、等比数列的基本知识 (定义、通项公式、前n项和公式); ②等差数列、等比数列与其他知识点的综合运用, 及应用数列知识解决实际问题; ③ 函数和方程的思想, 化归思想, 分类讨论思想, 待定系数法等.

新课标高考数学(理)二轮总复习专题限时训练:1-2-2 数列递推关系综合应用

新课标高考数学(理)二轮总复习专题限时训练:1-2-2 数列递推关系综合应用

专题限时训练 (小题提速练)(建议用时:45分钟)羀KG 12] 一、选择题1.(2019·江西模拟)等差数列{a n }的前n 项和为S n ,若a 1+a 3+a 5+a 7+a 9=20,则S 9=( ) A .27 B .36 C .45 D .54答案:B解析:∵等差数列{a n }的前n 项和为S n ,由a 1+a 3+a 5+a 7+a 9=20, ∴5a 5=20,解得a 5=4,则S 9=9(a 1+a 9)2=9a 5=36,故选B.2.(2018·福建省泉州市质量检测)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A .8 B .10 C .16 D .32答案:D解析:当n =1时,a 1=2a 1-2,解得a 1=2;当n >1时,由S n =2a n -2,可得S n -1=2a n -1-2,所以a n =2a n -2a n -1,整理可得a n a n -1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .所以S 5-S 4=a 5=25=32.故选D. 3.已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( )A .16B .20C .33D .120答案:C解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.4.数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .82答案:B解析:由已知得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.在数列{a n }中,a 1=2,na n +1=(n +1)a n +2(n ∈N *),则a 10=( ) A .34 B .36 C .38 D .40答案:C解析:∵na n +1=(n +1)a n +2,∴a n +1n +1-a n n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1. ∴a 1010=a 1010-a 99+a 99-a 88+…+a 22-a 11+a 1 =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫19-110+⎝ ⎛⎭⎪⎫18-19+…+⎝ ⎛⎭⎪⎫1-12+2 =3810.∴a 10=38.故选C.6.数列{a n }的前n 项和S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =ax 2+x (a ∈N *)的图象上,则( ) A .a 与a n 的奇偶性相同 B .n 与a n 的奇偶性相同 C .a 与a n 的奇偶性相异 D .n 与a n 的奇偶性相异 答案:C解析:因为对任意的n ∈N *,点(n ,S n )均在函数y =ax 2+x (a ∈N *)的图象上, 所以S n =an 2+n .当n =1时,a 1=S 1=a +1,当n ≥2时,a n =S n -S n -1=an 2+n -[a (n -1)2+(n -1)]=2an -a +1, 当n =1时,a 1=2an -a +1=a +1. 所以a n =2an -a +1=(2n -1)a +1.所以a 与a n 的奇偶性相异,而n 的奇偶性与a n 的奇偶性无关,故选C. 7.(2019·雨花区校级模拟)数列{a n }满足a n +a n +2=2a n +1(n ∈N *),且a 1+a 2+a 3=9,a 4=8,则a 5=( ) A.212 B .9 C.172 D .7答案:A解析:数列{a n }满足a n +a n +2=2a n +1(n ∈N *),则数列{a n }为等差数列, ∵a 1+a 2+a 3=9,a 4=8, ∴3a 1+3d =9,a 1+3d =8, ∴d =52,∴a 5=a 4+d =8+52=212,故选A.8.(2018·郑州市质量预测)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N *),记T n=1S 1+1S 2+ (1)n(n ∈N *),则T 2 018=( ) A.4 0342 018 B .2 0172 018 C.4 0362 019 D .2 0182 019答案:C解析:由a n +2-2a n +1+a n =0(n ∈N *),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,T n =1S 1+1S2+…+1S n =2⎝ ⎛⎭⎪⎫11-12+12-13+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019,故选C.9.(2019·河南省驻马店市联考)设S n 为数列{a n }的前n 项和,若S n =12a n +1,n ∈N *,则a 5=( )A .2B .-2C .1D .-1答案:A解析:∵S n 为数列{a n }的前n 项和且S n =12a n +1(n ∈N *),∴a n =S n -S n -1=12a n +1-12a n -1-1=12a n -12a n -1,n ≥2,∴a n =-a n -1,n ≥2, 又n =1时,S 1=a 1=12a 1+1,∴a 1=2,∴数列{a n }是以2为首项,-1为公比的等比数列, ∴a 5=2·(-1)5-1=2,故选A.10.(2018·合肥市质量检测)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( ) A .22 018-1 B .32 018-6 C.⎝ ⎛⎭⎪⎫12 2 018-72 D .⎝ ⎛⎭⎪⎫13 2 018-103答案:A解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3.当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,所以a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列,所以a n +1=-2×(-2)n -1=(-2)n ,所以a n =(-2)n -1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.11.记f (n )为最接近n (n ∈N *)的整数,如f (1)=1,f (2)=1,f (3)=2,f (4)=2,f (5)=2,….若1f (1)+1f (2)+1f (3)+…+1f (m )=4 034,则正整数m 的值为( ) A .2 016×2 017 B .2 0172 C .2 017×2 018 D .2 018×2 019 答案:C解析:由题意知,f (1)=1,f (2)=1,共有2个;f (3)=2,f (4)=2,f (5)=2,f (6)=2,共有4个;f (7)=3,f (8)=3,…,f (11)=3,f (12)=3,共有6个. 故f (m ′)=n ,f (m ′+1)=n ,…,f (m -1)=n ,f (m )=n ,共有2n 个.所以1f (1)+1f (2)2个+1f (3)+…+1f (6)4个+…+1f (m ′)+…+1f (m )2n 个=2×1+4×12+6×13+…+2n ×1n =2+2+2+…+2n 个=2n . 故2n =4 034,得n =2 017.故m =2+4+6+…+2×2 017=2×(1+2+3+…+2 017)=2×⎝ ⎛⎭⎪⎫1+2 0172×2 017=2 017×2 018,故选C. 12.我国古代的《洛书》中记载着世界上最古老的一个幻方.如图,将1,2,…,9填入3×3的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数1,2,3,…,n 2填入n ×n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记n 阶幻方的对角线上的数字之和为N n ,如图三阶幻方的N 3=15,那么N 9的值为( )A .41B .45C .369D .321答案:C解析:根据题意得幻方对角线上的数成等差数列,则根据等差数列的性质可知对角线上的首尾两个数相加正好等于1+n 2. 根据求和公式得N n =n (1+n 2)2, 则N 9=9×(1+92)2=369,故选C.二、填空题13.(2018·沈阳市高三质量监测)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =_______.答案:2n -1解析:方法一 因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a na n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n -1=2n -1(n ≥2).又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n =2n -1(n ∈N *).方法二 因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n -1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *).14.数列{a n }的前n 项和为S n (n ∈N *),2S n -na n =n .若S 20=-360,则a 2=__________. 答案:-1解析:∵2S n -na n =n , ①∴当n ≥2时,2S n -1-(n -1)a n -1=n -1, ② ∴①-②得,(2-n )a n +(n -1)a n -1=1, ③ ∴(1-n )a n +1+na n =1, ④∴③-④得,2a n =a n -1+a n +1(n ≥2),∴数列{a n }为等差数列,∵当n =1时,2S 1-a 1=1,∴a 1=1, ∴S 20=20+20×192d =-360,∴d =-2. ∴a 2=1-2=-1.15.以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列各式正确的是________. ①2a 3>3a 4;②5a 5>a 1+6a 6;③a 5+a 4-a 3<0;④a 3+a 6+a 12<2a 7. 答案:①②③解析:∵S 5>S 6,∴a 6<0,∴2a 3-3a 4=-2d -a 4=-a 6>0, ∴①正确.∵5a 5-a 1-6a 6=-5d -a 1-a 6=-2a 6>0,∴②正确. ∵a 5+a 4-a 3=a 5+d =a 6<0,∴③正确. ∵a 3+a 6+a 12=a 6+a 7+a 8=3a 7,∴④错误.16.(2017·贵阳市第一中学模拟)已知数列{a n }满足a 1=12,且对任意的n ∈N *,a n +1=a 2n +a n ,则 n =12 017 1a n +1的整数部分为_______.答案:1解析:由已知a n +1=a 2n +a n 及a 1=12,得a n +1-a n =a 2n >0,故数列{a n }为递增数列.又1a n +1=1a 2n +a n =1a n (a n +1)=1a n -1a n +1,所以1a n +1=1a n -1a n +1,则∑n =12 017 1a n+1=1a 1-1a 2 018=2-1a2 018.由a 1=12及a n +1=a 2n +a n ,计算可得a 2=34,a 3=2116>1,所以a 2018>a 3>1,故∑n =12 0171a n +1=1a 1-1a 2 018=2-1a 2 018∈(1,2),故∑n =12 017 1a n +1的整数部分为1. 专题限时训练 (大题规范练)(建议用时:60分钟)1.(2018·重庆六校高三联考)若数列{a n }的前n 项和S n 满足S n =2a n +n . (1)求证:数列{a n -1}是等比数列; (2)设b n =log 2(1-a n ),求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .解析:(1)证明:当n =1时,a 1=S 1=2a 1+1,解得a 1=-1. 当n >1时,S n =2a n +n ,S n -1=2a n -1+(n -1),则S n -S n -1=(2a n +n )-[2a n -1+(n -1)]=2a n -2a n -1+1, 即a n =2a n -1-1, 所以a n -1=2(a n -1-1).又a 1-1=-2,所以数列{a n -1}是首项为-2,公比为2的等比数列. (2)由(1)得a n -1=-2·2n -1=-2n ,所以1-a n =2n , b n =log 22n =n ,1b n b n +1=1n (n +1)=1n -1n +1.所以T n =⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 2.(2018·洛阳市高三统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89. 解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n . 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n . (2)证明:因为a n b n =log 2a n ,所以b n =2n4n , 所以T n =241+442+643+ (2)4n , 14T n =242+443+644+…+2n 4n +1, 两式相减得,34T n =24+242+243+244+…+24n -2n 4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1 =2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n 4n +1 =23-6n +83×4n +1,所以T n =89-6n +89×4n <89.3.(2018·南宁二中、柳州高中联考)已知a 1=2,a 2=4,数列{b n }满足:b n +1=2b n +2且a n +1-a n =b n .(1)求证:数列{b n +2}是等比数列; (2)求数列{a n }的通项公式. 解析:(1)证明:由题意,得b n +1+2b n +2=2b n +2+2b n +2=2, 因为b 1=a 2-a 1=4-2=2, 所以b 1+2=4,所以数列{b n +2}是以4为首项,2为公比的等比数列. (2)由(1)可得,b n +2=4·2n -1,故b n =2n +1-2. 因为a n +1-a n =b n , 所以a 2-a 1=b 1, a 3-a 2=b 2,a 4-a 3=b 3 …a n -a n -1=b n -1,累加得,a n -a 1=b 1+b 2+b 3+…+b n -1,所以n ≥2时,a n =2+(22-2)+(23-2)+(24-2)+…+(2n -2) =2+22(1-2n -1)1-2-2(n -1)=2n +1-2n ,即a n =2n +1-2n (n ≥2).因为a 1=2=21+1-2×1,所以数列{a n }的通项公式为a n =2n +1-2n (n ∈N *).4.(2019·河北模拟)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1()n ≥2.(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <32. 解析:(1)证明:当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n S n =1,1S n -1S n -1=2,从而⎩⎨⎧⎭⎬⎫1S n 构成以1为首项,2为公差的等差数列.(2)证明:由(1)可知,1S n=1S 1+(n -1)×2=2n -1,∴S n =12n -1,∴当n ≥2时,1n S n =1n ()2n -1<1n ()2n -2=12⎝⎛⎭⎪⎫1n -1-1n , 从而S 1+12S 2+13S 3+…+1n S n<1+12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =32-12n <32.。

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。

备战2025年高考二轮复习数学课件专题:数列 专题突破练-数列的递推关系

备战2025年高考二轮复习数学课件专题:数列 专题突破练-数列的递推关系

故m=176.故选B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
二、选择题
9.(2024·河北石家庄模拟)已知数列{an}满足
结论正确的是( AB )
A.
1

-2 为等比数列
B.{an}的通项公式为
2 -1
an=2 +1
C.{an}为递减数列
D.
1

的前 n 项和 Tn=2n+1-2-n
1
×a1=(n+1)·2n-2.
当 n=1 时,a1=1,符合上式,故 an=(n+1)·2n-2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
=
2×3
,则
2
12.设数列{an}的前n项和为Sn,且Sn=2an+n-7,若30<ak<50,则k的值

4
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1
当 b2=3 时,等差数列{bn}的公差为 1,通项 bn=n+1,
lo g 3
10
1
1
所以 ∑ b a =1− 2
3 n
=1 n
1
+2
1
1
− 3+…+9
1
− 10
BC.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1
+ 10
=
1
1
− 11 =1− 11
1
3
·
2

3
·…· =2× 1
-1
4

备战2025年高考二轮复习数学课件专题:数列的递推关系

备战2025年高考二轮复习数学课件专题:数列的递推关系

3.(人 A 选必二 4.1 节习题改编)已知数列{an}满足
+1
an+1= an,a1=1,则
+3
a11=( B )
1
A.
22
解析
1
B.
26
11
11
a11= a10=
13
13
3×2
1
=13×12a1=26 .
故选 B.
×
10
11
a9=
12
13
3
C.
91
×
10
12
×
9
11
a8=…=
11
13
1
D.
1
[1+
]≤
3
2
64
1
(1+2)=32,所以当 n=1 时 Sn 取得最大值为 32,当 n=2 时 Sn 取得最小值为 16.
3
因为∀n∈N*,λ-1<Sn≤4λ+4 恒成立,所以
所以实数 λ 的取值范围为[7,17).
-1 < 16,
解得 7≤λ<17,
32 ≤ 4 + 4,
考点二
累加、累乘法
+1 -
解 (1)由
+1
=2,得 an+1-an=2(n+1).
当n≥2时,an=(an-an-1)+…+(a2-a1)+a1=2+4+…+2n=n(n+1).
当n=1时,1×(1+1)=2=a1,所以an=n(n+1).
(2)设数列{bn}的公差为d,
因为4b2=4b1+b4⇒4(b1+d)=5b1+3d,得d=b1,易知bn=b1n.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新课标)高考数学二轮总复习1.2.2数列递推关系综合应用专题限时训练文专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.设数列{}a n 满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *),若数列{}a n 是常数列,则a =( )A .-2 B.-1 C.0D.(-1)n解析:因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a (a +1)=a 2-2,解得a =-2.故选A. 答案:A2.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB.a n =2n +1C .a n =2n +2D.a n =3n解析:由已知2a n +1=1a n +1a n +2,可得1a n +1-1a n =1a n +2-1a n +1,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .答案:A3.已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),若S n =100,则n 的值为( ) A .8 B.9 C.10D.11解析:由S n -S n -3=51得,a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,∴S n =n (a 2+a n -1)2=100,解得n =10. 答案:C4.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=( )A .-5 B.-15C.5D.15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以3为公比的等比数列. ∵a 2+a 4+a 6=a 2(1+q 2+q 4)=9,∴a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3(1+q 2+q 4)=35. ∴log 1335=-5.故选A.答案:A5.已知S n 表示数列{a n }的前n 项和,若对任意n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2019=( )A .1 008×2 020 B.1 008×2 019 C .1 009×2 019D.1 009×2 020解析:在a n +1=a n +a 2中,令n =1,得a 2=a 1+a 2,a 1=0;令n =2,得a 3=2=2a 2,a 2=1, 于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列.S 2019=2 019×2 0182=1009×2 019. 答案:C6.在数列{a n }中,a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=( ) A.210 B.211 C.224D.225解析:n >1时,S n +1-S n =S n -S n -1+2, ∴a n +1=a n +2,∴a n +1-a n =2.数列{a n }从第二项开始组成公差为2的等差数列,所以S 15=a 1+(a 2+…+a 15)=1+2+282×14=211. 答案:B7.(2019·广东汕头市一模)设S n 是数列{a n }的前n 项和,且S n =12-12a n ,则a n =( )A.13·⎝ ⎛⎭⎪⎫12n -1 B.12·⎝ ⎛⎭⎪⎫23n -1 C .2·⎝ ⎛⎭⎪⎫13n -13D.⎝ ⎛⎭⎪⎫13n 解析:由题意,得S 1=a 1=12-12a 1,所以a 1=13.又当n ≥2时,S n -S n -1=a n =12-12a n -12+12a n-1,即a n a n -1=13,所以数列{a n }是首项为13,公比为13的等比数列,所以a n =⎝ ⎛⎭⎪⎫13n.故选D. 答案:D8.已知数列{a n }满足a 1=1,a n +1=a na n +2(n ∈N *),则数列{a n }的通项公式为( ) A .a n =2n-1 B.a n =2-13n -1C .a n =12n -1D.a n =13n -2解析:由题意得1a n +1=2a n+1,则1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,易知1a 1+1=2≠0,所以数列⎩⎨⎧⎭⎬⎫1a n+1是以2为首项,2为公比的等比数列,则1a n +1=2n,则a n =12n -1.故选C. 答案:C9.已知函数f (n )=n 2cos(n π),且a n =f (n ),则a 1+a 2+…+a 100=( ) A .0 B.100 C.5 050D.10 200解析:a 1+a 2+a 3+…+a 100 =-12+22-32+42-…-992+1002=(22-12)+(42-32)+…+(1002-992) =3+7+…+199=50(3+199)2=5 050.故选C.答案:C10.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B.156 C.168D.195解析:由a n +1=a n +2a n +1+1,可知a n +1+1=a n +1+2a n +1+1=(a n +1+1)2, ∴a n +1+1=a n +1+1,又a 1+1=1,故数列{a n +1}是首项为1,公差为1的等差数列,所以a n +1=n ,所以a 13+1=13,则a 13=168.故选C.答案:C11.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知数列{a n }的前n 项的“均倒数”为12n +1,且b n =a n +14,则1b 1b 2+1b 2b 3+…+1b 10b 11=( ) A.111 B.910 C.1011D.1112解析:由已知,得na 1+a 2+…+a n=12n +1, ∴a 1+a 2+…+a n =n (2n +1)=S n . 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1. 验证知,当n =1时此式也成立, ∴a n =4n -1.∴b n =a n +14=n .∴1b n ·b n +1=1n -1n +1,∴1b 1b 2+1b 2b 3+…+1b 10b 11=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫110-111=1011.故选C. 答案:C12.已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n -1+a 2n +1(n ≥2),b n =1a n +a n +1,记数列{b n }的前n 项和为S n ,则S 33的值是( ) A.99 B.33 C.4 2D.3解析:∵2a 2n =a 2n -1+a 2n +1(n ≥2),∴数列{a 2n }为等差数列,首项为1,公差为22-1=3.∴a 2n =1+3(n -1)=3n -2.a n >0.∴a n =3n -2. ∴b n =1a n +a n +1=13n -2+3n +1=13(3n +1-3n -2),故数列{b n }的前n 项和为S n =13[(4-1)+(7-4)+…+(3n +1-3n -2)]=13(3n +1-1).则S 33=13(3×33+1-1)=3.故选D.答案:D二、填空题13.已知等比数列{a n }的前n 项和为S n ,且S n =m ·2n -1-3,则m = .解析:a 1=S 1=m -3, 当n ≥2时,a n =S n -S n -1=m ·2n -2,∴a 2=m ,a 3=2m ,又a 22=a 1a 3, ∴m 2=(m -3)·2m ,整理得m 2-6m =0, 则m =6或m =0(舍去). 答案:614.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n = . 解析:当n ≥2时,a n =S n -S n -1=2n +1; 当n =1时,a 1=S 1=4≠2×1+1.因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥215.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,-2为公比的等比数列, 所以a n =(-2)n -1.答案:(-2)n -116.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形,第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第六件首饰上应有 颗珠宝;则前n 件首饰所用珠宝总数为 颗.(结果用n 表示)解析:由题意,知a 1=1,a 2=6,a 3=15,a 4=28,a 5=45,a 6=66,….∴a 2-a 1=5,a 3-a 2=9,a 4-a 3=13,a 5-a 4=17,a 6-a 5=21,…,a n -a n -1=4n -3. ∴(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+(a 6-a 5)+…+(a n -a n -1) =a n -a 1=5+9+13+17+21+…+(4n -3) =(n -1)(5+4n -3)2=2n 2-n -1.∴a n =2n 2-n ,其前n 项和为S n =2(12+22+32+…+n 2)-(1+2+3+…+n ) =2×n (n +1)(2n +1)6-n (n +1)2=4n 3+3n 2-n6.答案:66 4n 3+3n 2-n6专题限时训练 (大题规范练)(建议用时:60分钟)1.在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0. (1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n .解析:(1)∵a n +2-2a n +1+a n =0,∴a n +2-a n +1=a n +1-a n , ∴a n +1-a n 为同一常数,∴数列{a n }是以a 1为首项的等差数列. 设a n =a 1+(n -1)d .则a 4=a 1+3d ,∴d =2-83=-2,∴a n =10-2n .(2)由(1)知a n =10-2n ,令a n =0,得n =5. 当n >5时,a n <0;当n =5时,a n =0; 当n <5时,a n >0. 设T n =a 1+a 2+…+a n .∴当n >5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=T 5-(T n -T 5)=2T 5-T n =n 2-9n +40.当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2.∴S n =⎩⎪⎨⎪⎧9n -n 2(n ≤5),n 2-9n +40(n >5).2.(2019·东莞市模拟)设{a n }是单调递增的等比数列,S n 为数列{a n }的前n 项和.已知S 3=13,且a 1+3,3a 2,a 3+5构成等差数列. (1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解析:(1)由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3=13,6a 2=a 1+a 3+8,∴a 2=3,a 1+a 3=10,得3q +3q =10,解得q =3或q =13(舍). ∴a n =a 2qn -2=3n -1,S n =1×(1-3n)1-3=3n-12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列. ∵S 1+λ=1+λ,S 2+λ=4+λ,S 3+λ=13+λ, ∴(4+λ)2=(1+λ)·(13+λ),解得λ=12,此时S n +12=3n2,∴S n +12S n -1+12=3n23n -12=3(n ≥2),∴存在常数λ=12.使得数列{S n +12}是首项为a 1+12=32,公比为3等比数列.3.设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=1+S n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }为等差数列,且b 1=a 1,公差为a 2a 1.当n ≥3时,比较b n +1与1+b 1+b 2+…+b n 的大小.解析:(1)因为a n +1=1+S n ,① 所以当n ≥2时,a n =1+S n -1,②①-②得a n +1-a n =a n ,即a n +1=2a n (n ≥2). 因为当n =1时,a 2=1+a 1=2, 所以a 2a 1=2,所以a n +1a n=2(n ∈N *), 所以数列{a n }是首项为1,公比为2的等比数列, 所以a n =2n -1.(2)因为b n =1+(n -1)×2=2n -1,所以b n +1=2n +1, 1+b 1+b 2+…+b n =1+n (1+2n -1)2=n 2+1.因为(n 2+1)-(2n +1)=n (n -2), 当n ≥3时,n (n -2)>0,所以当n ≥3时,b n +1<1+b 1+b 2+…+b n .4.(2019·安徽省淮南市第四次联考)已知数列{a n }的前n 项和为S n ,且对任意正整数n ,都有4a n =3S n +2成立.记b n =log 2a n . (1)求数列{a n }和{b n }的通项公式;(2)设c n =4(b n +1)·(b n +1+3),数列{c n }的前n 项和为T n ,求证:13≤T n <34.解析:(1)在4a n =3S n +2中,令n =1得a 1=2.因为对任意正整数n ,都有4a n =3S n +2成立,当n ≥2时,4a n -1=3S n -1+2,两式作差得,4a n -4a n -1=3a n ,所以a n =4a n -1,又a 1≠0,所以数列{a n }是以2为首项,4为公比的等比数列,∴a n =2×4n -1,∴b n =log 2a n =log 222n -1=2n -1.(2)证明:∵b n =2n -1,∴c n =4(b n +1)·(b n +1+3)=4(2n -1+1)·(2n +1+3)=1n ·(n +2)=12×⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫12-14+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -1-1n +1+12⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2,∴对任意n ∈N *,T n <34,又c n >0,所以,T n 为关于n 的增函数,所以T n ≥T 1=c 1=13.综上,13≤T n <34.。

相关文档
最新文档