实验九 波形发生器仿真实验报告
实验九集成运算放大器的基本应用--波形发生器实验报告
集成运算放大器的基本应用(IV)——波形发生器一.实验目的1.学习用集成运算放构成正弦波振荡器2.学习波形发生器的调整和主要性能指标的测试方法。
二.实验原理图为RC桥式正弦波振荡器。
其中RC串,并联电路构成正反馈支路,同时兼作选频网络,R1,R2,Rw及二极管等元件构成负反馈和稳幅环节。
调节电位器Rw,可以改变负反馈深度,以满足震荡的振幅条件和改善波形。
利用两个反向并联二极管D1,D2正向电阻的非线性特性来实现增幅。
D1,D2采用硅管,且要求特性匹配,才能保证输出波形正,负半周对称。
R3的接入是为了消弱二极管非线性的影响,以改善波形失真。
电路的振荡频率:f0=1/2πRC起振的幅值条件:Rr/R 1>=2式中Rr=Rw+R 2+(R 3//r 0),r 0 ——二极管正向导通电阻。
调整反馈电阻Rr,使电路起振,且波形失真最小。
如不能起振,则说明负反馈太强,应适当加强Rr ,如波形失真严重,则应适当减小Rr 。
三,实验设备与器件1,正负12V 直流电源 2.双踪示波器 3,电流毫伏表 4,频率计 5,集成运算放大器,6二极管IN4148*2 7电阻器,电容器若干。
四.实验内容一、方波发生器1、按图1电路创建待仿真实验电路。
2、观察运放741的2脚和振荡器输出端的波形,测出方波、三角波的幅值并与理论值比较;改变Rp 可以调整电路的震荡频率,用频率计测量振荡器的频率并与理论值比较。
U17413247651R120kΩR220kΩC147nFD102DZ4.7D202DZ4.7Rp200kΩKey=A50%R45.1kΩR520kΩVCC 12VVEE-12VXSC1ABExt Trig++__+_XFC1123图1 方波发生器电路二、三角波发生器1、按图2电路创建待仿真实验电路。
2、观察振荡器输出端的波形,测出方波、三角波的幅值并与理论值比较;改变Rp 可以调整电路的震荡频率及三角波的幅值,用频率计测量振荡器的频率并与理论值比较。
波形发生器实验报告(1)
波形发生器实验报告(1)波形发生器实验报告一、实验目的本实验的目的是通过使用示波器和电子电路来调制和产生不同的波形。
二、实验仪器与器材示波器、经过校准的函数发生器、万用表。
三、实验原理函数发生器是一种电子电路,可以产生不同类型的波形,例如正弦波、方波、三角波等。
为了实现这些波形,函数发生器中需要使用不同的电路元件。
例如,产生正弦波需要使用振荡电路,而产生方波需要使用比较器电路。
函数发生器的输出信号通过示波器来显示和测量。
四、实验步骤1.连接电路:将电源线连接到函数发生器和示波器上。
2.打开电源:按照设备说明书的步骤打开函数发生器和示波器的电源。
3.调节函数发生器:使用函数发生器的控制按钮来选择所需的波形类型,并调节频率和振幅。
使用示波器来观察和测量所产生的波形。
4.调节示波器:使用示波器的控制按钮来调整波形的亮度、对比度、扫描速度等参数,以达到最佳观测效果。
5.记录实验结果:记录所产生的不同波形类型、频率和振幅,并观察和记录示波器的显示结果。
五、实验结果通过本实验,我们成功地产生了正弦波、方波和三角波等不同的波形,并观察了这些波形的频率和振幅。
示波器的显示结果非常清晰,可以直观地观察到波形的特征和参数。
我们还对示波器的参数进行了调整,以获得最佳的观测效果。
六、实验结论本实验通过使用示波器和函数发生器,成功地产生了不同类型的波形,并观察了波形的特征和参数。
这些波形可以应用于各种电子电路实验中,并且需要根据具体应用要求进行调整和优化。
示波器是一种非常重要的测试仪器,可以直接观察和测量电路中的波形和信号特性,因此应用广泛。
模电实验波形发生器实验报告
模电实验波形发生器实验报告模电实验波形发生器实验报告实验名称:模拟电路波形发生器设计与制作实验目的:1.了解正弦波、方波、三角波等基本波形的特性及产生方法;2.掌握模拟电路的基本设计方法和制作技巧;3.加深对电路中各元件的认识和使用方法;4.提高实际操作能力和动手能力。
实验原理:波形发生器是一种模拟电路,在信号发生领域具有广泛的应用。
常见的波形发生器包括正弦波发生器、方波发生器、三角波发生器等。
正弦波发生器:正弦波发生器是一种周期性信号发生器,通过正弦波振荡电路产生高精度的正弦波信号。
常见的正弦波振荡电路有RC,LC和晶体振荡管等。
我们使用的正弦波发生器为Wien桥电路。
方波发生器:方波发生器属于非线性信号发生器,根据输入信号的不同,可以分为单稳态脉冲发生器、双稳态脉冲发生器和多谐振荡器等。
我们使用的方波发生器为双稳态脉冲发生器。
三角波发生器:三角波发生器是一种周期信号发生器,通过将一个线性变化的信号幅度反向后输入到一个比例放大电路中,就可以得到三角波信号。
我们使用的三角波发生器为斜率发生器。
实验步骤:1.按照电路原理图连接电路;2.打开电源,调节电压并测量电压值;3.调节电位器,观察波形在示波器上的变化;4.分别测量各波形的频率和幅值,并记录实验数据;5.将实验结果进行比较分析。
重点技术:1.电路连接技巧;2.相关工具的正确使用方法;3.电路元器件的选择和使用;4.测量和计算实验数据的方法。
注意事项:1.实验中使用电源时应注意电压值和电流值,避免短路和电源过载现象的发生;2.连接电路时应注意电路的接线和连接端子的位置,避免短路和错误连接的情况;3.在实验中应注意对电路元器件的选择和使用,确保电路的正常工作;4.测量和计算实验数据时应认真仔细,避免计算错误和实验数据异常的情况。
实验结论:通过本次实验,我们成功设计和制作了正弦波发生器、方波发生器和三角波发生器。
在实验过程中,我们掌握了模拟电路的基本设计方法和制作技巧,加深了对电路中各元件的认识和使用方法,并提高了实际操作能力和动手能力。
波形发生器实验报告
波形发生器实验报告波形发生器实验报告引言波形发生器是电子实验室中常见的仪器之一,它能够产生不同形状和频率的电信号。
本实验旨在通过搭建和调试波形发生器电路,了解波形发生器的工作原理和应用。
实验目的1. 掌握波形发生器的基本原理和电路结构;2. 学会使用电子元器件和仪器搭建波形发生器电路;3. 调试波形发生器电路,产生不同形状和频率的波形信号。
实验器材与元器件1. 函数发生器2. 示波器3. 电阻、电容、电感等元器件4. 电源5. 连接线实验步骤1. 搭建基本的RC波形发生器电路。
将电阻和电容按照一定的连接方式搭建成RC电路,连接至电源和示波器。
2. 调节电源和示波器的参数。
根据实验要求,设置电源的电压和示波器的时间和电压刻度。
3. 调试波形发生器电路。
通过改变电阻和电容的数值,观察波形发生器输出的波形变化。
记录不同参数下的波形特点。
4. 搭建其他类型的波形发生器电路。
根据实验要求,搭建其他类型的波形发生器电路,如正弦波发生器、方波发生器等。
5. 调试其他类型的波形发生器电路。
通过改变电阻、电容或其他元器件的数值,观察不同类型波形发生器输出的波形特点。
实验结果与分析在实验过程中,我们成功搭建了基本的RC波形发生器电路,并调试出了不同频率和形状的波形信号。
通过改变电阻和电容的数值,我们观察到波形的周期和振幅发生了变化。
当电阻和电容的数值较小时,波形的频率较高;而当电阻和电容的数值较大时,波形的频率较低。
此外,我们还搭建了正弦波发生器和方波发生器电路,并成功调试出了相应的波形信号。
实验总结通过本次实验,我们深入了解了波形发生器的工作原理和应用。
波形发生器作为一种常见的仪器,广泛应用于电子实验、通信、音频等领域。
通过调节电路中的元器件数值,我们可以产生不同形状和频率的波形信号,满足不同实验和应用的需求。
然而,本实验中我们只涉及了基本的RC波形发生器电路和部分常见的波形类型。
在实际应用中,波形发生器还有更多的类型和功能,如脉冲波形发生器、锯齿波形发生器等。
波形发生器专业课程设计实验报告
波形发生器专业课程设计实验报告方法1:选通输入/输出方法。
这时A口或B口8位外设线用作输入或输出,C口4条线中三条用作数据传输联络信号和中止请求信号。
方法2:双向总线方法。
只有A口含有双向总线方法,8位外设线用作输入或输出,此时C口5条线用作通讯联络信号和中止请求信号。
原理框图:硬件设计2.2 数模转换电路因为单片机产生是数字信号,要想得到所需要波形,就要把数字信号转换成模拟信号,所以该文选择价格低廉、接口简单、转换控制轻易并含有8位分辨率数模转换器DAC0832。
DAC0832关键由8位输入寄存器、8位DAC寄存器、8位D/A转换器和输入控制电路四部分组成。
但实际上,DAC0832输出电量也不是真正能连续可调,而是以其绝对分辨率为单位增减,是准模拟量输出。
DAC0832是电流型输出,在应用时外接运放使之成为电压型输出。
1、DAC0832引脚及功效:DAC0832是8分辨率D/A转换集成芯片。
和微处理器兼容。
这个DA芯片以其价格低廉、接口简单、转换控制轻易等优点,在单片机应用系统中得到广泛应用。
D/A转换器由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路组成。
各引脚功效说明:D0~D7:8位数据输入线,TTL电平,有效时间应大于90ns(不然锁存器数据会犯错);ILE:数据锁存许可控制信号输入线,高电平有效;CS:片选信号输入线(选通数据锁存器),低电平有效;WR1:数据锁存器写选通输入线,负脉冲(脉宽应大于500ns)有效。
由ILE、CS、WR1逻辑组合产生LE1,当LE1为高电平时,数据锁存器状态随输入数据线变换,LE1负跳变时将输入数据锁存;_FER:数据传输控制信号输入线,低电平有效,负脉冲(脉宽应大于500ns)有效;WR2:DAC寄存器选通输入线,负脉冲(脉宽应大于500ns)有效。
由WR2、_FER逻辑组合产生LE2,当LE2为高电平时,DAC寄存器输出随寄存器输入而改变,LE2负跳变时将数据锁存器内容打入DAC寄存器并开始D/A转换。
实验九 波形发生器仿真实验报告
南昌大学实验报告学生姓名:学号: 专业班级:实验类型:■验证□综合□设计□创新实验日期:2017.12.25实验成绩:实验九波形发生器一、实验目的1、学习用集成运放构成正弦波、方波和三角波发生器。
2、学习波形发生器的调整和主要性能指标的测试方法。
二、实验原理RC桥式正弦波振荡器(文氏电桥振荡器):图2-1 RC桥式正弦波振荡器原理图RC串并联电路构成正反馈支路,同时兼作选频电路,及二极管等元件构成负反馈和稳幅环节。
调节电位器,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。
利用两个反向并联二极管正向电阻的非线性特性来实现稳幅。
采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正负半周对称。
的接入是为了削弱二极管非线性的影响,以改善波形失真。
电路的振荡频率起振的幅值条件式中,为正向导通电阻。
调整反馈电阻(调节),使电路起振,且波形失真最小。
如果不能起振,则说明负反馈太强,应该适当加大。
如果波形失真严重,则应该适当减小。
方波发生器:图2-2 方波发生器原理图由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC积分器两大部分。
如图所示,滞回比较器及简单RC积分电路组成的方波三角波发生器。
特点是线路简单,但是三角波的线性度较差。
主要用于产生方波,或者对三角波要求不高的场合。
电路振荡频率式中方波输出幅值三角波输出幅值调节电位器(即改变),可以改变振荡频率,但三角波的幅值也会随之变化。
如果想要互不影响,则可以通过改变或者来实现振荡频率的调节。
三角波和方波发生器:图2-3 三角波和方波发生器原理图如果把滞回比较器和积分器首尾相接形成正反馈闭环系统,则比较器输出的方波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。
电路振荡频率方波幅值三角波幅值调节可以改变振荡频率,改变比值可以调节三角波的幅值。
波形发生器
南昌大学实验报告学生姓名: 林海金 学 号: 6100210178 专业班级: 卓越通信101班 实验类型: 验证 □综合 □设计 □创新 实验日期: 2012-5-31 实验成绩:一、实验项目名称实验九 集成运算放大器的基本应用波形发生器二、实验目的1、学习用集成运放构成正弦波、方波和三角波发生器。
2、学习波形发生器的调整和主要性能指标的测试方法。
三、实验基本原理由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。
1、RC 桥式正弦波振荡器(文氏电桥振荡器)图9-1为RC 桥式正弦波振荡器。
其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。
调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。
利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。
D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。
R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。
电路的振荡频率 2πRC 1f O起振的幅值条件1fR R ≥2式中Rf =RW +R2+(R3 // rD ),rD 为二极管正向导通电阻。
调整反馈电阻Rf (调RW ),使电路起振,且波形失真最小。
如不能起振,则说明负反馈太强,应适当加大Rf 。
如波形失真严重,则应适当减小Rf 。
改变选频网络的参数C 或 R ,即可调节振荡频率。
一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。
图9-1 RC 桥式正弦波振荡器 2、方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。
图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。
它的特点是线路简单,但三角波的线性度较差。
主要用于产生方波,或对三角波要求不高的场合。
波形发生器设计实验报告
波形发生器设计实验报告一、实验目的(1)熟悉555型集成时基电路结构、工作原理及其特点。
(2)掌握555型集成时基电路的基本应用。
(3)掌握由555集成型时基电路组成的占空比可调的方波信号发生器。
二、实验基本原理555电路的工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。
555芯片管脚介绍555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
用555定时器组成的多谐振荡器如图所示。
接通电源后,电容C2被充电,当电容C2上端电压Vc升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T导通,此时电容C2通过R1放电,Vc下降。
当Vc下降到Vcc/3时,V0翻转为高电平。
电容器C2放电所需的时间为t,R1,C,ln2pL2 ( 1-1)当放电结束时,T截止,Vcc将通过R1,R2,R3向电容器C2充电,Vc由Vcc/3 上升到2Vcc/3所需的时间为t,(R1,R2,R3)Cln2,0.7(R1,R2,R3)CpH22 (1-2)当Vc上升到2Vcc/3时,电路又翻转为低电平。
模拟电路实验报告——波形发生器
模拟电路实验报告RC波形发生器电路一.实验设计1.首先需要一个可以产生方波、矩形波、锯齿波、三角波四种波形的电路,分析后可以得知mooc中给出的锯齿波电路(右图)便可以产生这四种波形。
2.根据公式T=2(R PN+R)R/R,可知欲改变信号的频率,可以得到三412种改变信号频率的方法。
{1>①在AB两点间串联一个滑动变阻器②在CD两点间串联一个滑动变阻器③在B点添加一个滑动变阻器改变分压2>①由公式η=(R PP+R)/(R PN+R)可知若在AB两点间添加滑动变阻44器,则会在改变信号的频率的同时改变信号的占空比,所以不可以在AB两点间串联一个滑动变阻器。
②由公式V OM=(R*V)/R可知若在CD两点间添加一个滑动变阻器,1Z2则会在改变信号的频率的同时改变信号的幅值。
所以也不可以在CD 两点间串联一个滑动变阻器。
③所以只有在B点添加一个滑动变阻器改变分压以此来改变信号的频率是可行的,由此改动电路如下。
3>为保证分压只与滑动变阻器有关,故在在R7后连接一个电压跟随器,并将R和R减小以提高信号的频率,最终电路图如下。
84O二.实验步骤1 2 3 >严格按照最终电路连接好。
>示波器 A 通道两端接在 A 点与地,B 通道两端接在 O 点与地。
>分别将 R 和 R 调整到 0%与 100%,记录下四组照片,这便是锯79齿波与矩形波的图像。
>将 R 和 R 调整到 50%,记录下这组照片,这便是三角波与方波 的图像。
三.理论分析 4 7 9 1 . 理论分析>锯齿波与矩形波(占空比最低):由公式η=(R PP +R 调整到 0%时(既 R PP =0Ω时),占空比最低。
当 R 调整到 0%时,分的电压最小,此时信号的周期最小, 频率最高。
当 R 调整到 100%时,分的电压最大,此时信号的周期最大, 频率最低。
>锯齿波与矩形波(占空比最高):由公式η=(R PP +R 调整到 100%时(既 R PN =0Ω时),占空比最高。
波形发生器的设计实验报告
波形发生器的设计实验报告波形发生器是一种用于产生各种波形信号的仪器或设备。
它常常被用于电子实验、通信系统测试、音频设备校准等领域。
本文将介绍波形发生器的设计实验,并探讨其原理和应用。
波形发生器的设计实验主要包括以下几个方面:电路设计、元件选择、参数调整和信号输出。
首先,我们需要设计一个合适的电路来产生所需的波形。
常见的波形包括正弦波、方波、三角波等。
根据不同的波形要求,我们可以选择适当的电路结构和元件组成。
例如,正弦波可以通过RC电路或LC电路实现,方波可以通过比较器电路和计数器电路实现,三角波可以通过积分电路实现。
在元件选择方面,我们需要根据设计要求来选择合适的电阻、电容、电感等元件。
这些元件的数值和质量对波形发生器的性能和稳定性起着重要的影响。
因此,我们需要仔细考虑每个元件的参数,并选择合适的品牌和型号。
参数调整是波形发生器设计实验中的关键步骤之一。
我们需要根据设计要求来调整电路中各个元件的数值和工作状态,以确保所产生的波形符合要求。
参数调整需要依靠实验数据和仪器测量结果来进行,同时也需要运用一定的电路分析和计算方法。
信号输出是波形发生器设计实验的最终目标。
在设计过程中,我们需要确保所产生的波形信号能够正确输出,并具有稳定性和准确性。
为了实现这一目标,我们可以使用示波器等仪器来对输出信号进行检测和分析,并根据需要进行调整和优化。
波形发生器具有广泛的应用领域。
在电子实验中,波形发生器常常被用于产生各种测试信号,用于测试和验证电路的性能和功能。
在通信系统测试中,波形发生器可以产生各种模拟信号,用于测试和校准通信设备。
在音频设备校准中,波形发生器可以产生各种音频信号,用于校准音频设备的频率响应和失真特性。
波形发生器的设计实验是一个涉及电路设计、元件选择、参数调整和信号输出的复杂过程。
在实验中,我们需要仔细考虑每个步骤的要求,并根据实际情况进行调整和优化。
通过合理的设计和实验验证,我们可以获得稳定、准确的波形信号,满足各种应用需求。
函数波形发生器实训报告
一、实训背景函数波形发生器是一种能够产生正弦波、方波、三角波等多种周期性波形的电子设备。
在现代电子技术中,波形发生器被广泛应用于通信、信号处理、自动控制等领域。
本实训旨在通过设计和实现一个基于51单片机的函数波形发生器,提高学生对单片机应用系统的设计与实现能力。
二、实训目标1. 掌握51单片机的基本原理和编程方法;2. 了解DAC0832数字模拟转换器的工作原理;3. 学会使用LM324运算放大器进行信号处理;4. 设计并实现一个能够产生正弦波、方波、三角波等多种周期性波形的函数波形发生器。
三、实训内容1. 硬件设计(1)51单片机:作为主控单元,负责控制整个系统的运行。
(2)DAC0832:将51单片机输出的数字信号转换为模拟信号。
(3)LM324运算放大器:对模拟信号进行放大、滤波等处理。
(4)电阻、电容、二极管等元件:构成滤波电路、限幅电路等。
2. 软件设计(1)正弦波发生器:采用查表法实现,将正弦波数据存储在单片机的存储器中,通过定时器产生中断,不断读取数据,经DAC0832输出。
(2)方波发生器:采用比较法实现,通过改变比较器的阈值,使输出波形在0和5V之间切换。
(3)三角波发生器:采用积分法实现,通过不断改变积分器的输入电压,使输出波形在0和5V之间变化。
3. 系统集成与调试将硬件电路连接完毕后,进行软件编程。
在编程过程中,不断调试,确保各个模块能够正常工作。
最后,将各个模块集成在一起,形成一个完整的函数波形发生器。
四、实训过程1. 硬件电路搭建(1)按照设计方案,连接51单片机、DAC0832、LM324运算放大器等元件。
(2)搭建滤波电路、限幅电路等。
2. 软件编程(1)编写正弦波发生器程序,实现正弦波输出。
(2)编写方波发生器程序,实现方波输出。
(3)编写三角波发生器程序,实现三角波输出。
3. 系统调试(1)检查各个模块是否正常工作。
(2)调整参数,使输出波形满足要求。
(3)测试不同频率、幅度下的波形输出。
实验九波形发生器
分电路的充放电时间常数,使
t
放电的时间常数为0,即把三角
波发生器转换成了锯齿波发生 uo
器。
t
周期的计算
R1C0T UZdt2R R1 2UZ
T 2R1RC R2
t UL uo UOM
t 0 - UOM
T
周期与频率的计算
uc
UH
t
0 UL
T1
T2
T1T2
RCln1(2R1) R2
T2R
Cln1(2R1) R2
f=1/T
占空比可调的矩形波发生电路
uc
D1
D2
-+
a RW c b
C
-
+
+
uo
R1
R2
2、三角波发生电路
1)电路结构
R01
uo1
-
+
+ A1
R R02
此比较器的反相输入端。
R2 上下门限电压:
UH
R1 R1 R2
Uom
UL
R1 R1 R2
Uom
2)工作原理
设 uo = + UOM 则:u+=UH 此时,输出给C 充电!
在 uc < UH 时, u- < u+ , uo 保持 + UOM 不变;
一旦 uc > UH , 就有 u- > u+ , uo 立即由+UOM 变成-UOM
实验九、波形发生电路
一、实验目的 掌握波形发生电路的特点和分析方法 熟悉波形发生器设计方法
二、实验仪器 双踪示波器 数字万用表
三、预习要求
四、实验内容
1 方波发生器 2 三角波发生器 3 锯齿波发生器
Verilog期末实验报告—波形发生器
一、实验目的使用Verilog 软件编写四种波形任意发生器的源代码,用modelsim 软件进行仿真测试,进一步强化Verilog ,modelsim 软件的编程能力为进一步的编程学习打下良好的基础。
二、实验原理该任意波形发生器要实现三个功能:(1)通过计数器并结合拼接操作产生四种波形正弦波,方波,三角波1,三角波形的5位数据地址。
(2).设定ROM 中对应波形地址地址的8位数值,将所有波形数值存储到ROM 中。
(3).设定2位的波形选择开关端口。
2bit 00000~00111 01000~01111 3bit data[7:0] 10000~1011111000~11111图 1整体设计方案四种波形要在一个周期内等间隔取8个点,定义对应的数据,下图为示意图,由于编程序需要,数据会进行相应的修改。
图2 四种波形一个周期内的取样示意图地址发生器(0-7)正弦波方波三角波1三角波2cl re 波形选择 1-11正弦方波三角波1三角波2y xx88yyx1四种波形数据地址对应的数据的存储器ROM根据示意图,由于实际情况需要,将正弦波平移至x轴以上,并将所有波形的峰峰值取大100倍。
下表1是ROM存储器三、实验内容任意波形发生器verilog程序代码:module wave(data,clk,add1,reset);//顶层模块端口定义output[7:0]data;input clk,reset;input[1:0] addr1;Wire[1:0] addr1;wire clk,reset;//输入输出变量定义ADDR 4(addr,clk,addr1,reset);//地址发生器模块调用rom 1(addr,data);//ROM存储器模块调用endmodulemodule ADDR(addr,clk,addr1,reset);output[4:0] addr;input clk,reset;wire clk,reset;reg[2:0] addr2;wire[1:0] addr1;reg[4:0] addr;initial addr2=3'b000; //定义计数初值always @(posedge clk or posedge reset)//每当有clk,或reset信号开启程序beginif(reset)beginaddr2<=0;//同步复位addr<=0;endelse if(addr2>=7)//addr2计数至7时,addr2复位beginaddr2<=0;endelsebeginaddr2<=addr2+1;//addr2由0至7计数addr<={addr1,addr2};//addr1与addr2地址拼接为addr的最终地址endendendmodulemodule rom(addr,data);//数据存储器模块input[4:0] addr;output[7:0] data;function[6:0] romout;//定义函数,存储32个波形取样点地址的数据input[4:0] addr;reg[4:0] addr;wire[7:0] data;case(addr)//根据不同地址,得到不同数据。
波形发生器设计实验报告(推荐阅读)
波形发生器设计实验报告(推荐阅读)第一篇:波形发生器设计实验报告波形发生器设计实验报告一、设计目的掌握用99SE软件制作集成放大器构成方波,三角波函数发生器的设计方法。
二、设计原理波形发生器:函数信号发生器是指产生所需参数的电测试信号的仪器。
按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。
而波形发生器是指能够输出方波、三角波、正弦波等多种电压波形的信号源。
它可采用不同的电路形式和元器件来实现,具体可采用运算放大器和分立元件构成,也可用单片专用集成芯片设计。
设计原理图:三、设计元件电阻:R1 5.1K、R2 8.2K、R3 680、R4 3K、R5 39KR6 1K、R7 39K、R8 39K 电容:C 1uF 运算放大器:U1A LM324、U1B LM324 二极管:D1 3.3V、D23.3V 滑动变阻器:RW1 10K 接口:CON3 地线、GND四、设计步骤大概流程图1、打开99SE,建立Sch文件。
绘制原理图。
绘制原理图时要注意放大器的引脚(注意引脚上所对应的数字)和二极管的引脚(注意原理图和PCB中的引脚参数是否一致)。
元件元件库代码电阻:RES2 滑动变阻器:POT2电容:CAP 放大器:OPAMP 二极管:ZENER3 元件封装代码电阻: AXIAL0.4 滑动变阻器:VR5 放大器:DIP14二极管:DIODE0.4 电容:RB.2/.42、生成网络表格本步骤可完成建立材料清单(可执行report中的Bill of Material)、电器规则检查(Tools中ERC)、建立网络表(Design中Create Netlist,点击OK即可)3、PCB文件的设置建立PCB文件单双面板设置:Design中Options进行设置单双面板,及面板大小(8cm*7cm)建立原点(Edit中Origin中的set)并在KeepOutLayer层中制板4、引入网络表执行Design中Load Nets载入网络表,屏幕弹出对话框,点击Browse按钮选择网络表文件(*net),载入网络表,单机Execute,便成功引入网络表。
波形发生器实验总结与体会
波形发生器实验总结与体会一、实验目的二、实验原理三、实验步骤四、实验结果与分析五、实验体会一、实验目的本次波形发生器实验的主要目的是熟悉和掌握基本电路元件的使用方法,了解各种波形信号的产生原理和特点,掌握常用波形信号的产生方法,加深对电路基础知识的理解。
二、实验原理本次波形发生器实验主要涉及到以下几个方面的原理:1. 三角波发生器原理:利用RC电路中充放电时间不同而产生不同幅度和频率三角波信号。
2. 方波发生器原理:利用反相比较器将正弦或三角波信号转换为方波信号。
3. 正弦波发生器原理:利用RC振荡电路或LC振荡电路产生稳定幅值和频率的正弦波信号。
4. 脉冲发生器原理:利用555计时芯片或多谐振荡电路产生稳定幅值和频率的脉冲信号。
5. 信号放大与滤波:通过运放等元件对产生的各种波形进行放大和滤波,以得到稳定、干净的信号输出。
三、实验步骤1. 按照电路图连接电路元件,包括三角波发生器、方波发生器、正弦波发生器和脉冲发生器等。
2. 调整电路元件参数,包括电容、电阻等,以得到所需的各种波形信号。
3. 通过示波器等测量仪器检测各种波形信号的幅值、频率等参数,并进行调整和优化。
4. 通过运放等元件对产生的各种波形进行放大和滤波,以得到稳定、干净的信号输出。
5. 对产生的各种波形进行实时观察和比较,并记录下各种信号特点和参数。
四、实验结果与分析通过本次实验,我成功地产生了三角波、方波、正弦波和脉冲信号,并对其进行了调整和优化。
其中,三角波信号具有周期性变化的特点,在工业控制中常用于模拟周期性变化的物理量;方波信号具有高低电平切换快速、噪声抗干扰能力强等特点,在数字电路中应用广泛;正弦波信号具有频率稳定、幅值恒定、波形优美等特点,在音频和通讯等领域中应用广泛;脉冲信号具有宽度可调、占空比可调、频率稳定等特点,在计时和触发等领域中应用广泛。
通过对各种波形信号的实时观察和比较,我深刻认识到了不同波形信号的产生原理和特点,加深了对电路基础知识的理解。
信号发生器实验报告波形发生器实验报告
信号发生器一、实验目(de)1、掌握集成运算放大器(de)使用方法,加深对集成运算放大器工作原理(de)理解.2、掌握用运算放大器构成波形发生器(de)设计方法.3、掌握波形发生器电路调试和制作方法 .二、设计任务设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号.三、具体要求(1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真. (2)利用一个按钮,可以切换输出波形信号.. (3)频率为1-2KHz 连续可调,波形幅度不作要求. (4)可以自行设计并采用除集成运放外(de)其他设计方案(5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真.四、设计思路基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号.五、具体电路设计方案Ⅰ、RC 桥式正弦波振荡器图1图2电路(de)振荡频率为:RCf π210=将电阻12k,62k 及电容100n,22n,分别代入得频率调节范围为:~,~,~3015Hz.因为低档(de)最高频率高于高档(de)最低频率,所以符合实验中频率连续可调(de)要求.RP2 R4 R13 组成负反馈支路,作为稳幅环节.R13与D1、D2并联,实现振荡幅度(de)自动稳定.D1、D2采用1N4001二极管.在multisim 软件仿真时,调节电位器25%~35%时能够起振.如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调(de)正弦信号.J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率.R P1采用双联线性电位器50k,便于频率细调,可获得所需要(de)输出频率.R P2 采用200k(de)电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定.下图2为起振波形.电路起振条件:左右22134p p f R R R R A ++=,代入数据解得Ω≤k R P 11.1002左Ⅱ方波发生器由正弦波振荡器产生(de)一定频率(de)正弦信号经过比较器产生一同频率(de)方波.如图3. 电路输出端引入(de)限流电阻R6 和两个背靠背(de)稳压管D3、D4(采用1N4734)组成双向限幅电路.UA741在这里实际上是一个电压比较器,当输入电压比基准电压高时,输出高电平,当输入电压比基准电压低时,输出低电平,输出端输出与输入同频率(de)方波.图3 图4Ⅲ比例运算放大电路转换开关J 5(de)作用是通过开关切换与比例运算放大电路连接,输出一定幅度(de)正弦波或方波.通过调节RP3(200k )调节放大倍数,936R R R A p f 右+=.如图4所示.在multisim 软件仿真时,当R P3 调节到50%时,(计算结果10%50-1*20033.0)(+=f A =)放大前信号(左图5)与放大后信号(右图6)如下图所示.图5 图6两幅图所占格数基本一致,左图中每格代表10v,右图中每格则代表100v,则此时信号约被放大了10倍. Ⅳ三角波发生器将J 公共端接到示波器上,当J 5与J 状态均处于上图状态时,输出(de)是正弦波,当拨下J 5 但J 状态如上图时,输出(de)是方波,当同时拨下J 5与J 时,输出(de)是三角波.总电路图如下图所示:六、实验过程及内容:1按照原理计算参数,确定选用电容电阻(de)参数 2按照原理图用multisim 进行仿真3按照电路图在电子实验箱中连线,进行测试 4按照电路图焊电路板5对焊好(de)电路板进行测试:观察波形及记下实际可调频率,并进行误差分析. 观察到(de)波形如下图所示:被放大后(de)方波信号通过积分电路既可得到三角波.⎰-=dt U C R U i O 9121s C R 01.0912==τ>> t mt m 是充电至饱和时间,如此选择参数可以保证电路不出现积分饱和失真,符合设计要求.实测频率为:Hz ~ Hz,113 Hz~595 Hz,,562Hz~2870Hz七、数据处理分析1波形均未失真,符合设计要求由上表可知,实测频率均比理想频率小,当仍符合低档(de)最高频率高于高档(de)最低频率,所以符合实验中频率连续可调(de)要求.出现误差(de)可能原因有:1)电容和电阻实际值和标值不完全一致,可能偏大.2)导线有微小阻抗,导致电路中阻抗增大.uA741(单运放)是高增益运算放大器,用于军事,工业和商业应用.这类单片硅提供输出短路保护和闭锁自由运作.芯片和工作说明:1和5为偏置(调零端),2为正向输入端,3为反向输入端,4接地,6为输出,7接电源8空脚内部结构图:十、收获和体会:通过本次实验充分认识到思考问题(de)重要性,碰到问题时要冷静分析电路图,实验与理论(de)结合才能更好(de)完成设计.又通过本次实验,从设计电路到焊接以及到最后调试都是慢慢摸索,认真思考,团结合作,学到了很多知识与经验.。
波形发生器实验报告
波形发生器实验报告波形发生器实验报告第一部分设计内容一、任务利用运算放大器设计并制作一台信号发生器,能产生正弦波、方波、三角波、锯齿波等信号,其系统框图如图所示。
二、建议1不采用单片机,同时实现以下功能:(1)至少能产生正弦波、方波、三角波、锯齿波四种周期性波形;在示波器上可以清晰地看清楚每种波形。
20分(2)输入信号的频率可以通过按钮调节;(范围越大越不好)20分后(3)输出信号的幅度可通过按钮调节;(范围越大越好)20分(4)输入信号波形并无显著杂讯;10分后(5)稳压电源自制。
10分(6)其他2种拓展功能。
20分后信号发生器系统框图第二部分方案比较与论证方案一、以555芯片为核心,分别产生方波,三角波,锯齿波,正弦波电路布局例如图1右图图1此方案较直观,但是产生的频率比较小最后输入正弦波时,信号受到阻碍小。
方案二‘由直观的分立元件产生,可以利用晶体管、lc震荡电路,积分电路的同时实现方波三角波,正弦波的产生。
此方案原理简单但是调试复杂,受干扰也严重。
方案三、使用内置图夫尔如(lm324)构建rc文氏正弦振荡器产生正弦波,正弦波的频率,幅度均调节器,再将产生的正弦波经过过零比较器,同时实现方波的输入,再由方波至三角波和锯齿波。
此方案电路简单,在集成运放的作用下,可以较容易的测到所需的波形。
通过调整参数可以得到较完美的波形。
实际设计过程使用方案三,基本原理例如图2右图基本设计原理框图(图2)第三部分:电路原理及电路设计电路的构成:1、正弦波采用rc桥式振荡器(如图3), rc 串并联网络是正反馈网络,rf 和r1为负反馈网络。
为满足用户震荡的幅度条件||=1,所以af≥3。
加入rf、r1支路,构成串联电压负反馈。
当电路达至平衡平衡状态时:由以上原理可设计出产生正弦波的电路图:图4其中r4为小电阻,只要满足r4+r5略大于2r1使||>1,电路便Eymet奋,随着输入的减小a自动降至||=1,使得输出稳定在某一值。
波形发生器实训报告
北京联合大学电子系统设计课程设计报告姓名:周羿学号: *************学院:信息学院专业:电子信息工程同组人名:蔡东来徐晓东学号: *************\27 时间:2010年6月23日地点:实验楼0707波形发生器设计报告摘要本设计是以AT89C52为控制模块,控制DAC0832输出正弦波、方波、三角波,并可控制其频率循环的变化。
关键词:AT89C52;DAC0832;倍频器;波形发生器。
一、实训题目波形发生器二、实训目的1、学习AT89C52、LM324、DAC0832等芯片的原理及使用方法。
2、学习使用protel软件实现实验原理图及仿真。
3、利用伟福软件实现实验中的编程程序。
4、学习在电路板上合理布局各种器件并焊接。
三、实训内容(1)能产生正弦波、方波、三角波;(2)频率、幅度可以设定;总体设计方案:该系统功能主要由AT89C52单片机通过相应的软件编程实现程序逻辑功能并结合相关的周围硬件电路而实现。
程序流程图-元器件清单芯片管脚示意图:原理图本设计分为以下模块:一、控制模块二、产生波形模块一、三角波二、方波三、正弦波此次波形发生器设计经过为我和队友的不懈努力,目前基本达到了预期的要求,通过对整个系统的调试,而且在译码部分利用的是单片机还可以进行扩展,增大该系统的功能。
但由于时间关系,扩展部分就只有用其他时间加以改善,实现更强大的功能。
使系统结构简单,可靠性高,成本低,实用效果良好。
在本次设计中,首先是加强了我对波形发生器的掌握,这方面是目前比较热门的话题,通过这次的课程设计也增加了我对学习波形发生器部分的兴趣。
其次,也加深了对单片机知识的学习,把以前没有搞懂的知识理解了,使单片机学习不在是停留在书本知识的学习,而是将其应用与实践中,使其成为一个系统的体系。
还有就是通过设计我也认识到软件的编程工作不光可以用汇编语言来完成,还可以用高级语言来实现,如C51等,这样可以使编程更简单、容易。
波形发生器实验报告
波形发生器实验报告实验仪器本次实验主要使用的仪器是波形发生器和示波器,其中,波形发生器是一种电子工具,可以发出各种波形信号,包括正弦波、方波、三角波等,主要用于测试电路的性能以及信号调试等方面。
示波器则是一种测量电信号的仪器,可以将电信号转化为可视化的波形,方便工程师进行测量和分析。
实验目的本次实验的主要目的是通过对波形发生器进行实验,了解波形发生器的工作原理、掌握波形的产生和调试方法,以及了解不同类型波形对电路的功效影响。
实验内容本次实验主要分为以下几个部分,分别为:正弦波产生、方波产生、三角波产生、调制波产生、频率和振幅调节和FFT 测量。
1. 正弦波产生首先,通过连接电源红黑极线和地线,将波形发生器及示波器连接电源,打开波形发生器开关,进入正弦波发生模式,将正弦波的频率参数设置在1kHz左右,然后将信号输出端连接至示波器通道A的输入端,打开示波器,在垂直方向调整光标,使波形垂直偏移最小,在水平方向调整光标,使波形居中,然后开始观测正弦波形。
2. 方波产生在正弦波产生模式下,通过在波形发生器上打开方波信号开关,设置相应频率和振幅参数,将信号输出端连接至示波器通道A的输入端,打开示波器,在垂直方向调整光标,使波形垂直偏移最小,在水平方向调整光标,使波形居中,然后开始观测方波形。
3. 三角波产生在正弦波产生模式下,通过在波形发生器上打开三角波信号开关,设置相应频率和振幅参数,将信号输出端连接至示波器通道A的输入端,打开示波器,在垂直方向调整光标,使波形垂直偏移最小,在水平方向调整光标,使波形居中,然后开始观测三角波形。
4. 调制波产生在正弦波产生模式下,通过在波形发生器上打开调制波信号开关,将调制波输出端连接至示波器通道B的输入端,然后将信号输出端连接至示波器通道A的输入端,打开示波器,分别观测A、B两路波形,通过观察示波器的显示屏,可以看到调制波对于正弦波的影响。
5. 频率和振幅调节通过在波形发生器上设置相应的频率和振幅参数,可以调节所产生的波形信号的频率和振幅,进一步了解不同频率和振幅对于电路的发挥作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学实验报告
学生姓名:学号: 专业班级:
实验类型:■验证□综合□设计□创新实验日期:2017.12.25实验成绩:
实验九波形发生器
一、实验目的
1、学习用集成运放构成正弦波、方波和三角波发生器。
2、学习波形发生器的调整和主要性能指标的测试方法。
二、实验原理
RC桥式正弦波振荡器(文氏电桥振荡器):
图2-1 RC桥式正弦波振荡器原理图
RC串并联电路构成正反馈支路,同时兼作选频电路,R1、R2、R w及二极管等元件构成负反馈和稳幅环节。
调节电位器R w,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。
利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。
D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保
证输出波形正负半周对称。
R3的接入是为了削弱二极管非线性的影响,以改善波形失真。
电路的振荡频率f0=1
2πRC 起振的幅值条件R f
R1
≥2
式中R f=R w+R2+(R3//r D),r D为正向导通电阻。
调整反馈电阻R f(调节R w),使电路起振,且波形失真最小。
如果不能起振,则说明负反馈太强,应该适当加大R f。
如果波形失真严重,则应该适当减小R f。
方波发生器:
图2-2 方波发生器原理图
由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC积分器两大部分。
如图所示,滞回比较器及简单RC积分电路组成的方波三角波发生器。
特点是线路简单,但是三角波的线性度较差。
主要用于产生方波,或者对三角波要求不高的场合。
电路振荡频率f0=1
2R f C f Ln(1+2R2
R1)
式中R1=R′1+R′w
方波输出幅值U om=±U Z三角波输出幅值U cm=R2
R1+R2
U Z 调节电位器R w(即改变R2/R1),可以改变振荡频率,但三角波的幅值也会随之变化。
如果想要互不影响,则可以通过改变R f或者C f来实现振荡频率的调节。
三角波和方波发生器:
图2-3 三角波和方波发生器原理图
如果把滞回比较器和积分器首尾相接形成正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,
这样即可构成三角波、方波发生器。
由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。
方波幅值U′om=±U Z 电路振荡频率f0=R2
4R1(R f+R w)C f
U Z
三角波幅值U om=R1
R2
比值可以调节三角波的幅值。
调节R w可以改变振荡频率,改变R1
R2
三、实验设备与器件
1、±12V直流电源
2、双踪示波器
3、交流毫伏表
4、频率计
5、集成运算放大器UA741×2
6、二极管1N4148×2
7、稳压管2CW231×1,电阻器,电容器若干
四、实验预习
RC桥式正弦波振荡器
仿真图:
图4-1 临界起振R w=8.02kΩ U o=5.01V f=159Hz
图4-2 最大不失真R w=8.6kΩ U o=7.36V f=158Hz
图4-3 失真R w=9.5kΩ U o=7.7V f=157Hz
图4-4 最大不失真U o=7.361V U+=2.453V U−=2.428V
图4-5 选频网络再并联电阻R f=317Hz
图4-7 断开二极管时最大不失真U o=7.454V U+=2.484V U−=2.436V
图4-7 RC串并联网络U i=3V U o=0.987V f0=196Hz
仿真结果分析
(1)临界起振时,R w=8.02kΩ,最大不失真时,R w=8.6kΩ,失真时
R w=9.5kΩ。
从仿真结果可以看出,负反馈减弱到一定值时,才能起振。
调节R w能够改变R f,也就是说增大R w,从而间接增大R f,减弱负反馈,
起振。
当R w增大到一定值时,输出波形会失真。
(2)最大不失真情况下,测得U o=7.361V,U+=2.453V,U−=
2.428V,U o
U p
=3.004
符合幅值平衡条件A u=U o
U p =1+R f
R1
≥3。
(3)并联电阻后频率变为原来的两倍。
(4)断开二极管之后,测量得出幅值变化范围增大。
可知二极管有稳幅作
用。
方波发生器
仿真图:
图4-8 电位器在中点U c=1.68V U o=5.34V f=436Hz
图4-9 电位器在最下端U c=1.11V U o=5.31V f=681Hz
图4-10 电位器在最上端U c=2.3V U o=5.34V f=300Hz
图4-11 短接一只稳压管 U o=2.32V f=304Hz
仿真结果分析:
D Z能够使输出电压U o被稳定在±U Z,保持恒定。
三角波和方波发生器
波形图:
图4-12 U o=1.59V U′o=5.41V f=149Hz R w=5kΩ仿真结果分析:
经过调节电阻,可知:
1、改变R w的位置会影响U′o和 f,R w减小,U′o减小, f增大。
2、改变R1的位置会影响U o和 f,R1减小,U o减小, f增大。
3、改变R2的位置会影响U o和 f,R2减小,U o增大, f减小。
五、实验结果与分析
RC桥式正弦波振荡器
波形图:
图5-1 临界起振R w=19.92kΩ U o=7.14V f=108.2Hz
图5-2 最大不失真R w=21.98kΩ U o=7.28V U+=2.37V U−=2.35V
图5-3 失真R w=24.56kΩ
实测结果分析:
1、由于实验箱上的10kΩ电位器损坏,所以选用了100kΩ电位器,因此不能微调,稍微拧一下旋钮,阻值就会发生很大的变化,所以无法很精确地找到临界起振和最大不失真情况。
我测得的临界起振时,R w=19.92kΩ,最大不失真时,R w=21.98kΩ,失真时R w=24.56kΩ。
从实验结果可以看出,负反馈减弱到一定值时,才能起振。
调节R w能够改变R f,也就是说增大R w,从而间接增大R f,减弱负反馈,起
振。
当R w增大到一定值时,输出波形会失真。
2、最大不失真情况下,测得U o=7.28V ,U+=2.37V ,U−=2.35V,U o
U p
=
3.0717,符合幅值平衡条件A u=U o
U p =1+R f
R1
≥3。
3、实验箱上没有足够的10kΩ电阻进行实验,所以无法操作。
4、断开二极管之后,测量结果与(1)基本没有差别。
后经测试,发现选用的二极管均已损坏。
方波发生器
波形图:
图5-4 电位器在中点U c=2.34V U o=4.30V f=195.8Hz
图5-5 电位器在下端U c=1.62V U o=3.26V f=216.9Hz
图5-6 电位器在上端U c=2.74V U o=4.32V f=151.0Hz。