2014中考试题分类汇编~一次函数

合集下载

一次函数2014中考解答题含解析

一次函数2014中考解答题含解析

一次函数解答题一.解答题(共10小题)1.(2014•镇江)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.①求点B的坐标及k的值;②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于_____;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若﹣2<x0<﹣1,求k的取值范围.2.(2014•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.3.(2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.4.(2014•大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=_________,b=_________;(2)求小明的爸爸下山所用的时间.5.(2014•营口)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?6.(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=_________米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试求什么时间两遥控车的信号不会产生相互干扰?7.(2014•龙东地区)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为_________千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.8.(2014•阜新)在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为x (时),1号队员和其他队员行进的路程分别为y 1、y 2(千米),并且y 1、y 2与x 的函数关系如图所示:(1)1号队员折返点A 的坐标为 _________ ,如果1号队员与其他队员经过t 小时相遇,那么点B 的坐标为 _________ ;(用含t 的代数式表示)(2)求1号队员与其他队员经过几小时相遇?(3)在什么时间内,1号队员与其他队员之间的距离大于2千米?9.(2014•上海)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.10.(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y (千米)与所用时间x (小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a 的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.一次函数2014中考解答题参考答案与试题解析一.解答题(共10小题)1.(2014•镇江)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.①求点B的坐标及k的值;②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;×3=;故答案为:;2.(2014•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.x+3x+3得﹣x+3=0x+3a+3﹣(﹣a+33.(2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.,解得:,∴y=,解得:.x=.,答:乙车行驶小时或小时,两车恰好相距4.(2014•大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=8,b=280;(2)求小明的爸爸下山所用的时间.5.(2014•营口)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?,由函数图象,得解得:.y=6.(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?时,两遥控车的信号不会产生相互干扰7.(2014•龙东地区)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为900千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.解得:.∴8.(2014•阜新)在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为x(时),1号队员和其他队员行进的路程分别为y1、y2(千米),并且y1、y2与x的函数关系如图所示:(1)1号队员折返点A的坐标为(,10),如果1号队员与其他队员经过t小时相遇,那么点B的坐标为(t,35t);(用含t的代数式表示)(2)求1号队员与其他队员经过几小时相遇?(3)在什么时间内,1号队员与其他队员之间的距离大于2千米?,,=45km/h解得:答:在其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.;(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.解得:,y=y=y=10.(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.解得:∴,解得:.∴解得:解得:;;x=x=x=综上所述:两车出发小时、小时或小时时,两车相距的路程为11。

2014年数学中考真题专题训练---一次函数

2014年数学中考真题专题训练---一次函数

一次函数专题训练1 (2014辽宁阜新)对于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(-1,-2)2(2014辽宁盘锦)如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA =OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是________.3(2014江苏常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x 轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.4 (2014江苏常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件) 38 36 34 32 30 28 26 t(件) 4 8 12 16 20 24 28 假定试销中每天的销售号t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价)5 (2014江苏常州)在平面直角坐标系xOy中,已知一次函数y=kx+b的图像过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是________.6(2014广西崇左)在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(-3,0),B(0,-3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的解析式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;(3)当-3≤x≤0时,二次函数y=x2+mx+n的最小值为-4,求m,n的值.7 (2014广西崇左)若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是( )A.(1,2)B.(-2,-1)C.(-1,2)D.(2,-4)8 (2014湖北鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 … 50 p(件) 118 116 114 … 20 销售单价q(元/件)与x满足:当1≤x<25时,q=x+60;当25≤x≤50时,.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?9 (2014黑龙江龙东)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A、B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集.两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:沼气池修建费用(万元/个) 可供使用户数(户/个) 占地面积(平方米/个) A型 3 20 10 B 型 2 15 8 政府土地部门只批给该村沼气池用地212平方米,设修建A型沼气池x个,修建两种沼气池共需费用y万元.(1)求y与x之间函数关系式.(2)试问有哪几种满足上述要求的修建方案.(3)要想完成这项工程,每户居民平均至少应筹集多少钱?10 (2014湖南湘潭)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1·k2=-1.(1)应用:已知y=2x+1与y=kx-1垂直,求k;(2)直线经过A(2,3),且与垂直,求解析式11(2014辽宁大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=________,b=________;(2)求小明的爸爸下山所用的时间.12 (2014四川甘孜州)已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用.该厂生产的桌椅分为A,B两种型号,有关数据如下:桌椅型号一套桌椅所坐学生人数(单位:人) 生产一套桌椅所需木材(单位:m3) 一套桌椅的生产成本(单位:元) 一套桌椅的运费(单位:元) A 2 0.5 100 2 B 3 0.7 120 4 设生产A 型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y(元).(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.13 (2014四川甘孜州)给出下列函数:①y=2x-1;②;③y=-x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是________.14 (2014年湖南郴州)已知直线l平行于直线y=2x+1,并与反比例函数的图象相交于点A(a,1),求直线l的解析式.15(2014辽宁营口)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?16(2014辽宁锦州)在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图像为折线OABC,y2的图像是过O、B、C三点的抛物线一部分.(1)根据图像回答:①调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是________;②说明线段AB的实际意义是________.(2)求出调试过程中,当6≤x≤8时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.17(2014湖南岳阳)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.18 (2014辽宁本溪)若实数a、b满足ab<0,且a<b,则函数y=ax+b的图象可能是( ) A.B.C.D.19(2014山东日照)如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(Ⅰ)求直线AB的解析式.(Ⅱ)若设点P的横坐标为x,矩形PKDH的面积为S.(1)用x表示S;(2)当x为何值时,S取最大值,并求出这个最大值.20(2014福建莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图2所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?21(2014贵州贵阳)如图,A点的坐标为(-4,0),直线与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为( )A.-2B.C.D.22(2014贵州贵阳)如图,三棱柱的体积为10,其侧棱AB上有一个点P从点A开始运动到点B 停止,过P点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x、y,则下列能表示y与x之间函数关系的大致图象是( )A.B.C.D.23(2014黑龙江绥化)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C 运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求S与t之间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.24(2014黑龙江绥化)在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为________km,a=________;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?25(2014甘肃天水)天水市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球,甲、乙两超市均以每只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只的用户均实行优惠:甲超市每只羽毛球按原价的八折出售;乙超市送15只羽毛球后,其余羽毛球每只按原价的九折出售.(1)请你任选一超市,一次性购买x(x≥100且x为整数)只该品牌羽毛球,写出所付钱y(元)与x之间的函数关系式.(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需要付多少元钱?这时在甲、乙两超市分别购买该品牌羽毛球多少只?26 (2014四川乐山)某校一课外兴趣小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印数x(张)的函数关系如下表:印数x(张) … 100 200 300 …收费y(元) … 15 30 45 …乙印刷社收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反应良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?27(2014江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn,则Sn的值为________.(用含n的代数式表示,n为正整数)28 (2014四川资阳)一次函数y=-2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限29 (2014贵州黔西南州)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x-y+1=0,其中k=1,b=1所以点P(-2,1)到直线y=x+1的距离为.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.30(2014吉林)如图,直线y=2x+4与x、y轴分别交于点A、B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为________.31(2014湖南张家界)如图,在平面直角坐标系中,O为坐标原点,抛物线过y=ax2+bx+c(a ≠0)过O、B、C三点,B、C坐标分别为(10,0)和(,),以OB为直径的⊙A经过C点,直线l垂直x轴于B点.(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是⊙A上一动点(不同于O,B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想m·n的值,并证明你的结论.(4)若点P从O出发,以每秒一个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.32(2014天津)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E、点F、点M 都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,-1).①当F的坐标为(1,1)时,如图,求点P的坐标;②当F的为直线l上的动点,记点P(x,y),求y关于x的函数解析式;(Ⅱ)若点M(1,m),点F(1,t),其中t≠0.过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.33 (2014天津)“黄金1号”玉米种子的价格为5元/kg.如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子数量/kg 1.5 2 3.5 4 …付款金额/元 7.5 16 … (Ⅱ)设购买种子的数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.34 (2014山东枣庄)将一次函数的图像向上平移2个单位,平移后,若y>0,则x的取值范围是( )A.x>4B.x>-4C.x>2D.x>-235 (2014山东潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数.当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.36(2014山东威海)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似,若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.37(2014山东威海)一次函数y1=kx+b与y2=x+a的图象如图所示,则kx+b>x+a的解集是________.38(2014山东泰安)已知函数y=(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx +n与反比例函数的图象可能是( )A.B.C.D.39 (2014湖北襄阳)我市为创建“国家级森林城市”,政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如下表:品种购买价(元/棵) 成活率甲 20 90%乙 32 95%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)设y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补栽;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?40 (2014广东珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物,所有商品价格可获九五折优惠;方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?41(2014广东广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<042 (2014四川凉山州)函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )A.B.C.D.43 (2014云南昆明)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.44(2014云南昆明)如图是反比例函数(k为常数,k≠0)的图像,则一次函数y=kx-k的图像大致是( )A.B.C.D.45 (2014广东深圳)已知函数y=ax+b经过(1,3)(0,-2)求a-b( )A.-1B.-3C.3D.746 (2014山东滨州)下列函数中,图象经过原点的是( )A.y=3xB.y=1-2xC.D.y=x2-147 (2014江苏无锡)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月份开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元,将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额w1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额w2(万元)?48 (2014江苏无锡)在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(,0),则直线a的函数关系式为( ) A.B.C.D.49(2014江苏苏州)如图,已知函数的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.50 (2014云南)写出一个图象经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):________.51(2014浙江湖州)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.52(2014四川成都)如图,在平面直角坐标系xOy中,直线与双曲线相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为________.53(2014四川成都)如图,一次函数y=kx+5(k为常数,且k≠0)的图像与反比例函数的图像交于A(-2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图像有且只有一个公共点,求m的值.54 (2014四川成都)在平面直角坐标系中,已知一次函数y=2x+1的图像经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1________y2.(填“>”,“<”或“=”)55 (2014四川巴中)已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过( )A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限56 (2014重庆B)夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗.该工人先只打开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满.已知每个进水管的进水速度与每个出水管的出水速度相同.从工人最先打开一个进水管开始,所用的时间为x,游泳池内的蓄水量为y,则下列各图中能够反映y 与x的函数关系的大致图象是( )A.B.C.D.57 (2014重庆A)从-1,1,2这三个数字中,随机抽取一个数,记为a.那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积为,且使关于x的不等式组有解的概率为________.58(2014重庆A)如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3,直线AB与x轴交于点C,则△AOC的面积为( )A.8B.10C.12D.2459 (2014浙江丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备 A型 B型价格(万元/台) m m-3 月处理污水量(吨/台) 220 180 (1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.60(2014浙江金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行________米.61 (2014浙江嘉兴)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1-y2________0(填“>”或“<”).。

2014年全国中考数学试题汇编《一次函数》(05)

2014年全国中考数学试题汇编《一次函数》(05)

全国中考数学试题汇编《一次函数》(05)解答题121.(2007•嘉兴)周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:(注:“嘉兴90km”表示离嘉兴的距离为90千米)假设汽车离嘉兴的距离s(千米)是行驶时间t(分钟)的一次函数,求s关于t的函数关系式.122.(2007•佳木斯)已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)请直接写出甲、乙两车离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并标明自变量x的取值范围;(2)它们在行驶的过程中有几次相遇?并求出每次相遇的时间.123.(2007•佳木斯)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.124.(2007•吉林)今年4月18日,我国铁路第六次大提速,在甲、乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间_________h,点B的纵坐标300的意义是_________;(2)请你在原图中直接画出第二列动车组列车离开甲城的路程s(单位:km)与时间t(单位:h)的函数图象;(3)若普通快车的速度为100km/h,①求BC的解析式,并写出自变量t的取值范围;②求第二列动车组列车出发后多长时间与普通列车相遇;③直接写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.125.(2007•淮安)奥林玩具厂安排甲、乙两个车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变.由于生产需要,其中一个车间推迟两天开始加工.开始加工时,甲车间有10名工人,乙车间有12名工人.图中线段OB和折线ACB分别表示两车间的加工情况.依据图中提供的信息,完成下列各题:(1)图中线段OB反映的是_________车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同?(3)根据折线段ACB反映的加工情况,请你提出一个问题,并给出解答.126.(2007•衡阳)国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度,某县根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规y与x的函数关系式;(2)若刘爷爷一年内自付医疗费为2000元(自付医疗费=实际医疗费﹣按标准报销的金额),则刘爷爷当年实际医疗费为多少元?(3)若刘爷爷一年内自付医疗费不小于6250元,则刘爷爷当年实际医疗费至少为多少元?127.(2007•黑龙江)甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x(分)变化的图象(全程),根据图象回答下列问题:(1)乙比甲晚多长时间到达李庄?(2)甲因事耽误了多长时间?(3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?128.(2007•河池)某早餐店每天的利润y(元)与售出的早餐x(份)之间的函数关系如图所示.当每天售出的早餐超过150份时,需要增加一名工人.(1)该店每天至少要售出_________份早餐才不亏本;(2)求出150<x≤300时,y关于x的函数解析式;(3)要使每天有120元以上的盈利,至少要售出多少份早餐?(4)该店每出售一份早餐,盈利多少元?129.(2007•河池)李明因工作需要,每月要发送一定数量的手机短信,于是向同事老王和小张询问有关的费用标准..他画出至尊卡的费用y(元)与短信x(条)的函数关系图.请解答下列问题:(1)拇指卡的费用y(元)与短信x(条)的函数关系是_________;(温馨提示:费用=月租费+短信费)(2)在图中画出(1)中的函数图象;(3)求BC的函数解析式;(4)请对以上两种收费标准进行分析,帮助李明理智选择一种实惠的短信服务;(5)解释线段AB所表示的实际意义.130.(2007•广安)某乡A、B两村盛产脐橙,A村有脐橙300吨,B村有脐橙200吨.现将这些脐橙运到甲乙两个冷藏库,已知甲库可储存240吨,乙库可储存260吨;从A村运往甲、乙两库的运费分别为每吨20元和25元,从B村运往甲、乙两库的运费分别为每吨15元和24元.设从A村运往甲库的脐橙重量为x吨.(2)设总运费为y元,求y与x的函数关系式,并写出自变量x的取值范围.(3)请设计一种调运方案,使总运费最少.131.(2007•福州)李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总假设月销售件数为x件,月总收入为y元,销售每件奖励a元,营业员月基本工资为b元.(1)求a,b的值;(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件?132.(2007•佛山)甲、乙两人进行百米赛跑,甲比乙跑得快.如果两人同时起跑,甲肯定赢.现在甲让乙先跑若干米.图中l1,l2分别表示两人的路程s(米)与时间t(秒)的关系.(1)哪条线表示甲的路程与时间的关系;(2)甲让乙先跑了多少米?(3)谁先到达终点?133.(2007•防城港)某化妆公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售费中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好,至少要销售商品多少件?134.(2007•鄂尔多斯)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图所示;乙公司每月通话收费标准如表3所示.(1)观察图,甲公司用户月通话时间不超过100分钟时应付话费金额是_________元;甲公司用户通话100分钟以后,每分钟的通话费为_________元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?135.(2007•淄博)某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?136.(2007•遂宁)某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的函数关系如图所示.(1)根据图象填空:①甲、乙中,_________先完成一天的生产任务;在生产过程中,_________因机器故障停止生产_________小时.②当t=_________时,甲、乙两产的零件个数相等.(2)谁在哪一段时间内的生产速度最快求该段时间内,他每小时生产零件的个数.137.(2007•大连)为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费为y元,则y(元)和x(小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费为多少元;父母是如何奖励小强家务劳动的?(2)写出当0≤x≤20时,相对应的y与x之间的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?138.(2007•大连)星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图,是他们离家的路程y(千米)与时间x(时)的函数图象.已知小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时.(1)小强家与游玩地的距离是多少?(2)妈妈出发多长时间与小强相遇?139.(2007•成都)某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的,但又不少于红梅牌钢笔的数量的.如果他们买了锦江牌钢笔x支,买这两种笔共花了y元.①请写出y(元)关于x(支)的函数关系式,并求出自变量x的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?140.(2007•郴州)在社会主义新农村建设中,李叔叔承包了家乡的50亩荒山.经过市场调查,预测水果上市后A 种水果每年每亩可获利0.3万元,B种水果每年每亩可获利0.2万元,李叔叔决定在承包的山上种植A、B两种水果.他了解到需要一次性投入的成本为:A种水果每亩1万元,B种水果每亩0.9万元.设种植A种水果x亩,投入成本总共y万元.(1)求y与x之间的函数关系式;(2)若李叔叔在开发时投入的资金不超过47万元,为使总利润每年不少于11.8万元,应如何安排种植面积(亩数x取整数)?请写出获利最大的种植方案.141.(2007•常德)某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品AB产品所需的甲、乙两种原料如下表:0.45万元/吨、0.5万元/吨.若设化工厂生产A产品x吨,且销售这两种产品所获得的总利润为y万元.(1)求y与x的函数关系式,并求出x的取值范围;(2)问化工厂生产A产品多少吨时,所获得的利润最大?最大利润是多少?142.(2007•长沙)小华准备将平时的零用钱节约一些储存起来,他已存有62元,从现在起每个月存12元;小华的同学小丽以前没有存过零用钱,听到小华在存零用钱,表示从现在起每个月存20元,争取超过小华.(1)试写出小华的存款总数y1与从现在开始的月数x之间的函数关系式以及小丽存款数y2与月数x之间的函数关系式;(2)从第几个月开始小丽的存款数可以超过小华?的总量进行检测,部分数据如下:经研究发现,该教室空气中CO2总量y(m)是教室连续使用时间x(分)的一次函数.(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)(2)根据有关资料推算,当该教室空气中CO2总量达到6.7m3时,学生将会稍感不适,请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适;(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中CO2的总量减少到0.1m3,求开门通风时教室空气中CO2平均每分钟减少多少立方米?144.(2007•白银)某产品每件成本10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?145.(2007•巴中)赵明暑假到光雾山旅游,从地理课上知道山区气温会随着海拔高度的增加而下降,沿途他利用随身所带的登山表,测得以下数据:(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系(如图),根据上表中提供的数据描出各点;(2)已知y与x之间是一次函数关系,求出这个关系式;(3)若赵明到达光雾山山巅时,测得当时气温为19.4℃,请求出这里的海拔高度.146.(2010•巴中)如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积.147.(2007•遵义)如图,已知一次函数的图象与x轴,y轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.(1)求AB的长;(2)当t为何值时,△ACD与△AOB相似并直接写出此时点C的坐标;(3)△ACD的面积是否有最大值?若有,此时t为何值;若没有,请说明理由.148.(2007•株洲)已知Rt△ABC,∠ACB=90°,AC=4,BC=3,CD⊥AB于点D,以D为坐标原点,CD所在直线为y轴建立如图所示平面直角坐标系.(1)求A,B,C三点的坐标;(2)若⊙O1,⊙O2分别为△ACD,△BCD的内切圆,求直线O1O2的解析式;(3)若直线O1O2分别交AC,BC于点M,N,判断CM与CN的大小关系,并证明你的结论.149.(2007•镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,a n 表示第n个“树型”图中“树枝”的个数.图:(1)根据“图”、“表”可以归纳出a n关于n的关系式为_________.若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(a n,a n+1)都在直线l1上.(2)设直线l2:y=﹣x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x 轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.150.(2007•益阳)如图1,M是边长为4的正方形AD边的中点,动点P自A点起,由A⇒B⇒C⇒D匀速运动,直线MP扫过正方形所形成的面积为Y,点P运动的路程为X,请解答下列问题:(1)当x=1时,求y的值;(2)就下列各种情况,求y与x之间的函数关系式:①0≤x≤4;②4<x≤8 ③8<x≤12;(3)在给出的直角坐标系(图2)中,画出(2)中函数的图象.2007年全国中考数学试题汇编《一次函数》(05)参考答案与试题解析解答题121.(2007•嘉兴)周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:(注:“嘉兴90km”表示离嘉兴的距离为90千米)假设汽车离嘉兴的距离s(千米)是行驶时间t(分钟)的一次函数,求s关于t的函数关系式.∴122.(2007•佳木斯)已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)请直接写出甲、乙两车离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并标明自变量x的取值范围;(2)它们在行驶的过程中有几次相遇?并求出每次相遇的时间.小时到小时的速度是:=80;(1分),解得,当小时,第二次相遇时间为第,解得,小时,第二次相遇时间为第123.(2007•佳木斯)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.124.(2007•吉林)今年4月18日,我国铁路第六次大提速,在甲、乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间晚0.5h,点B的纵坐标300的意义是甲、乙两城相距300km;(2)请你在原图中直接画出第二列动车组列车离开甲城的路程s(单位:km)与时间t(单位:h)的函数图象;(3)若普通快车的速度为100km/h,①求BC的解析式,并写出自变量t的取值范围;②求第二列动车组列车出发后多长时间与普通列车相遇;③直接写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.∴解得∴t==125.(2007•淮安)奥林玩具厂安排甲、乙两个车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变.由于生产需要,其中一个车间推迟两天开始加工.开始加工时,甲车间有10名工人,乙车间有12名工人.图中线段OB和折线ACB分别表示两车间的加工情况.依据图中提供的信息,完成下列各题:(1)图中线段OB反映的是甲车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同?(3)根据折线段ACB反映的加工情况,请你提出一个问题,并给出解答.则,.126.(2007•衡阳)国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度,某县根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规y与x的函数关系式;(2)若刘爷爷一年内自付医疗费为2000元(自付医疗费=实际医疗费﹣按标准报销的金额),则刘爷爷当年实际医疗费为多少元?(3)若刘爷爷一年内自付医疗费不小于6250元,则刘爷爷当年实际医疗费至少为多少元?xx127.(2007•黑龙江)甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x(分)变化的图象(全程),根据图象回答下列问题:(1)乙比甲晚多长时间到达李庄?(2)甲因事耽误了多长时间?(3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?时,由题意可得∴y=x千米,①②﹣(x128.(2007•河池)某早餐店每天的利润y(元)与售出的早餐x(份)之间的函数关系如图所示.当每天售出的早餐超过150份时,需要增加一名工人.(1)该店每天至少要售出份早餐才不亏本;(2)求出150<x≤300时,y关于x的函数解析式;(3)要使每天有120元以上的盈利,至少要售出多少份早餐?(4)该店每出售一份早餐,盈利多少元?.解方程组得.129.(2007•河池)李明因工作需要,每月要发送一定数量的手机短信,于是向同事老王和小张询问有关的费用标准.老王说:“我平常发短信不多,我用拇指卡.”说完递给李明一张宣传单(见下表).他画出至尊卡的费用y(元)与短信x(条)的函数关系图.请解答下列问题:(1)拇指卡的费用y(元)与短信x(条)的函数关系是y=0.06x+8;(温馨提示:费用=月租费+短信费)(2)在图中画出(1)中的函数图象;(3)求BC的函数解析式;(4)请对以上两种收费标准进行分析,帮助李明理智选择一种实惠的短信服务;(5)解释线段AB所表示的实际意义.(130.(2007•广安)某乡A、B两村盛产脐橙,A村有脐橙300吨,B村有脐橙200吨.现将这些脐橙运到甲乙两个冷藏库,已知甲库可储存240吨,乙库可储存260吨;从A村运往甲、乙两库的运费分别为每吨20元和25元,从B村运往甲、乙两库的运费分别为每吨15元和24元.设从A村运往甲库的脐橙重量为x吨.(2)设总运费为y元,求y与x的函数关系式,并写出自变量x的取值范围.(3)请设计一种调运方案,使总运费最少.131.(2007•福州)李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总a元,营业员月基本工资为b元.(1)求a,b的值;(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件?132.(2007•佛山)甲、乙两人进行百米赛跑,甲比乙跑得快.如果两人同时起跑,甲肯定赢.现在甲让乙先跑若干米.图中l1,l2分别表示两人的路程s(米)与时间t(秒)的关系.(1)哪条线表示甲的路程与时间的关系;(2)甲让乙先跑了多少米?(3)谁先到达终点?=方法二:由图可知甲的速度为乙的速度为甲到达终点的时间是乙到达终点的时间是∵133.(2007•防城港)某化妆公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售费中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好,至少要销售商品多少件?,,134.(2007•鄂尔多斯)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图所示;乙公司每月通话收费标准如表3所示.(1)观察图,甲公司用户月通话时间不超过100分钟时应付话费金额是20元;甲公司用户通话100分钟以后,每分钟的通话费为0.2元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?k=135.(2007•淄博)某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?)在图象上,∴136.(2007•遂宁)某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的函数关系如图所示.(1)根据图象填空:①甲、乙中,甲先完成一天的生产任务;在生产过程中,甲因机器故障停止生产2小时.②当t=3或5.5时,甲、乙两产的零件个数相等.(2)谁在哪一段时间内的生产速度最快求该段时间内,他每小时生产零件的个数.∵137.(2007•大连)为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费为y元,则y(元)和x(小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费为多少元;父母是如何奖励小强家务劳动的?(2)写出当0≤x≤20时,相对应的y与x之间的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?。

2014年全国中考数学试题汇编《一次函数》(01)

2014年全国中考数学试题汇编《一次函数》(01)

全国中考数学试题汇编《一次函数》(01)选择题.CD .2.(2007•台湾)如图是四直线L 1、L 2、L 3、L 4在坐标平面上的位置,其中有一条直线为方程式y+4=0的图形,求此方程式图形为( )3.(2007•乐山)已知一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是( ).CD .6.(2007•玉溪)下列图形中阴影部分面积相等的是( )8.(2010•本溪)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()10.(2007•济南)已知y=ax2+bx的图象如图所示,则y=ax﹣b的图象一定过()13.(2009•枣庄)如图,把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB 的解析式是()14.(2007•镇江)在直角坐标系中有两条直线l1、l2,直线l1所对应的函数关系式为y=x﹣2,如果将坐标纸折叠,.C或D.或17.(2007•大连)如图,直线y=kx+b经过点A(0,3),B(﹣2,0),则k的值为()C D.18.(2007•山西)如图是关于x的函数y=kx+b(k≠0)的图象,则不等式kx+b≤0的解集在数轴上可表示为().C D.19.(2007•临沂)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()21.(2007•聊城)如图,以两条直线l1,l2的交点坐标为解的方程组是().C D.22.(2007•陕西)如图,一次函数图象经过点A,且与正比例函数y=﹣x的图象交于点B,则该一次函数的表达式为()23.(2007•金华)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()25.(2007•宜宾)2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为()26.(2007•天门)如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )27.(2007•台湾)甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁( )28.(2007•长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c …,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号y=;当明码对应的序号x 为偶数时,密码对应的序号y=+13.30.(2007•庆阳)若k <0,则函数y 1=kx ,y 2=的图象可能是( ) .CD .2007年全国中考数学试题汇编《一次函数》(01)参考答案与试题解析选择题 .CD .2.(2007•台湾)如图是四直线L 1、L 2、L 3、L 4在坐标平面上的位置,其中有一条直线为方程式y+4=0的图形,求此方程式图形为( )3.(2007•乐山)已知一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是( ).C D.6.(2007•玉溪)下列图形中阴影部分面积相等的是()则三角形的面积为则面积为3=;则面积为则面积为8.(2010•本溪)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()10.(2007•济南)已知y=ax2+bx的图象如图所示,则y=ax﹣b的图象一定过()>13.(2009•枣庄)如图,把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB 的解析式是()14.(2007•镇江)在直角坐标系中有两条直线l1、l2,直线l1所对应的函数关系式为y=x﹣2,如果将坐标纸折叠,.C或D.或(,即k=;17.(2007•大连)如图,直线y=kx+b经过点A(0,3),B(﹣2,0),则k的值为()C D.18.(2007•山西)如图是关于x的函数y=kx+b(k≠0)的图象,则不等式kx+b≤0的解集在数轴上可表示为().C D.19.(2007•临沂)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()21.(2007•聊城)如图,以两条直线l1,l2的交点坐标为解的方程组是().C D.22.(2007•陕西)如图,一次函数图象经过点A,且与正比例函数y=﹣x的图象交于点B,则该一次函数的表达式为()得:,该一次函数的表达式为23.(2007•金华)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()25.(2007•宜宾)2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为()根据题意得,解之得y=时,有x=26.(2007•天门)如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量()27.(2007•台湾)甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()28.(2007•长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c …,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号y=;当明码对应的序号x 为偶数时,密码对应的序号y=+13.为偶数,则密码对应序号为+13=1930.(2007•庆阳)若k <0,则函数y 1=kx ,y 2=的图象可能是( ) .CD .。

2014年全国中考数学试题汇编《一次函数》(07)

2014年全国中考数学试题汇编《一次函数》(07)

全国中考数学试题汇编《一次函数》(07)解答题181.(2007•莆田)某种日记本的专卖柜台,每天柜台的租金,人员工资等固定费用为160元,该日记本每本进价是4元,规定销售单价不得高于8元/本,也不得低于4元/本,调查发现日均销售量y(本)与销售单价x(元)的函数图象如图线段AB.(1)求日均销售量y(本)与销售单价x(元)的函数关系式;(2)当销售单价为多少元时,日均获利最多,获得最多是多少元?182.(2007•眉山)如图,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3).(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为﹣1,求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得△POM为直角三角形?若存在,请求出P 点的坐标和△POM的面积;若不存在,请说明理由;(3)求边C′O′所在直线的解析式.183.(2007•怀化)如图,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x2﹣12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.(1)求⊙M的直径;(2)求直线ON的解析式;(3)在x轴上是否存在一点T,使△OTN是等腰三角形?若存在请在图2中标出T点所在位置,并画出△OTN(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T的坐标);若不存在,请说明理由.184.(2007•衡阳)如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C点,过点C的直线y=﹣2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4.(1)求点P,点C的坐标;(2)求证:CD是⊙P的切线;(3)若二次函数y=﹣x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=﹣2x+b值的x的取值范围.185.(2007•恩施州)如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O 的直径DE=12cm,矩形DEFG的宽EF=6cm,矩形量角器以2cm/s的速度从左向右运动,在运动过程中,点D、E 始终在BC所在的直线上,设运动时间为x(s),矩形量角器和△ABC的重叠部分的面积为S(cm2).当x=0(s)时,点E与点C重合.(图(3)、图(4)、图(5)供操作用).(1)当x=3时,如图(2),S=_________cm2,当x=6时,S=_________cm2,当x=9时,S=_________ cm2;(2)当3<x<6时,求S关于x的函数关系式;(3)当6<x<9时,求S关于x的函数关系式;(4)当x为何值时,△ABC的斜边所在的直线与半圆O所在的圆相切?186.(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的解析式.187.(2007•茂名)已知﹣纸箱中放有大小均匀的x只白球和y只黄球,从箱中随机地取出一只白球的概率是.(1)试写出y与x的函数关系式;(2)当x=10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P.188.(2007•镇江)如图,⊙O的半径是,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.(1)写出⊙O上所有格点的坐标:_________(2)设l为经过⊙O上任意两个格点的直线.①满足条件的直线l共有多少条?②求直线l同时经过第一、二、四象限的概率.2007年全国中考数学试题汇编《一次函数》(07)参考答案与试题解析解答题181.(2007•莆田)某种日记本的专卖柜台,每天柜台的租金,人员工资等固定费用为160元,该日记本每本进价是4元,规定销售单价不得高于8元/本,也不得低于4元/本,调查发现日均销售量y(本)与销售单价x(元)的函数图象如图线段AB.(1)求日均销售量y(本)与销售单价x(元)的函数关系式;(2)当销售单价为多少元时,日均获利最多,获得最多是多少元?182.(2007•眉山)如图,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3).(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为﹣1,求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得△POM为直角三角形?若存在,请求出P 点的坐标和△POM的面积;若不存在,请说明理由;(3)求边C′O′所在直线的解析式.∴OP=3,OM=OM)则﹣b=x+.183.(2007•怀化)如图,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x2﹣12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.(1)求⊙M的直径;(2)求直线ON的解析式;(3)在x轴上是否存在一点T,使△OTN是等腰三角形?若存在请在图2中标出T点所在位置,并画出△OTN(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T的坐标);若不存在,请说明理由.MON=,的坐标为﹣k,的解析式为,3184.(2007•衡阳)如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C点,过点C的直线y=﹣2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4.(1)求点P,点C的坐标;(2)求证:CD是⊙P的切线;(3)若二次函数y=﹣x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=﹣2x+b值的x的取值范围.x x+3∴x∴x x+3﹣+185.(2007•恩施州)如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O 的直径DE=12cm,矩形DEFG的宽EF=6cm,矩形量角器以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在BC所在的直线上,设运动时间为x(s),矩形量角器和△ABC的重叠部分的面积为S(cm2).当x=0(s)时,点E与点C重合.(图(3)、图(4)、图(5)供操作用).(1)当x=3时,如图(2),S=36cm2,当x=6时,S=54cm2,当x=9时,S=18cm2;(2)当3<x<6时,求S关于x的函数关系式;(3)当6<x<9时,求S关于x的函数关系式;(4)当x为何值时,△ABC的斜边所在的直线与半圆O所在的圆相切?××﹣××B==6OB==6,﹣186.(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的解析式.∴∴∴187.(2007•茂名)已知﹣纸箱中放有大小均匀的x只白球和y只黄球,从箱中随机地取出一只白球的概率是.(1)试写出y与x的函数关系式;(2)当x=10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P.,有成立,化简可得×=15)由题意得∴时,取得黄球的概率.=188.(2007•镇江)如图,⊙O的半径是,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.(1)写出⊙O上所有格点的坐标:(1,2)、(1,﹣2)、(﹣1,2)、(﹣1,﹣2)、(2,1)、(2,﹣1)、(﹣2,1)、(﹣2,﹣1).(2)设l为经过⊙O上任意两个格点的直线.①满足条件的直线l共有多少条?②求直线l同时经过第一、二、四象限的概率.的横坐标、纵坐标都是整数的点求出即可;同时经过第一、二、四象限的概率为。

2014中考数学试题精选-第19章 一次函数及答案与解析

2014中考数学试题精选-第19章 一次函数及答案与解析

2014中考数学试题精选-第19章一次函数姓名___________班级__________学号__________分数___________一、选择题1.(2014内蒙古赤峰)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是( )A.;B.;C.;D.;2.(2014北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为( )A.40平方米;B.50平方米;C.80平方米;D.100平方米;3.(2014北京)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是( )A.;B.;C.;D.;4.(2014吉林长春)如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B 在直线y=-x+1上,则m的值为( )A.-1;B.1;C.2;D.3;5.(2014四川内江)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n =1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,+1连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为( )A.;B.;C.;D.;6.(2014四川宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3;B.y=x-3;C.y=2x-3;D.y=-x+3;7.(2014四川攀枝花)当kb<0时,一次函数y=kx+b的图象一定经过( )A.第一、三象限;B.第一、四象限;C.第二、三象限;D.第二、四象限;8.(2014四川泸州)“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时;B.2.2小时;C.2.25小时;D.2.4小时;9.(2014四川达州)直线y=kx+b不经过第四象限,则( )A.k>0,b>0;B.k<0,b>0;C.k≥0,b≥0;D.k<0,b≥0;10.(2014安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是( )A.;B.;C.;D.;11.(2014山东东营)直线y=-x+1经过的象限是( )A.第一、二、三象限;B.第一、二、四象限;C.第二、三、四象限;D.第一、三、四象限;12.(2014山东德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A.体育场离张强家2.5千米;B.张强在体育场锻炼了15分钟;C.体育场离早餐店4千米;D.张强从早餐店回家的平均速度是3千米/小时;13.(2014山东日照)当k>时,直线kx-y=k与直线ky+x=2k的交点在( )A.第一象限;B.第二象限;C.第三象限;D.第四象限;14.(2014山东枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是( )A.x>4;B.x>-4;C.x>2;D.x>-2;15.(2014山东泰安)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )A B C.D16.(2014山东济南)若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则( )A.m>0;B.m<0;C.m>3;D.m<3;17.(2014山东济南)如图,直线y=-x+2与x轴、y轴分别交于A.B两点,把△AOB沿直线AB 翻折后得到△AO′B,则点O′的坐标是( )A.(,3); B.(,); C.(2,2); D.(2,4);18.(2014山东潍坊)如图,已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE⊥上EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()19.(2014山东烟台)如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )A.B.C.D.20.(2014山东菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D.F分别在A C.BC边上,C.D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.;B.;C.;D.;21.(2014广东汕尾)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是( )A.B.C.D.22.(2014广东深圳)已知函数y=ax+b经过(1,3),(0,-2),则a-b=( )A.-1;B.-3;C.3;D.7;23.(2014广西南宁)“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是( )A.;B.;C.;D.;24.(2014广西玉林)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是( )A.;B.;C.;D.;25.(2014广西百色)已知点A的坐标为(2,0),点P在直线y=x上运动,当以点P为圆心,P A的长为半径的圆的面积最小时,点P的坐标为( )A.(1,-1); B.(0,0); C.(1,1); D.(,);26.(2014江苏南通)已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过( ) A.第一、二、三象限;B.第一、二、四象限;C.第一、三、四象限;D.第二、三、四象限;27.(2014江苏常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A.4个;B.3个;C.2个;D.1个;28.(2014江苏徐州)将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )A.y=-3x+2B.y=-3x-2C.y=-3(x+2) D.y=-3(x-2)29.(2014江苏无锡)在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(-,0),则直线a的函数关系式为( ) A.y=-x;B.y=-x;C.y=-x+6;D.y=-x+6;30.(2014江西抚州)一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是( )A.;B.;C.;D.;31.(2014河北省)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y =18,那么当成本为72元时,边长为( )A.6厘米;B.12厘米;C.24厘米;D.36厘米;32.(2014河南省)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s 的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是( )A.;B.;C.;D.;33.(2014浙江台州)如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度v(单位:m/s)与运动时间(单位:s)关系的函数图象中,正确的是( )A.;B.;C.;D.;34.(2014浙江温州)一次函数y=2x+4的图象与y轴交点的坐标是( )A.(0,-4); B.(0,4); C.(2,0); D.(-2,0);35.(2014湖北孝感)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为( )A.-1;B.-5;C.-4;D.-3;36.(2014湖北荆门)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是( )A.;B.;C.;D.;37.(2014湖北随州)某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是( )A.只有①②;B.只有③④;C.只有①②③;D.①②③④;38.(2014湖北黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x 的函数图象大致为( )A.;B.;C.;D.;39.(2014湖北黄石)如图,AB是半圆O的直径,点P从点A出发,沿半圆弧AB顺时针方向匀速移动至点B,运动时间为t,△ABP的面积为S,则下列图象能大致刻画S与t之间的关系的是( )A.B.C.D.40.(2014湖南娄底)一次函数y=kx-k(k<0)的图象大致是( )A.;B.;C.;D.;41.(2014湖南岳阳)如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P 点运动时间为t,则S关于t的函数图象大致为( )A.;B.;C.;D.;42.(2014湖南湘西州)正比例函数y=x的大致图象是( )A.;B.;C.;D.;43.(2014湖南湘西州)下列说法中,正确的是( )A.相等的角一定是对顶角;B.四个角都相等的四边形一定是正方形;C.平行四边形的对角线互相平分;D.矩形的对角线一定垂直;44.(2014湖南衡阳)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是( )A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟45.(2014湖南邵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b;B.a=b;C.a<b;D.以上都不对;46.(2014甘肃兰州)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD 的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是( )A.;B.;C.;D.;47.(2014甘肃天水)如图,扇形OAB动点P从点A出发,沿线段B0、0A匀速运动到点A,则0P的长度y与运动时间t之间的函数图象大致是( )A.;B.;C.;D.;48.(2014甘肃白银)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是( )A.;B.;C.;D.;49.(2014福建莆田)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接Q D.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )A.;B.;C.;D.;50.(2014贵州毕节)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥;B.x≤3;C.x≤;D.x≥3;51.(2014贵州贵阳)如图,三棱柱的体积为10,其侧棱AB上有一个点P从点A开始运动到点B停止,过P点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x、y,则下列能表示y与x之间函数关系的大致图象是( )A.;B.;C.;D.;52.(2014贵州贵阳)如图,A点的坐标为(-4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为( )A.-2;B.-;C.-;D.-;53.(2014贵州铜仁)正比例函数y=2x的大致图象是( )A.;B.;C.;D.;54.(2014贵州黔南州)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是( )A.;B.;C.;D.;55.(2014贵州黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③;B.仅有①②;C.仅有①③;D.仅有②③;56.(2014辽宁抚顺)函数y=x-1的图象是( )A.;B.;C.;D.;57.(2014辽宁抚顺)如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板P AB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB 于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是( )A.;B.;C.;D.;58.(2014辽宁本溪)若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是( )A.;B.;C.;D.;59.(2014辽宁盘锦)已知,A.B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是( )A.;B.;C.;D.;60.(2014重庆A)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )A.;B.;C.;D.;61.(2014重庆B)若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是( ) A.5;B.4;C.3;D.1;62.(2014重庆B )夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗,该工人先只打开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满.已知每个进水管的进水速度与每个出水管的出水速度相同,从工人最先打开一个进水管开始,所用时间为x ,游泳池内的蓄水量为y ,则下列各图中能够反映y 与x 的函数关系的大致图象是( )A .;B .;C .;D .;63.(2014陕西省)若点A (-2,m )在正比例函数y =-x 的图象上,则m 的值是( )A .;B .-;C .1; D .-1; 64.(2014青海西宁)如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B ,C 重合),现将△PCD 沿直线PD 折叠,使点C 落下点C 1处;作∠BPC 1的平分线交AB 于点E .设BP =x ,BE =y ,那么y 关于x 的函数图象大致应为( )A .;B .;C .;D .;65.(2014黑龙江哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y (单位:米)与小刚打完电话后的步行时间t (单位:分)之间的函数关系如图,下列四种说法: ①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是( )A.1个;B.2个;C.3个;D.4个;66.(2014黑龙江齐齐哈尔)若等腰三角形的周长是80cm,则能反映这个等腰三角形的腰长y cm与底边长x cm的函数关系式的图象是( )A.;B.;C.;D.;67.(2014黑龙江龙东)如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是( )A.B.C.D.二、填空题68.(2012唐山二模卷)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为.69.(2014云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)____________.70.(2014内蒙古赤峰)直线l过点M(-2,0),该直线的解析式可以写为____________.(只写出一个即可)71.(2014四川广安)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为____________.72.(2014四川自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是____________.73.(2014山东威海)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是____________.74.(2014山东烟台)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P,则不等式kx-3>2x+b的解集是____________.75.(2014广东梅州)已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第____________象限.76.(2014广西柳州)将直线y =x向上平移____________个单位后得到直线y =x+7.77.(2014广西贵港)已知点A1(a1,a2),A2(a2,a3),A3(a3,a4)…,A n(a n,a n+1)(n为正整数)都在一次函数y=x+3的图象上.若a1=2,则a2014=____________.78.(2014广西贺州)已知P1(1,y1),P2(2,y2)是正比例函数y =x的图象上的两点,则y1____________y2(填“>”或“<”或“=”).79.(2014江苏宿迁)如图,一次函数y=kx-1的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,BC垂直x轴于点C.若△ABC的面积为1,则k的值是____________.80.(2014江苏常州)在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是____________.81.(2014江苏徐州)函数y=2x与y=x+1的图象交点坐标为____________.82.(2014江苏徐州)如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边A B.BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△P AQ的面积为y cm2,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为____________.83.(2014江苏泰州)将一次函数y=3x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为____________.84.(2014江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为____________.(用含n的代数式表示,n为正整数)85.(2014浙江义乌)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行____________米.86.(2014浙江嘉兴)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1-y2____________0(填“>”或“<”).87.(2014浙江舟山)过点(-1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是____________.88.(2014浙江金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行____________米.89.(2014湖北孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是____________.90.(2014湖北孝感)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表:出后的总利润为y百元,其中批发量为x吨,且加工销售量为15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.91.(2014湖北鄂州)如图,直线y=kx+b过A(-1,2)、B(-2,0)两点,则0≤kx+b≤-2x的解集为____________.92.(2014湖北鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为____________.93.(2014湖南张家界)已知一次函数y=(1-m)x+m-2,当m<1时,y随x的增大而增大.94.(2014湖南株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围城的三角形面积为4,那么b1-b2等于____________.95.(2014湖南永州)如图,已知直线l1:y=k1x+4与直线l2:y=k2x-5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段A B.AC的中点,则线段EF的长度为____________.96.(2014湖南益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____________米/分钟.97.(2014甘肃天水)写出一个图象经过点(-1,2)的一次函数的解析式____________.98.(2014福建莆田)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是____________.99.(2014黑龙江大庆)图中直线是由直线l向上平移1个单位,向左平移2个单位得到的,则直线l对应的一次函数关系式为____________.100.(2014黑龙江牡丹江)已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为-2,且当x=2时,y =1.那么此函数的解析式为____________.三、解答题101.(2014上海市)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2… 8.29.8体温计的读数y(℃) 35.0… 40.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.102.(2014云南昆明)某校运动会需购买A.B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A.B两种奖品单价各是多少元?(2)学校计划购买A.B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.103.(2014内蒙古包头)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.104.(2014内蒙古赤峰)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?105.(2014吉林长春)甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为____________吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.106.(2014四川乐山)对于平面直角坐标系中任意两点P1(x1,y1)、P2(x2,y2),称︱x1-x2︱+︱y1-y2︱为P1、P2两点的直角距离,记作:d(P1,P2).若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b 上的一动点,称d(P0,Q)的最小值为P0到直线y=kx+b的直角距离.令P0(2,-3).O为坐标原点.则:(1)d(O,P0)=5;(2)若P(a,-3)到直线y=x+1的直角距离为6,则a=2或-10.107.(2014四川乐山)某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社个印多少张?(3)活动结束后,市民反应良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?108.(2014四川凉山州)我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%.(1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.109.(2014四川广安)广安某水果点计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:1)若该水果店(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?110.(2014四川广安)在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD的邻边长分别为1,a(a>1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值.111.(2014四川泸州)某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A.B 两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A.B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A.B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.112.(2014四川绵阳)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.113.(2014天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:Ⅱ)设购买种子(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.114.(2014天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,-1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.115.(2014安徽省)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共。

2014年全国中考数学试题汇编《一次函数》(06)

2014年全国中考数学试题汇编《一次函数》(06)

全国中考数学试题汇编《一次函数》(06)解答题151.(2007•宜宾)已知:如图,在平面直角坐标系xoy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′的解析式;(2)若直线A′B′与直线AB相交于点C,求S△A´BC:S△ABO的值.152.(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.153.(2007•厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.154.(2007•乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R的取值范围.155.(2007•天门)如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,以AB为边在第一象限内作正△ABC.(1)求点C的坐标;(2)把△ABO沿直线AC翻折,点B落在点D处,点D是否在经过点C的反比例函数的图象上?说明理由;(3)连接CD,判断四边形ABCD是什么四边形?说明理由.156.(2007•台州)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5,且tan∠EDA=.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.157.(2007•随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)158.(2007•绍兴)设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;(2)若函数y=a1x+b1与y=a2x+b2的图象的交点为P,判断点P是否在此两个函数的生成函数的图象上,并说明理由.159.(2007•邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α<360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.160.(2007•韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.161.(2007•衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.162.(2007•庆阳)已知一次函数y=kx+b的图象与x轴相交于点A(﹣2,0),与函数的图象相交于点M(m,3),N两点.(1)求一次函数y=kx+b的解析式;(2)求点N的坐标.163.(2007•牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.164.(2007•梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.165.(2007•泸州)已知直线(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.(1)求设△A1OB1的面积S1;(2)求S1+S2+S3+…+S6的值.166.(2007•嘉兴)如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.167.(2007•佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.168.(2007•济宁)(1)已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4.请你按照小明的论证思路完成后面的论证过程;(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?169.(2007•济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC 方向移动.(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;(2)求直线BC的解析式;(3)设PA﹣PO=m,P点的移动时间为t.①当0<t≤4时,试求出m的取值范围;②当t>4时,你认为m的取值范围如何?(只要求写出结论)170.(2007•济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.171.(2007•黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6(1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠CAB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.172.(2007•哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B (点P可以与梯形的各顶点重合).设动点P的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.173.(2007•桂林)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?174.(2007•广州)一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在直角坐标系中画出一次函数的图象;(2)求a、b满足的等量关系式;(3)若△APQ是等腰三角形,求△APQ的面积.175.(2007•朝阳区)已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C,E为直径OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.(1)求直线AB的解析式;(2)求y与x之间的函数关系式,并写出自变量x的取值范围.176.(2007•长春)如图,在平面直角坐标系中,直线y=﹣x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.(1)求点P的坐标.(2)当b值由小到大变化时,求S与b的函数关系式.(3)若在直线y=﹣x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.177.(2007•新疆)(1)在同一平面直角坐标系中作出反比例函数与一次函数y2=2x﹣2的图象,并根据图象求出交点坐标.(2)观察图象,当x取任何值时,y1>y2?178.(2010•呼和浩特)如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.(1)若△ABD的面积为4,求点B的坐标;(2)求证:DC∥AB;(3)当AD=BC时,求直线AB的函数解析式.179.(2007•乐山)从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.题甲:如图,反比例函数的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.题乙:如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.(1)当∠CPD=30°时,求AE的长;(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.我选做的是_________.180.(2007•随州)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?2007年全国中考数学试题汇编《一次函数》(06)参考答案与试题解析解答题151.(2007•宜宾)已知:如图,在平面直角坐标系xoy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′的解析式;(2)若直线A′B′与直线AB相交于点C,求S△A´BC:S△ABO的值.x+3,则,解得+4,)×=×=6∴.152.(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.﹣,﹣(﹣,∴,b=EF==b﹣﹣<153.(2007•厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.b=b b=4b=b b=②,三式联立便可求出b时,S=××=+1=;时,+=4b=+②,联立三式,得:式得,(舍去)==3=不符合b②,不符合154.(2007•乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R的取值范围.,可得,所以直线y=,,所以直线﹣.∴y=∴,x+6,的坐标为)证明:∵,又∵2应满足2或155.(2007•天门)如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,以AB为边在第一象限内作正△ABC.(1)求点C的坐标;(2)把△ABO沿直线AC翻折,点B落在点D处,点D是否在经过点C的反比例函数的图象上?说明理由;(3)连接CD,判断四边形ABCD是什么四边形?说明理由.﹣(BAO==的坐标为(y=坐标为(156.(2007•台州)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5,且tan∠EDA=.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.EDA=∴5∴x+8157.(2007•随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索))的面积为(,a+6由题意得的值为的面积的轴的负半轴上,可求;重合,即,所以坐标为)x+6.的面积为4,﹣a+6由题意得的值为,则的面积的x+6﹣x+6PQ=AP=AMOP=OQ+QP=AM=(﹣x+6)PMO=x∴(﹣x+6=x=仍为;∴∴,∴∴的坐标为重合,∴,即,坐标为158.(2007•绍兴)设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;(2)若函数y=a1x+b1与y=a2x+b2的图象的交点为P,判断点P是否在此两个函数的生成函数的图象上,并说明理由.159.(2007•邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α<360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.﹣OA=2ON=﹣MN=2x=2,,ON=,MN=2×﹣﹣2160.(2007•韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.与坐标轴交于x+x+HN=NB=x+,所以∴(x+的坐标为上,,HN=NB=,,∴∴x=6+﹣161.(2007•衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n 为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.y=x+(()(,化简得:∴a=或2a=2,得:∴a=或或162.(2007•庆阳)已知一次函数y=kx+b的图象与x轴相交于点A(﹣2,0),与函数的图象相交于点M(m,3),N两点.(1)求一次函数y=kx+b的解析式;(2)求点N的坐标.)在函数代入)得所以解得)由;163.(2007•牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.,得到;∴,∴∴∴,则∴x+.164.(2007•梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.,有,所以解方程组的面积,则有,解得(舍去)的面积,则有此方程组无解.165.(2007•泸州)已知直线(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.(1)求设△A1OB1的面积S1;(2)求S1+S2+S3+…+S6的值.(x+,分别令,,,整理即可求出答案.(;﹣(),(),x+(,,∵()﹣﹣)(=﹣166.(2007•嘉兴)如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.A=OP t=.,则,∴,t=),=,∴,t=(,(,则,∴=,t=),)A=t=.=,∴=t=.),=,∴=t=.(,(,则,∴=,t=),)167.(2007•佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由..∴,同理∴∴∴,则∴)或168.(2007•济宁)(1)已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4.请你按照小明的论证思路完成后面的论证过程;(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?联立方程组可知,有解,所x+y=x+y=y=y=,x+y=169.(2007•济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC 方向移动.(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;(2)求直线BC的解析式;(3)设PA﹣PO=m,P点的移动时间为t.①当0<t≤4时,试求出m的取值范围;②当t>4时,你认为m的取值范围如何?(只要求写出结论)t=4OQ=4,∵,∴,t=4,则,BC=4,∴OQ=4=OAt=4时,即∵,时,170.(2007•济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.,,即直线表达式为ABC=÷OD=OC+CD=,所以,,解得,则解得×得,的函数表达式为ABC=,÷OD=OC+CD=,∴,,则,,.171.(2007•黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6(1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠CAB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.,求出∴∴172.(2007•哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B (点P可以与梯形的各顶点重合).设动点P的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.××,然,利用ABC=,∴∵,∴,y=××﹣(﹣ABC=,可得BR=R=,H=,.=∴解得.∴=t=t=173.(2007•桂林)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?。

2014年全国中考数学试题汇编《一次函数》(04)

2014年全国中考数学试题汇编《一次函数》(04)

全国中考数学试题汇编《一次函数》(04)解答题91.(2007•乌兰察布)元旦联欢会前某班布置教室,同学们利用彩纸条粘成﹣环套﹣环的彩纸链,小颖测量了部分与x的函数关系,并求出函数关系式;(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?92.(2007•温州)为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售(2)小李1~6月份的销售额y1与月份x的函数关系式是y1=1200x+10400,小张1~6月份的销售额y2也是月份x 的一次函数,请求出y2与x的函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.93.(2007•泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?94.(2007•泰安)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?95.(2007•太原)今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象.(1)分别求l1、l2的函数表达式;(2)求骑车的人用多长时间追上步行的人.96.(2007•双柏县)某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x 分钟,甲、乙两种的费用分别为y1和y2元.(1)试分别写出y1、y2与x之间的函数关系式;(2)在同一坐标系中画出y1、y2的图象;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?97.(2007•十堰)一旅游团来到十堰境内某旅游景点,看到售票处旁边的公告栏如图所示,请根据公告栏内容回答下列问题:(1)若旅游团人数为9人,门票费用是多少?若旅游团人数为30人,门票费用又是多少?(2)设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.(直接填写在下面的横线上).98.(2007•沈阳)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?99.(2007•邵阳)为了增强农民抵御大病风险的能力,政府积极推行农村医疗保险制度.我市某县根据本地的实际情况,制定了纳入医疗保险的农民住院医疗费用的报销规定:享受医保的农民可在定点医院住院治疗,由患者先垫x元(x>100),按规定报销的医疗费用为y元,试写出y与x的函数关系式;(2)若该农民在这次住院治疗中的医疗费用为1000元,则他在这次住院治疗中报销的医疗费用和自付的医疗费用各为多少元.100.(2007•三明)为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a 元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元.(1)求a,b的值;(2)设该用户每月用电量为x(度),应付电费为y(元);①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?101.(2007•泉州)李明从泉州乘汽车沿高速公路前往A地,已知该汽车的平均速度是100千米/小时,它行驶t小时后距泉州的路程为s1千米.(1)请用含t的代数式表示s1;(2)设另有王红同时从A地乘汽车沿同一条高速公路回泉州,已知这辆汽车距泉州的路程s2(千米)与行驶时间t(时)之间的函数关系式为s2=kt+b(k、t为常数,k≠0),若李红从A地回到泉州用了9小时,且当t=2时,s2=560,k与b的值;②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?102.(2007•黔南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?103.(2007•宁夏)某家庭装修房屋,由甲,乙两个装修公司合作完成.先由甲装修公司单独装修3天,剩下的工作由甲,乙两个装修公路合作完成.工程进度满足如图所示的函数关系,该家庭共支付工资8 000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?104.(2007•南通)周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:(1)填空:周华从体育场返回行走的行走速度时_________米/分;(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;②填空:周华与刘明在途中共相遇_________次;③求周华出发后经过多少分钟与刘明最后一次相遇.105.(2007•南京)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;106.(2007•南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价﹣进价)107.(2007•牡丹江)已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.108.(2007•梅州)在市区内,我市乘坐出租车的价格y(元)与路程x(km)的函数关系图象如图所示.(1)请你根据图象写出两条信息;(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.109.(2007•眉山)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池x个,修建两种型号沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.110.(2007•泸州)某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.60元计费.(1)求出租车收费y(元)与行驶路程x(千米)之间的函数关系式;(2)若某人一次乘出租车时,付出了车费14.40元,求他这次乘坐了多少千米的路?111.(2007•娄底)某信息网络公司,宽带网上网费用收取方式有三种:方式一,每月80元包干;方式二,每月上网时间x(小时)与上网费用y(元)的函数关系如图中折线段所示;方式三,以0小时为起点,每小时收费1.6元,月收费不超过120元,如果你家每月上网60小时,应选择哪种方式上网费用最少?112.(2007•陇南)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?113.(2007•聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2)(2)请设计出总运费最省的草皮运送方案,并说明理由.114.(2007•连云港)某地区一种商品的需求量y1(万件)、供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=﹣x+60,y2=2x﹣36.需求量为0时,即停止供应.当y1=y2时,该商品的价格称为稳定价格,需求量称为稳定需求量.(1)求该商品的稳定价格与稳定需求量;(2)价格在什么范围,该商品的需求量低于供应量;(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?115.(2007•莱芜)在济青高速公路南线的施工过程中,某工程队承包了一段长18千米的道路修建工程,为加快修建速度,工程负责人将工程队分为甲乙两组,从路的两端同时开工,两个组修建道路的长度与施工天数的关系如图所示.求:(1)开工多少天时,两个组修建道路的长度相同?(2)此工程队完成任务共需要多少天?116.(2007•昆明)某工厂有甲、乙两个相等的长方体的水池,甲池的水均匀地流入乙池;如图,是甲、乙两个水池水的深度y(米)与水流时间x(小时)的函数关系的图象.(1)分别求两个水池水的深度y(米)与水流时间x(小时)的函数关系式,并指出自变量x的取值范围;(2)水流动几小时,两个水池的水的深度相同?117.(2007•荆州)某县在实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲、乙两个工程队分别从A、B两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度.118.(2007•金昌)暑假期间,王红随爸爸妈妈到一个著名森林风景区旅游,导游提醒大家上山要多带一件衣服,并介绍山区气温会随着海拔高度的增加而下降,沿途王红利用随身带的登山表(具有测定当前位置的海拔高度和气(2)观察(1)中所画出的图象,猜想y与x之间函数关系,求出所猜想的函数关系表达式;(3)如果王红到达山顶时,只告诉你山顶的气温为20.2℃,请计算此风景区山顶海拔高度大约是多少米?119.(2007•江苏)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8﹣6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_________元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?120.(2007•仙桃)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:2007年全国中考数学试题汇编《一次函数》(04)参考答案与试题解析解答题91.(2007•乌兰察布)元旦联欢会前某班布置教室,同学们利用彩纸条粘成﹣环套﹣环的彩纸链,小颖测量了部分与x的函数关系,并求出函数关系式;(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?92.(2007•温州)为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售(1)请问小李与小张3月份的工资各是多少?(2)小李1~6月份的销售额y1与月份x的函数关系式是y1=1200x+10400,小张1~6月份的销售额y2也是月份x 的一次函数,请求出y2与x的函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.解得93.(2007•泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?94.(2007•泰安)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?95.(2007•太原)今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象.(1)分别求l1、l2的函数表达式;(2)求骑车的人用多长时间追上步行的人.∴x=x96.(2007•双柏县)某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x 分钟,甲、乙两种的费用分别为y1和y2元.(2)在同一坐标系中画出y1、y2的图象;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?97.(2007•十堰)一旅游团来到十堰境内某旅游景点,看到售票处旁边的公告栏如图所示,请根据公告栏内容回答下列问题:(1)若旅游团人数为9人,门票费用是多少?若旅游团人数为30人,门票费用又是多少?(2)设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.(直接填写在下面的横线上).98.(2007•沈阳)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?)代入表达式,得解得99.(2007•邵阳)为了增强农民抵御大病风险的能力,政府积极推行农村医疗保险制度.我市某县根据本地的实际情况,制定了纳入医疗保险的农民住院医疗费用的报销规定:享受医保的农民可在定点医院住院治疗,由患者先垫x元(x>100),按规定报销的医疗费用为y元,试写出y与x的函数关系式;(2)若该农民在这次住院治疗中的医疗费用为1000元,则他在这次住院治疗中报销的医疗费用和自付的医疗费用各为多少元.100.(2007•三明)为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a 元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元.(1)求a,b的值;(2)设该用户每月用电量为x(度),应付电费为y(元);①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?)根据题意,得,解这个方程组,得101.(2007•泉州)李明从泉州乘汽车沿高速公路前往A地,已知该汽车的平均速度是100千米/小时,它行驶t小时后距泉州的路程为s1千米.(1)请用含t的代数式表示s1;(2)设另有王红同时从A地乘汽车沿同一条高速公路回泉州,已知这辆汽车距泉州的路程s2(千米)与行驶时间t(时)之间的函数关系式为s2=kt+b(k、t为常数,k≠0),若李红从A地回到泉州用了9小时,且当t=2时,s2=560,k与b的值;②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?∴(即王红所乘汽车的平均速度为102.(2007•黔南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?,;=75103.(2007•宁夏)某家庭装修房屋,由甲,乙两个装修公司合作完成.先由甲装修公司单独装修3天,剩下的工作由甲,乙两个装修公路合作完成.工程进度满足如图所示的函数关系,该家庭共支付工资8 000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?,剩余的工程还是合作,那么需要的天数=那么其工作量为),)在图象上.代入得x.当x=1,乙工作的效率:﹣=甲,乙合作的天数:(+)由正比例函数图象可知:甲的工作效率是×.甲得到的工资是:104.(2007•南通)周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:(1)填空:周华从体育场返回行走的行走速度时160米/分;(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;②填空:周华与刘明在途中共相遇2次;③求周华出发后经过多少分钟与刘明最后一次相遇.根据图象有解得(分钟与刘明最后一次相遇.105.(2007•南京)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;106.(2007•南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价﹣进价)根据题意得≤107.(2007•牡丹江)已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.小于,代入一次函数关系式,计算出乙车在用了≤,之间的函数关系式)当×乙车过点≤,解得≤小时,第二次相遇时间为第。

2014年全国中考分类试题汇编《函数与一次函数》

2014年全国中考分类试题汇编《函数与一次函数》

2014年全国中考分类试题汇编《函数与一次函数》一、填空题1.(2014年四川资阳)函数y=1+中自变量x的取值范围是.2.(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).3.(2014•舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.4.(2014•武汉)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如下左1图,则这次越野跑的全程为米.5.(2014•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集___________6.(2014•孝感)函数的自变量x的取值范围为7.(2014•孝感)如下左2图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为___________8.(2014•四川自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.9.(2014·浙江金华)小明从家跑步到学校,接着马上步行回家.如下左3图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.10. (2014•益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如下右1图所示,则他步行回家的平均速度是米/分钟.11. (2014•株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.12. (2014•泰州)将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.二、解答题1. (2014•安徽省)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?2. (2014•福建泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?3. (2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m <0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.4. (2014•珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?5. (2014•珠海)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.6.(2014年四川资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?7.(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.8.(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.9.(2014•新疆)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?10.(2014•新疆)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.11.(2014年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM 与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.12.(2014年广东汕尾)已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).13.(2014•四川自贡)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.14.(2014·云南昆明)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.15.(2014•浙江湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.16.(2014•浙江湖州)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.17 (2014•株洲)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.18. (2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?19. (2014•泰州)某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?20. (2014•泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E 上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.21. (2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?。

2014年全国中考数学试题分类汇编11 函数与一次函数(含解析)

2014年全国中考数学试题分类汇编11 函数与一次函数(含解析)

函数与一次函数一、选择题1. (2014•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x 的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.菁优网分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠P AD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.2. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()B C D.=的图象可知3. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx +与反比例函数y =在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4. (2014•广西贺州,第14题3分)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5. (2014•广西玉林市、防城港市,第12题3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()B C D.×1×=,高为(×=﹣,6.(2014年四川资阳,第5题3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.菁优网分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过二、四象限,当b>0时,函数图象与y轴相交于正半轴.7.(2014•温州,第7题4分)一次函数y=2x+4的图象与y轴交点的坐标是()8.(2014年广东汕尾,第8题4分)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快.据此即可选择.解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快.故选:C.点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.9.(2014年广东汕尾,第10题4分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.10.(2014•毕节地区,第14题3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()≤,,.11.(2014•邵阳,第10题3分)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()12.(2014•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D.13.(2014•德州,第8题3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()1.5÷=14.(2014•济宁,第4题3分)函数y=中的自变量x的取值范围是()二.填空题1.(2014年四川资阳,第13题3分)函数y=1+中自变量x的取值范围是.考点:函数自变量的取值范围.菁优网分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2014年云南省,第11题3分)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.3.(2014•舟山,第15题4分)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).依据与直线)的一条直线与直线=,+=<4.(2014•武汉,第14题3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200 米.,5.(2014•武汉,第18题6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x ﹣b≥0的解集.≥.6.(2014•孝感,第13题3分)函数的自变量x的取值范围为x≠1.7.(2014•孝感,第11题3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()8.(2014•四川自贡,第15题4分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.,解得,,解得,9.(2014·浙江金华,第13题4分)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行▲ 米.【答案】80.【解析】10. (2014•益阳,第12题,4分)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.(第1题图)11. (2014•株洲,第15题,3分)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于4.=412. (2014•泰州,第10题,3分)将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x+2.三.解答题1. (2014•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. (2014•福建泉州,第24题9分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?;时,两遥控车的信号不会产生相互干扰;1≤或t时,两遥控车的信号不会产生相互干扰.3. (2014•广东,第23题9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b 与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.4. (2014•珠海,第16题7分)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x 的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?5. (2014•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.的图象过点﹣,解得.,解得6.(2014年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.菁优网分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.7.(2014年天津市,第23题10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg 以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.考点:一次函数的应用;一元一次方程的应用.菁优网分析:(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.解答:解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.点评:本题考查了一次函数的应用,分类讨论是解题关键.8.(2014年天津市,第25题10分)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.考点:一次函数综合题.菁优网分析:(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.解答:解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.点评:本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.9.(2014•新疆,第22题11分)如图1所示,在A,B两地之间有汽车站C站,客车由A 地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距420千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?,解得,=答:客、货两车经过小时相遇.10.(2014•新疆,第23题12分)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B 点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP 的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.,则﹣x==×=××((<(+20=;=,,,=,,的值为2×=,2×)×,的坐标为()=标为(,11.(2014年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.12.(2014年广东汕尾,第18题7分)已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).分析:(1)利用待定系数法把(2,1)代入反比例函数y=中可得k的值,进而得到解析式;(2)根据y=可得x=,再根据条件2<x<4可得2<<4,再解不等式即可.解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.点评:此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解析式.13.(2014•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入得,时,14.(2014·云南昆明,第21题8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元. (1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m (件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.15.(2014•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,三角形的面积公式.16.(2014•浙江湖州,第22题分)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元,列出方程解决问题,解答:解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50∴6x﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.点评:此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.17. (2014•湘潭,第24题)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.18. (2014•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.(第2题图)1×=,,1×=,•=),;,得:)﹣19. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km 的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第3题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)。

14年中考试题一次函数图像信息题

14年中考试题一次函数图像信息题
15.(2013•黄冈)Diaoyu Island自古就是中国领土,中国政府已对Diaoyu Island开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是_________.
8.(2014•江汉区一模)甲、乙两车都从同一地点沿同一路线驶向同一目的地,甲车先行,一段时间后,乙车开始行驶,甲车到达目的地后,乙车走完了全程的 ,下图反应的是从甲车开始行驶到乙车到达目的地整个过程中两车之间的距离与时间的函数关系图象,则a=_________.
9.(2014•南安市校级质检)甲、乙两车分别从M、N两地相向而行,甲车出发1小时后乙车才出发,并以各自速度匀速行驶,甲车出发3小时两车相遇,相遇后两车仍按原速度原方向各自行驶.如图折线A﹣B﹣C﹣D表示甲、乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象.则:
第16题第17题第18题
19.(2014•四川泸州,第9题,3分)“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是( )
①小陆离出发地的距离S和行驶时间t之间的函数关系为:_________;
②他们相遇的时间t=_________.
11.(2014•武汉模拟)一个生产、装箱流水线,生产前没有积压产品,开始的2小时只生产,2小时后安排装箱(生产没有停止),6小时后生产停止只安排装箱,第12小时时生产流水线上刚好又没有积压产品,已知流水线的生产、装箱的速度保持不变,流水线上积压产品(没有装箱产品)y吨与流水线工作时间x(小时)之间的函数关系如图所示,则流水线上产品装箱的速度为_________吨/小时.

2014年中考题分类汇编-函数与一次函数

2014年中考题分类汇编-函数与一次函数

函数与一次函数一、选择题1.(2014•四川巴中,第9题3分)已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限考点:一次函数的图象和性质.分析:根据m+n=6,mn=8,可得出m与n为同号且都大于0,再进行选择即可.解答:∵mn=8>0,∴m与n为同号,∵m+n=6,∴m>0,n>0,∴直线y=mx+n经过第一、二、三象限,故选B.点评:本题考查了一次函数图象在坐标平面内的位置与m、n的关系.解答本题注意理解:直线y=mx+n所在的位置与m、n的符号有直接的关系.m>0时,直线必经过一、三象限.m <0时,直线必经过二、四象限.n>0时,直线与y轴正半轴相交.n=0时,直线过原点;n<0时,直线与y轴负半轴相交.2.(2014•山东威海,第16题3分)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a 的解集是x<﹣2 .得出解得,本题的关键是求出=2看作整体求解集.(2014•山东枣庄,第8题3分)将一次函数y=x的图象向上平移2个单位,平移后,若y(2014•山东潍坊,第8题3分)如图,已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE⊥上EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()考点:动点问题的函数图象.分析:易证△ABE ∽△ECF ,根据相似比得出函数表达式,在判断图像. 解答:因为△ABE ∽△ECF ,则BE :CF =AB :EC ,即x :y =5:(4-x )y , 整理,得y =-51(x -2)2+54,很明显函数图象是开口向下、顶点坐标是(2,54)的抛物线.对应A 选项. 故选:A .点评:此题考查了动点问题的函数图象,关键列出动点的函数关系,再判断选项.5. (2014•山东潍坊,第11题3分)已知一次函数y 1=kx +b (k <O )与反比例函数y 2=xm(m ≠O )的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( ) A .x <-l 或O <x <3 B .一1<x <O 或O <x <3 C .一1<x <O 或x >3 D .O <x <3 考点:反比例函数与一次函数的交点问题. 分析:画出函数图象,取反比例函数图象位于一次函数图象下方时对应的x 的取值范围即可. 解答:一次函数y 1=kx +b 与反比例函数y 2=xm的图象相交于A 、B 两点,且A ,B 两点的横坐标分别为-1,3,故满足y 2<y 1的x 的取值范围是x <-1或0<x <3. 故选A .点评:本题主要考查了反比例函数与一次函数的交点问题的知识点,熟练掌握反比例的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6. (2014•山东烟台,第12题3分)如图,点P 是▱ABCD 边上一动点,沿A →D →C →B 的路径移动,设P 点( )经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是A .B .C .D .考点:平行四边形的性质,函数图象.分析:分三段来考虑点P 沿A →D 运动,△BAP 的面积逐渐变大;点P 沿D →C 移动,△BAP 的面积不变;点P 沿C →B 的路径移动,△BAP 的面积逐渐减小,据此选择即可. 解答:点P 沿A →D 运动,△BAP 的面积逐渐变大;点P 沿D →C 移动,△BAP 的面积不变;点P 沿C →B 的路径移动,△BAP 的面积逐渐减小.故选:A . 点评:本题主要考查了动点问题的函数图象.注意分段考虑.7.(2014•湖南怀化,第8题,3分)已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=在同一坐标系中的图象大致是( )杯,桶子和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器.....,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h 与注水时间t 之间关系的大致图象是解析:选C . ∵桶口的半径是杯口半径的2倍,∴水注满杯口周围所用时间是注满杯子所用时间的3倍,∴C 正确.9. (2014山东济南,第9题,3分)若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则A .0>mB .0<mC .3>mD .3<m 【解析】由函数值y 随x 的增大而增大,可知一次函数的斜率03>-m ,所以3>m ,故选C .10.(2014山东济南,第12题,3分)如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点,把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是A .)3,3(B .)3,3(C .)32,2(D .)4,32( 【解析】连接OO ',由直线233+-=x y可知2OB=,OA=,故30BAO ∠=︒,点O '为点O 关于直线AB 的对称点,故60O AO '∠=︒,AOO ∆'是等边三角形,O '点的横坐标是OAAOO ∆'的高3,故选A . 11.(2014•娄底3.(3分))函数 y=中自变量x 的取值范围为( )的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x的方程=kx+b的解为()A.﹣3,1 B.﹣3,3 C.﹣1,1 D.﹣1,3考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:首先把M点代入y=中,求出反比例函数解析式,再利用反比例函数解析式求出N 点坐标,求关于x的方程=kx+b的解就是看一次函数与反比例函数图象交点横坐标就是x的值.解答:解:∵M(1,3)在反比例函数图象上,∴m=1×3=3,∴反比例函数解析式为:y=,∵N也在反比例函数图象上,点N的纵坐标为﹣1.∴x=﹣3,∴N(﹣3,﹣1),∴关于x的方程=kx+b的解为:﹣3,1.故选:A.点评:此题主要考查了反比例函数与一次函数交点问题,关键掌握好利用图象求方程的解时,就是看两函数图象的交点横坐标.14. (2014•江苏徐州,第5题3分)将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2)D.y=﹣3(x﹣2)考点:一次函数图象与几何变换分析:直接利用一次函数平移规律,“上加下减”进而得出即可.解答:解:∵将函数y=﹣3x的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣3x+2.故选:A.点评:此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.15. (2014•年山东东营,第3题3分)直线y=﹣x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限 C.第二、三、四象限D.第一、三、四象限考点:一次函数图象与系数的关系.分析:根据一次函数的性质解答即可.解答:解:由于﹣1<0,1>0,故函数过一、二、四象限,故选B.点评:本题考查了一次函数的性质,要知道,对于y=kx+b(k≠0)来说,k、b的符号决定函数所过的象限.16.(2014•四川宜宾,第6题,3分)如图,过A点的一次函数的图象与正比例函数y=2x 的图象相交于点B,则这个一次函数的解析式是()17.(2014•四川遂宁,第5题,4分)在函数y=中,自变量x的取值范围是()18.(2014•四川泸州,第9题,3分)“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是(),解得19.(2014•四川内江,第5题,3分)在函数y=中,自变量x的取值范围是()20.(2014•四川内江,第12题,3分)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()=,.21.(2014•四川凉山州,第9,4分)下列图形中阴影部分的面积相等的是()23.(2014•广州,第9题3分)已知正比例函数()的图象上两点(,)、(,),且,则下列不等式中恒成立的是().(A)(B)(C)(D)【考点】正比例函数的增减性【分析】正比例函数中,所以在每一象限内随的增大而减小,∴当时,,故答案为【答案】C二、填空题1.(2014•上海,第8题4分)函数y=的定义域是x≠1.2.(2014•四川巴中,第18题3分)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.考点:一次函数的性质,旋转.分析:首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA,进而得出B′的坐标.解答:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,即横坐标为OA+OB=OA+O′B′=3+4=7.故点B′的坐标是(7,3).故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B和点B′位置的特殊性,以及点B'的坐标与OA和OB的关系.3.(2014•山东烟台,第14题3分)在函数中,自变量x的取值范围是.考点:二次根式及分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.(2014•山东烟台,第16题3分)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.考点:运用一次函数的图象解不等式.分析:把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b 的解集.解答:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得﹣x﹣3>2x﹣14解得x<4.故答案为:x<4.点评:本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.5.(2014•湖南张家界,第12题,3分)已知一次函数y=(1﹣m)x+m﹣2,当m<1时,y随x的增大而增大.6. (2014年贵州黔东南12.(4分))函数y=自变量x的取值范围是x>1.考点:函数自变量的取值范围.分析:根据二次根式被开方数非负、分母不等于0列式计算即可得解.解答:解:有意义的条件是x﹣1≥0,解得x≥1;又分母不为0,x﹣1≠0,解得x≠1.∴x>1.故答案为:x>1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7. (2014年贵州黔东南16.(4分))在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.解答:解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时PA+PB最小,由题意可得出:OA′=1,BO=2,PA′=PA,∴PA+PB=A′B==.故答案为:.点评:此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.8. (2014•江苏徐州,第9题3分)函数y=中,自变量x的取值范围为x≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(2014•四川泸州,第14题,3分)使函数y=+有意义的自变量x的取值范围是x>﹣2,且x≠1.10.(2014•四川凉山州,第12题,4分)函数y=+中,自变量x的取值范围是x≥﹣1且x≠0 .11.(2014•广东梅州,第12题3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第象限.6.7.8.三、解答题1.(2014•上海,第21题10分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.;,+29.75(2014•山东枣庄,第24题10分)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.AOE=,,y=,y==,解得,﹣,+ (2014•山东潍坊,第23题12分)经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为O 千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y 的最大值.考点:二次函数的应用;一次函数的应用.分析:(1)利用当20≤x ≤220时,v 是x 的一次函数,设v 与x 的一次函数关系为v =kx +b (k ≠0 ),求出表达式后把x =100代入即可;(2)利用(1)中所求表达式根据题意列出不等式组,求出解集. (3)利用(1)中所求,再利用车流量=车流密度×车流速度,得出函数关系式,根据顶点坐标求出最值即可.解答:(1)由题意得:当20≤x ≤220时,v 是x 的一次函数,则可设v =kx +b (k ≠O ), 由题意得:当x =20时,v =80,当x =220时,v =0所以⎩⎨⎧=+=+02208020b k b k 解得:⎪⎩⎪⎨⎧=-=8852b k ,所以当20≤x ≤220时,v =-52x +88 , 则当x =100时,y =一52×100+88=48.即当大桥上车流密度为100辆/千米时,车流速度为48千米/小时.(2)当20≤v ≤220时,v =一52x +88(0≤v ≤80),由题意得:⎪⎪⎩⎪⎪⎨⎧+-+-608852408852 x x .解得70<x <120, 所以应控制车流密度的范围是大于70辆/千米且小于120辆/千米.(3)①当0≤x ≤20时,车流量y 1=vx =80x ,因为k =80>0,,所以y 1随x 的增大面增大,故当x =20时,车流量y 1的最大值为1600. ②当20≤x ≤220时,车流量y 2=vx =(一52x +88)x =一(x -110)2+4840, 当x =110时,车流量y 2取得最大值4840,因为4840>1600,所以当车流密度是110辆/千米,车流量y 取得最大值.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式等知识,注意自变量取值范围不同函数解析式不同.4. (2014•山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A ,B考点:分式方程的应用,一次函数的应用.分析: (1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.解答:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得,解得:x =1600.经检验,x =1600是元方程的根.答:今年A 型车每辆售价1600元;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由题意,得y =(1600﹣1100)a +(2000﹣1400)(60﹣a ),y =﹣100a +36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a ≤2a ,∴a ≥20.∵y =﹣100a +36000.∴k =﹣100<0,∴y 随a 的增大而减小.∴a =20时,y 最大=34000元.∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.点评:本题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.5.(2014•湖南怀化,第18题,6分)设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B (0,﹣2)两点,试求k,b的值.得,6. (2014•山东聊城,第23题,8分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.,,x=,答:乙车行驶小时或小时,两车恰好相距7. 25.(2014•山东聊城,第25题,12分)如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O(0,0),B(6,0).点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S.(1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标;(2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值;(3)若S:S△ANB=2:3时,求出此时N点的坐标.,得=8.(2014•遵义25.(10分))为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?(24+0.5=+0.5=,,,,,9.(2014•十堰22.(8分))某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?10. (2014年湖北咸宁22.(10分))在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,根据条件中树苗的数量与单价之间的关系建立二元一次方程组求出其解即可;(2)设购买甲种树苗a株,乙种树苗则购买(1000﹣a)株,根据两种树苗共用5600元建立方程求出其解即可;(3)设甲种树苗购买b株,则乙种树苗购买(1000﹣b)株,购买的总费用为W元,根据条件建立不等式和W与b的函数关系式,由一次函数的性质就可以得出结论.解答:解:(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,由题意,得,解得:,答:甲、乙两种油茶树苗每株的价格分别为5元,8元;(2)设甲购买了n株,已购买了m株,由题意,得5a+8(1000﹣a)=5600,解得:a=800,∴乙种树苗购买株数为:1000﹣800=200株.答:甲种树苗800株,乙种树苗购买200株;(3)设甲种树苗购买b株,则乙种树苗购买(1000﹣b)株,购买的总费用为W元,由题意,得90%b+95%(1000﹣b)≥1000×92%,∴b≤600.W=5b+8(1000﹣b)=﹣3b+8000,∴k=﹣3<0,∴W随b的增大而减小,∴b=600时,W最低=6200元.答:购买甲种树苗600株,乙种树苗400株费用最低,最低费用是6200元.点评:本题考查了列二元一次方程组解实际问题的运用,一元一次不等式解实际问题的运用,一次函数的解析式的运用,解答时由方程组求出两种树苗的单价是关键.8.如图,在Rt△ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC CB BA运动,最终回到A点。

2014中考数学分类汇编:一次函数

2014中考数学分类汇编:一次函数

2013中考全国100份试卷分类汇编一次函数1、(2013陕西)如果一个正比例函数的图象经过不同..象限的两点A (2,m ),B (n ,3),那么一定有( )A .m>0,n>0B .m>0,n<0C .m<0,n>0D .m<0,n<0考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。

解析:因为A ,B 是不同象限的点,而正比例函数的图象要不在一、三象限或在二、四象限,由点A 与点B 的横纵坐标可以知:点A 与点B 在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A 与点B 在二、四象限:点A 在四象限得m<0,点B 在二象限得n<0,故选D .(另解:就有两种情况一、三或二、四象限,代入特值即可判定)2、(2013陕西)根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )x -2 0 1y 3 p 0A .1B .-1C .3D .-3考点:待定系数法求一次函数的解析式及由自变量的值确定对应的函数值。

解析:设y=kx+b ,将表格中的对应的x,y 的值代入得二元一次方程组,解方程组得k,b 的值,回代x=0时,对应的y 的值即可。

设y=kx+b ,⎩⎨⎧=+=+-032b k b k 解得:k=-1,b=1,所以所以y=-x+1,当x=0时,得y=1,故选A . 3、(2013•舟山)对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A ⊕B=(x 1+x 2)+(y 1+y 2).例如,A (﹣5,4),B (2,﹣3),A ⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C ,D ,E ,F ,满足C ⊕D=D ⊕E=E ⊕F=F ⊕D ,则C ,D ,E ,F 四点( )A . 在同一条直线上B . 在同一条抛物线上C . 在同一反比例函数图象上D . 是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析: 如果设C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6),先根据新定义运算得出(x 3+x 4)+(y 3+y 4)=(x 4+x 5)+(y 4+y 5)=(x 5+x 6)+(y 5+y 6)=(x 4+x 6)+(y 4+y 6),则x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6,若令x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6=k ,则C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6)都在直线y=﹣x+k 上.解答: 解:∵对于点A (x 1,y 1),B (x 2,y 2),A ⊕B=(x 1+x 2)+(y 1+y 2),如果设C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6),那么C ⊕D=(x 3+x 4)+(y 3+y 4),D ⊕E=(x 4+x 5)+(y 4+y 5),E ⊕F=(x 5+x 6)+(y 5+y 6),F ⊕D=(x 4+x 6)+(y 4+y 6),又∵C ⊕D=D ⊕E=E ⊕F=F ⊕D ,∴(x 3+x 4)+(y 3+y 4)=(x 4+x 5)+(y 4+y 5)=(x 5+x 6)+(y 5+y 6)=(x 4+x 6)+(y 4+y 6), ∴x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6,令x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6=k ,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.点评:4、(2013泰安)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<4考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.5、(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.6、(2013•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=﹣2+4x C.y=﹣2x+8 D.y=4x 一次函数的性质.考点:根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.分析:解答: 解:A 、B 、D 选项中的函数解析式k 值都是整数,y 随x 的增大而增大,C 选项y=﹣2x+8中,k=﹣2<0,y 随x 的增大而减少.故选C .点评: 本题考查了一次函数的性质,主要利用了当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.7、(2013•娄底)一次函数y=kx+b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A . x <0B . x >0C . x <2D . x >2考点:一次函数的图象.分析: 根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b <0的解集,就是图象在x 轴下方部分所有的点的横坐标所构成的集合.解答: 解:因为直线y=kx+b 与x 轴的交点坐标为(2,0),由函数的图象可知当y >0时,x 的取值范围是x <2.故选C .点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解. 8、(2013•湖州)若正比例函数y=kx 的图象经过点(1,2),则k 的值为( )A. 21B. -2C. 21D. 2 考点:一次函数图象上点的坐标特征. 分析:把点(1,2)代入已知函数解析式,借助于方程可以求得k 的值. 解答: 解:∵正比例函数y=kx 的图象经过点(1,2), ∴2=k ,解得,k=2.故选D .点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上. 9、(2013•益阳)已知一次函数y=x ﹣2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( )A .B .C .D .考点:在数轴上表示不等式的解集;一次函数的性质. 分析: 由已知条件知x ﹣2>0,通过解不等式可以求得x >2.然后把不等式的解集表示在数轴上即可.解答: 解:∵一次函数y=x ﹣2,∴函数值y >0时,x ﹣2>0,解得,x >2,表示在数轴上为:故选B .点评: 本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、(2013•荆门)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限考点:一次函数图象与系数的关系;反比例函数图象上点的坐标特征.分析:首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.解答:解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.点评:此题主要考查了反比例函数图象上点的坐标特征,以及一次函数图象与系数的关系,关键是掌握一次函数图象与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.11、(2013•眉山)若实数a,b ,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.考点:一次函数图象与系数的关系.专题:存在型.分析:先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.解答:解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一象限,∴函数y=cx+a的图象经过第一、三、四象限.故选C.点评:本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.12、(2013•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2考点:一次函数图象上点的坐标特征.分析:根据正比例函数图象的性质:当k<0时,y随x的增大而减小即可求解.解答:解:∵y=﹣x,k=﹣<0,∴y随x的增大而减小.故选D.点评:本题考查正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.13、(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3考点:一次函数与一元一次不等式.分析:先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.解答:解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.点评:此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.14、(2013•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤1考点:两条直线相交或平行问题.专题:计算题.分析:联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.解答:解:联立,解得,∵交点在第四象限,∴,解不等式①得,m >﹣1,解不等式②得,m <1,所以,m 的取值范围是﹣1<m <1.故选C .点评: 本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.15、(2013福省福州4分、10)A ,B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x+a ,y+b ),B (x ,y ),下列结论正确的是( )A .a >0B .a <0C .b=0D .ab <0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y 随x 的增大而增大,y+b <y ,x+a <x 得出b <0,a <0,即可推出答案.解答:解:∵根据函数的图象可知:y 随x 的增大而增大,∴y+b <y ,x+a <x ,∴b <0,a <0,∴选项A 、C 、D 都不对,只有选项B 正确,故选B .点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.16、(2013台湾、22)坐标平面上,有一线性函数过(﹣3,4)和(﹣7,4)两点,判断此函数图形会过哪两象限?( )A .第一象限和第二象限B .第一象限和第四象限C .第二象限和第三象限D .第二象限和第四象限考点:一次函数的性质.分析:根据该线性函数过点(﹣3,4)和(﹣7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.解答:解:∵坐标平面上,有一线性函数过(﹣3,4)和(﹣7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选A .点评:本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x 和y ,如果可以写成y=kx+b (k 为一次项系数,b 为常数),那么我们就说y 是x 的一次函数,其中x 是自变量,y 是因变量.一次函数在平面直角坐标系上的图象为一条直线.17、(2013年潍坊市)一次函数b x y +-=2中,当1=x 时,y <1;当1-=x 时,y >0则b 的取值范围是____.答案:-2﹤b ﹤3考点:一次函数与不等式的关系和不等式组的解法.点评:把1=x 和1-=x 代入,然后根据题意再列出不等式组是解决问题的关键.18、(2013•新疆)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系X Kb1. Co my=.考点:分段函数.分析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.解答:解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.点评:此题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意x的取值范围.19、(2013•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.考点:一次函数图象与几何变换.分析:先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.解答:解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣2.故答案为y=﹣2x﹣2.点评:本题考查了一次函数图象与几何变换,要注意利用一次函数的特点,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b 发生变化.20、(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.考点:一次函数图象与系数的关系.专题:探究型.分析:先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.解答:解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b >0时,函数的图象经过一、二、三象限.21、(2013•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B (1,0),则k=2,b=﹣2.考点:待定系数法求一次函数解析式.分析:把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答即可.解答:解:∵一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),∴,解得.故答案为:2,﹣2.点评:本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用.22、(2013•钦州)请写出一个图形经过一、三象限的正比例函数的解析式y=x(答案不唯一)..考点:正比例函数的性质.分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过一、三象限确定出k的符号,再写出符合条件的正比例函数即可.解答:解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).故答案为:y=x(答案不唯一).点评:本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时函数的图象经过一、三象限.23、(2013•广安)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012=.考点:一次函数图象上点的坐标特征.专题:规律型.分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.解答:解:令x=0,则y=,令y=0,则﹣x+=0,解得x=,所以,S n =••=(﹣),所以,S 1+S 2+S 3+…+S 2012=(﹣+﹣+﹣+…+﹣)=(﹣)=.故答案为:. 点评: 本题考查的是一次函数图象上点的坐标特点,表示出S n ,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.24、(2013年广州市)一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________.分析:根据图象的增减性来确定(m+2)的取值范围,从而求解解:∵一次函数y=(m+2)x+1,若y 随x 的增大而增大,∴m+2>0,解得,m >﹣2.故答案是:m >﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.25、(2013•株洲)已知a 、b 可以取﹣2、﹣1、1、2中任意一个值(a ≠b ),则直线y=ax+b 的图象不经过第四象限的概率是.考点:列表法与树状图法;一次函数图象与系数的关系. 分析:列表得出所有等可能的结果数,找出a 与b 都为正数,即为直线y=ax+b 不经过第四象限的情况数,即可求出所求的概率. 解答: 解:列表如下: ﹣2 ﹣1 1 2﹣2 (﹣1,﹣2) (1,﹣2) (2,﹣2)﹣1 (﹣2,﹣1) (1,﹣1) (2,﹣1)1 (﹣2,1) (﹣1,1) (2,1)2 (﹣2,2) (﹣1,2) (1,2)所有等可能的情况数有12种,其中直线y=ax+b 不经过第四象限情况数有2种,则P==.故答案为:点评: 此题考查了列表法与树状图法,以及一次函数图象与系数的关系,用到的知识点为:概率=所求情况数与总情况数之比.26、(2013•资阳)在一次函数y=(2﹣k )x+1中,y 随x 的增大而增大,则k 的取值范围为 k <2 .考点:一次函数图象与系数的关系.分析:根据一次函数图象的增减性来确定(2﹣k )的符号,从而求得k 的取值范围.解答: 解:∵在一次函数y=(2﹣k )x+1中,y 随x 的增大而增大,∴2﹣k >0,∴k <2.故答案是:k <2.点评: 本题考查了一次函数图象与系数的关系.在直线y=kx+b (k ≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.27、(13年山东青岛、12)如图,一个正比例函数图像与一次函数1+-=x y 的图像相交于点P ,则这个正比例函数的表达式是____________答案:y =-2x解析:交点P 的纵坐标为y =2,代入一次函数解析式:2=-x +1,所以,x =-1即P (-1,2),代入正比例函数,y =kx ,得k -2,所以,y =-2x28、(2013•湖州)如图,已知点A 是第一象限内横坐标为2的一个定点,AC ⊥x 轴于点M ,交直线y=﹣x 于点N .若点P 是线段ON 上的一个动点,∠APB=30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是.考点:一次函数综合题.分析: (1)首先,需要证明线段B 0B n 就是点B 运动的路径(或轨迹),如答图②所示.利用相似三角形可以证明;(2)其次,如答图①所示,利用相似三角形△AB 0B n ∽△AON ,求出线段B 0B n 的长度,即点B 运动的路径长.解答: 解:由题意可知,OM=,点N 在直线y=﹣x 上,AC ⊥x 轴于点M ,则△OMN 为等腰直角三角形,ON=OM=×=.如答图①所示,设动点P 在O 点(起点)时,点B 的位置为B 0,动点P 在N 点(起点)时,点B 的位置为B n ,连接B 0B n .∵AO ⊥AB 0,AN ⊥AB n ,∴∠OAC=∠B 0AB n ,又∵AB 0=AO •tan30°,AB n =AN •tan30°,∴AB 0:AO=AB n :AN=tan30°,∴△AB 0B n ∽△AON ,且相似比为tan30°,∴B 0B n =ON •tan30°=×=.现在来证明线段B 0B n 就是点B 运动的路径(或轨迹).如答图②所示,当点P 运动至ON 上的任一点时,设其对应的点B 为B i ,连接AP ,AB i ,B 0B i .∵AO ⊥AB 0,AP ⊥AB i ,∴∠OAP=∠B 0AB i ,又∵AB 0=AO •tan30°,AB i =AP •tan30°,∴AB 0:AO=AB i :AP ,∴△AB 0B i ∽△AOP ,∴∠AB 0B i =∠AOP .又∵△AB 0B n ∽△AON ,∴∠AB 0B n =∠AOP ,∴∠AB 0B i =∠AB 0B n ,∴点B i 在线段B 0B n 上,即线段B 0B n 就是点B 运动的路径(或轨迹).综上所述,点B 运动的路径(或轨迹)是线段B 0B n ,其长度为.故答案为:.第12题点评:本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中.29、(2013•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).考点:一次函数图象上点的坐标特征;坐标与图形变化-对称.分析:根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得AB′=B′C′,然后写出点C′的坐标即可.解答:解:∵A(﹣2,0),B(﹣1,0),∴AO=2,OB=1,∵△A′B′C′和△ABC关于y轴对称,∴OB=OB′=1,∴AB′=AO+OB′=2+1=3,∵直线y=x+b经过点A,C′,∴AB′=B′C′=3,∴点C′的坐标为(1,3).故答案为:(1,3).点评:本题考查了一次函数图象上点的坐标特征,坐标与图形变化﹣对称,根据直线解析式的k 值等于1得到AB′=B′C′是解本题的关键.30、(2013•内江)如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为(884736,0).考点:一次函数综合题.分析:本题需先求出OA1和OA2的长,再根据题意得出OA n=4n,求出OA4的长等于44,即可求出A4的坐标.解解:∵直线l的解析式是y=x,答:∴∠NOM=60°.∵点M的坐标是(2,0),NM∥x轴,点N在直线y=x上,∴NM=2,∴ON=2OM=4.又∵NM1⊥l,即∠ONM1=90°∴OM1=2ON=41OM=8.同理,OM2=4OM1=42OM,OM3=4OM2=4×42OM=43OM,…OM10=410OM=884736.∴点M10的坐标是(884736,0).故答案是:(884736,0).点评:本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.31、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.考点:一次函数综合题.分析:根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CD是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.解答:解:∵直线y=kx﹣3k+4必过点D(3,4),∴最短的弦CD是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.点评: 此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC 最短时的位置. 32、(2013•昆明)已知正比例函数y=kx 的图象经过点A (﹣1,2),则正比例函数的解析式为 y=﹣2x . 考点: 待定系数法求正比例函数解析式. 分析: 把点A 的坐标代入函数解析式求出k 值即可得解. 解答: 解:∵正比例函数y=kx 的图象经过点A (﹣1,2), ∴﹣k=2,解得k=﹣2,∴正比例函数的解析式为y=﹣2x . 故答案为:y=﹣2x . 点评: 本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可,比较简单.33、(2013成都市)已知点(3,5)在直线y ax b =+(a,b 为常数,且a 0≠)上,则a5b -的值为__________. 答案:13-解析:将(3,5)代入直线方程有3a+b=5 ∴b-5=-3aa 0≠,∴b ≠5 ∴a 1533a b a ==--- 34、(2013•天津)若一次函数y=kx+1(k 为常数,k ≠0)的图象经过第一、二、三象限,则的取值范围是 k >0 . 考点: 一次函数图象与系数的关系. 分析: 根据一次函数图象所经过的象限确定k 的符号. 解答: 解:∵一次函数y=kx+1(k 为常数,k ≠0)的图象经过第一、二、三象限, ∴k >0.故填:k >0. 点评: 本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.35、(5-7函数的综合与创新·2013东营中考)如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为. 17. ()()201340260,40,2或(注:以上两答案任选一个都对)解析:因为直线33y x =与x 轴的正方向的夹角为30°,所以60AOB ∠=︒,在Rt AOB ∆中,因为OA=1,所以OB=2,1Rt AOB ∆中,所以1OA =4,即点1A 的坐标为(0,4),同理1OB =8,所在21Rt A OB ∆中,2OA =16,即点2A 的坐标为2(0,4) 依次类推,点2013A 的坐标为2013(0,4)或4026(0,2).36、(2013•铁岭)如图,在平面直角坐标中,直线l 经过原点,且与y 轴正半轴所夹的锐角为60°,过点A (0,1)作y 轴的垂线l 于点B ,过点B 1作作直线l 的垂线交y 轴于点A 1,以A 1B .BA 为邻边作▱ABA 1C 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2,以A 2B 1.B 1A 1为邻边作▱A 1B 1A 2C 2;…;按此作法继续下去,则C n 的坐标是 (﹣×4n ﹣1,4n ) . 考点: 一次函数综合题;平行四边形的性质. 专题: 规律型. 分析:先求出直线l 的解析式为y=x ,设B 点坐标为(x ,1),根据直线l 经过点B ,求出B 点坐标为(,1),解Rt △A 1AB ,得出AA 1=3,OA 1=4,由平行四边形的性质得出A 1C 1=AB=,则C 1点的坐标为(﹣,4),即(﹣×40,41);根据直线l 经过点B 1,求出B 1点坐标为(4,4),解Rt △A 2A 1B 1,得出A 1A 2=12,OA 2=16,由平行四边形的性质得出A 2C 2=A 1B 1=4,则C 2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C 3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n 的坐标是(﹣×4n ﹣1,4n ). 解答:解:∵直线l 经过原点,且与y 轴正半轴所夹的锐角为60°, ∴直线l 的解析式为y=x .∵AB ⊥y 轴,点A (0,1), ∴可设B 点坐标为(x ,1), 将B (x ,1)代入y=x , 得1=x ,解得x=,∴B 点坐标为(,1),AB=.在Rt △A 1AB 中,∠AA 1B=90°﹣60°=30°,∠A 1AB=90°,∴AA 1=AB=3,OA 1=OA+AA 1=1+3=4, ∵▱ABA 1C 1中,A 1C 1=AB=,∴C 1点的坐标为(﹣,4),即(﹣×40,41); 由x=4,解得x=4,∴B 1点坐标为(4,4),A 1B 1=4.在Rt △A 2A 1B 1中,∠A 1A 2B 1=30°,∠A 2A 1B 1=90°, ∴A 1A 2=A 1B 1=12,OA 2=OA 1+A 1A 2=4+12=16, ∵▱A 1B 1A 2C 2中,A 2C 2=A 1B 1=4,∴C 2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C 3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n 的坐标是(﹣×4n ﹣1,4n ).故答案为(﹣×4n ﹣1,4n ).点评: 本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C 1、C 2、C 3点的坐标,从而发现规律是解题的关键. 37、(2013年武汉)直线b x y +=2经过点(3,5),求关于x 的不等式b x +2≥0的解集. 解析:∵直线b x y +=2经过点(3,5)∴b +⨯=325.∴1-=b .w W w .x K b 1.c o M 即不等式为12-x ≥0,解得x ≥21. 38、(2013年河北)如图15,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒. (1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上. 解析: (1)直线y x b =-+交y 轴于点P (0,b ),由题意,得b>0,t ≥0,b=1+t当t=3时,b=4 ∴4y x =-+(2)当直线y x b =-+过M (3,2)时解得b=5 5=1+t∴t=4=-+过N(4,4)时当直线y x b解得b=88=1+t∴t=7∴4<t<7(3)t=1时,落在y轴上;t=2时,落在x轴上;39、(2013•牡丹江压轴题)如图,平面直角坐标系中,矩形OABC的对角线AC=12,tan∠ACO=,(1)求B、C两点的坐标;(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线DE的解析式;(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点:一次函数综合题.分析:(1)利用三角函数求得OA以及OC的长度,则C、B的坐标即可得到;(2)直线DE是AC的中垂线,利用待定系数法以及互相垂直的两直线的关系即可求得DE 的解析式;(3)分当FM是菱形的边和当OF是对角线两种情况进行讨论.利用三角函数即可求得N 的坐标.解答:解:(1)在直角△OAC中,tan∠ACO=,∴设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=144,解得:x=2.故C的坐标是:(6,0),B的坐标是(6,6);(2)直线AC的斜率是:﹣=﹣,则直线DE的斜率是:.F是AC的中点,则F的坐标是(3,3),设直线DE的解析式是y=x+b,则9+b=3,解得:b=﹣6,则直线DE的解析式是:y=x﹣6;(3)OF=AC=6,∵直线DE的斜率是:.∴DE与x轴夹角是60°,当FM是菱形的边时(如图1),ON∥FM,则∠NOC=60°或120°.当∠NOC=60°时,过N作NG⊥y轴,则NG=ON•sin30°=6×=3,OG=ON•cos30°=6×=3,则N的坐标是(3,3);当∠NOC=120°时,与当∠NOC=60°时关于原点对称,则坐标是(﹣3,﹣3);当OF是对角线时(如图2),MN关于OF对称.∵F的坐标是(3,3),∴∠FOD=∠NOF=30°,在直角△ONH中,OH=OF=3,ON===2.作NL⊥y轴于点L.在直角△ONL中,∠NOL=30°,则NL=ON=,OL=ON•cos30°=2×=3.故N的坐标是(,3).则N的坐标是:(3,3)或(﹣3,﹣3)或(,3).40、(2013•绥化压轴题)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.考点:一次函数综合题分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.。

2014年“一次函数”中考题选粹精品文档4页

2014年“一次函数”中考题选粹精品文档4页

2014年“一次函数”中考题选粹1.(南宁)“黄金1号”玉米种子的价格为5元/千克.如果一次购买2千克以上这种种子,超过2千克的部分的种子价格打6折.设购买种子的质量为x千克,付款金额为y元,则y与x的函数关系的图象大致是().2.(衡阳)小明从家出发,外出散步.他到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家,图2描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.根据图象,下列信息中错误的是().A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟3.(吉林)如图3,直线y=2x+4与x轴,y轴分别交于A,B两点.以OB为边在y轴右侧作等边△OBC.将点C向左平移,使其对应点C'恰好落在直线AB上,则点C'的坐标为______.4.(贵港)已知点Al(a1,a2),A2(a2,a3),A3(a3,a4),…,An(n为正整数)都在一次函数y=x+3的图象上.若a1=2,则______.5.(钦州)某地出租车的计费方法如图4所示,其中x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是_____元.(2)当x>2时,求y与x之间的函数关系式.(3)某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6.(镇江)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图5,直线y=-2x+l与直线y=kx+4(k≠0)交于点B,与),轴交于点C.点B的横坐标为-1.①求点B的坐标以及k的值:②直线y=-2x+l与直线y=kx+4、y轴所围成的△ABC的面积等于______.(2)设直线y=kx+4(k≠0)与x轴交于点E(xo,0).若-22),过点P作x轴的垂线,分别交函数和y=x的图象于点c,D.(l)求点A的坐标;(2)若OB=CD,求a的值.8.(河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(l)求每台A型电脑和B型电脑的销售利润.(2)该商店计划一次购进这两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式:②该商店购进A型、B型电脑各多少台时,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑的出厂价下调了m(0 ∴一次函数的解析式为把Y=O代入解得x=6.∴A点坐标为(6,0).(2)把x=0代人,得y=3.故OB=3.因CD=OB.故CD=3.因PC⊥x轴,故c点坐标为,D点坐标为(a,a).8.(1)设每台A型电脑的销售利润为a元,每台B型电脑的销售利润为6元,根据题意可得解得a=1OO,b=150.∴每台4型电脑的销售利润为100元,每台B型电脑的销售利润为150元.(2)①根据题意得y=lOOx+150(100-x),即y=-50x+15000.②根据题意得100一x≤2x,解得∵y=-50x+15000,-500,y随x的增大而增大.∴当x=70时,y取得最大值.即当商店购进70台A型电脑和30台B型电脑时销售利润最大.9.(1)显然,m=1.由速度不变知,故a=40.(3)由待定系数法可得乙车行驶的路程y与时间x之间的关系式为y=80x-160.①当40x-20-50=80x-160时,解得②当40x-20+50=80x-160时,解得,故乙车行驶时,两车恰好相距50km.10.(l)y=260000-[20x+32(6000-x)+8x6000]=12x+20000,O48800,故购买甲种树苗1200棵,乙种树苗4800棵,可获得最大利润,最大利润是50000元.希望以上资料对你有所帮助,附励志名言3条:1、生气,就是拿别人的过错来惩罚自己。

2014-2023北京中考真题数学汇编:一次函数章节综合

2014-2023北京中考真题数学汇编:一次函数章节综合

2014-2023北京中考真题数学汇编一次函数章节综合一、单选题1.(2022北京中考真题)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x,其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③2.(2017北京中考真题)小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏在跑最后100m的过程中,与小林相遇2次D.小苏前15s跑过的路程小于小林前15s跑过的路程3.(2020北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系4.(2014北京中考真题)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为A.40平方米B.50平方米C.80平方米D.100平方米5.(2014北京中考真题)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是()A.B.C.D.6.(2016北京中考真题)在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份7.(2015北京中考真题)一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图像大致如图②所示,则寻宝者的行进路线可能为:A.A→O→B B.B→A→C C.B→O→C D.C→B→O二、填空题8.(2018北京中考真题)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为______个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C______0.990(填“>”“=”或“<”).10.(2019北京中考真题)如图,P是 AB与弦AB所围成的图形的外部的一定点,C是 AB上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在 AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个(3)结合函数图象,解决问题:当PC=2PD 11.(2017北京中考真题)如图,P是弧MB,过点P作PN⊥MB于点N.已知(当点P与点A或点B重合时,y的值为小东根据学习函数的经验,对函数y随自变量下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x/cm0123456y/cm0 2.0 2.3 2.10.90(说明:补全表格时相关数值保留一位小数)为坐标的点,画出该函数的图象.(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是3(1,)2,结合函数的图象,写出该函数的其它性质(一条即可):_________.①当2k =时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.19.(2016北京中考真题)如图,在平面直角坐标系xOy 中,过点(6,0)A -的直线1l 与直线2:2l y x =相交于点(,4)B m .(1)求直线1l 的表达式;(2)过动点(,0)P n 且垂直于x 轴的直线与1l ,2l 的交点分别为C ,D ,当点C 位于点D 上方时,写出n 的取值范围.故选B.【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.4.B【详解】试题分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选B.考点:函数的图象.5.A【详解】解:分析题中所给函数图像,-段,AP随x的增大而增大,长度与点P的运动时间成正比.O E-段,AP逐渐减小,到达最小值时又逐渐增大,排除C、D选项,E FF G-段,AP逐渐减小直至为0,排除B选项.故选A.【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.6.B【详解】解:各月每斤利润:3月:7.5-5=2.5(元),4月:6-3=3(元),5月:4.5-2=2.5(元),6月:3-1.2=1.8(元),所以,4月利润最大,故选B.7.C【详解】此题考查动点函数问题,各项分别分析如下:A路线,A到O是减小,是直线型的,故错,B路线,在AB上是,开始减小,然后增大,但增大的时间比减小的时间要长,故不对;D路线中,应会出现距离为0的点,但图中没有故不对,故选C.考点:动点函数图象由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,C ,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度0.990故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键.10.(1)AD,PC,PD;(2)如图所示,见解析;(3)2.29或3.98【分析】(1)根据表格中的数据分析即可得出;(2)根据表格数据在坐标系中描点、连线即可,(3)根据图形观察结合表中数据即可得出【详解】(1)AD,PC,PD;(2)如图所示,(3)2.29或3.98【点睛】本题考查了函数和函数的图象,根据表格画出函数图象,得出相应的信息是解题的关键11.(1)1.6,(2)作图见解析,(3)2.2(答案不唯一)【详解】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)根据题意画出图象即可;(3)作y=x与(2)中的函数图象交点即可得.试题解析:(1)由题意可大致画出图象,据此估计估算当AP=4时,PN≈1.6,故答案为1.6;(2)如图所示:(3).作y=x与函数图象交点即为所求.2.2(答案不唯一)12.(1)作图见解析;(2)①2(2.1到1.8之间都正确);②该函数有最大值(其他正确性质都可以).【详解】试题分析:(1)描点即可作出函数的图象;(2)①观察图象可得出结论;②观察图象可得出结论.试题解析:(1)如下图:【点睛】本题考查了一次函数的图象和性质,待定系数法的应用,一次函数图象上点的坐标特征,利用数形结合的思想是解题的关键.15.(1)112y x=+,()0,1A(2)1n≥【分析】(1)利用待定系数法即可求得函数解析式,当(2)根据题意112x n x+>+结合x>【详解】(1)解:将(4,3),(2,0)-代入函数解析式得,∴当2x >-时,对于x 的每一个值,函数(y mx m =k 表示直线的倾斜程度可得当12m =时,符合题意,交点在第一象限,此时就不符合题意,综上所述:112m ≤≤.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.17.(1)1y x =+;(2)2m ≥【分析】(1)根据一次函数(0)y kx b k =+≠由y x =得b 值即可求出解析式;x=时,两条直线都过点(临界值为当1。

2014年全国中考数学试题汇编《一次函数》(02)

2014年全国中考数学试题汇编《一次函数》(02)

全国中考数学试题汇编《一次函数》(02)选择题31.(2007•宁波)如图是一次函数y=kx+b 与反比例函数y=的图象,则关于x 的方程﹣kx=b 的解是( )32.(2007•龙岩)函数y=x+m 与(m ≠0)在同一坐标系内的图象可以是( ).CD .33.(2007•兰州)已知k 1<0<k 2,则函数y=k 1x 和的图象大致是( ) .CD .34.(2007•大连)将函数y=kx+k 与函数的大致图象画在同一坐标系中,正确的函数图象是( ).CD .35.(2007•防城港)已知函数y=﹣x+5,y=,它们的共同点是:①函数y 随x 的增大而减少;②都有部分图象在第36.(2007•滨州)如图,点P 为反比例函数上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y=kx﹣1的图象为( ).CD .37.(2009•攀枝花)已知二次函数y=ax 2+bx+c 的图象如图所示,则在同一坐标系中,一次函数y=ax+c 和反比例函数y=的图象大致是( ).CD ..CD .39.(2007•烟台)下列图中阴影部分的面积相等的是( )40.(2007•双柏县)在同一平面直角坐标系中,一次函数y=ax+b 和二次函数y=ax 2+bx 的图象可能为( ).CD .41.(2007•随州)下列四个命题:①点(﹣2,3)在第二象限;②直线y=x ﹣2与y 轴交于点(0,﹣2);③直线y=﹣x 与双曲线y=有两个交点;④抛物线y=x 2﹣3x+4与x 轴没有交点.其中正确命题是( )42.(2007•衢州)如图,已知直线l 的解析式是y=x ﹣4,并且与x 轴、y 轴分别交于A 、B 两点.一个半径为1.5的⊙C ,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当⊙C 与直线l 相切时,则该圆运动的时间为( )43.(2007•丽水)如图,直线y=﹣x+4与x 轴,y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是( )填空题 44.(2007•绍兴)如图,矩形ABCD 的边AB 在x 轴上,且AB 的中点与原点重合,AB=2,AD=1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点,则实数a 的取值范围是 _________ .45.(2007•张家界)若有意义,则函数y=kx﹣1的图象不经过第_________象限.46.(2007•益阳)某函数的图象经过(1,﹣1),且函数y的值随自变量x的值增大而增大.请你写出一个符合上述条件的函数关系式:_________.47.(2007•贵港)在一次函数y=x+2中,y的值随x值的增大而_________.48.(2007•白银)若一次函数y=kx+b的图象经过点(0,﹣2)和(﹣2,0),则y随x的增大而_________.49.(2007•钦州)请写出直线y=6x上的一个点的坐标:_________.50.(2007•哈尔滨)直线y=kx+b经过点A(﹣2,0)和y轴正半轴上的一点B,如果△ABO(O为坐标原点)的面积为2,则b的值为_________.51.(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是_________.52.(2007•常州)已知一次函数y=kx+b的图象经过点A(0,﹣2),B(1,0),则b=_________,k=_________.53.(2007•上海)如图,正比例函数图象经过点A,该函数解析式是_________.55.(2007•孝感)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是_________.56.(2007•泰州)直线y=﹣x,直线y=x+2与x轴围成图形的周长是_________.(结果保留根号)57.(2007•南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式_________.58.(2007•江西)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(升)的函数关系式是_________.59.(2007•巴中)2007年4月,巴中市出租车收经费方式全面调整,具体收费方式如下:行驶距离在3千米以内(包括3千米)付起步价3元,超过3千米后,每多行驶1千米加收1.4元,试写出乘车费用y(元)与乘车距离x(千米)x>3之间的函数关系式为_________.60.(2007•南平)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是_________.2007年全国中考数学试题汇编《一次函数》(02)参考答案与试题解析选择题31.(2007•宁波)如图是一次函数y=kx+b与反比例函数y=的图象,则关于x 的方程﹣kx=b的解是()的图象交于点(﹣变形为:y=y=﹣y=32.(2007•龙岩)函数y=x+m与(m≠0)在同一坐标系内的图象可以是().C D.y=的图象可知的图象可知的图象可知33.(2007•兰州)已知k1<0<k2,则函数y=k1x和的图象大致是().C D.34.(2007•大连)将函数y=kx+k与函数的大致图象画在同一坐标系中,正确的函数图象是().C D.35.(2007•防城港)已知函数y=﹣x+5,y=,它们的共同点是:①函数y随x的增大而减少;②都有部分图象在第y=过一、三象限,故都有部分图象在第一象限,正确;36.(2007•滨州)如图,点P为反比例函数上的一动点,作PD⊥x轴于点D,△POD的面积为k ,则函数y=kx ﹣1的图象为().C D.y=xy=×37.(2009•攀枝花)已知二次函数y=ax2+bx+c的图象如图所示,则在同一坐标系中,一次函数y=ax+c和反比例函数y=的图象大致是().C D.y=.C D.==39.(2007•烟台)下列图中阴影部分的面积相等的是()2.C D.>>41.(2007•随州)下列四个命题:①点(﹣2,3)在第二象限;②直线y=x﹣2与y轴交于点(0,﹣2);③直线y=﹣x与双曲线y=有两个交点;④抛物线y=x2﹣3x+4与x轴没有交点.其中正确命题是()有两个交点,直线过的是二四象限,双曲线在一三象限,所以没有交点,错误;42.(2007•衢州)如图,已知直线l的解析式是y=x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l相切时,则该圆运动的时间为()x×=2.543.(2007•丽水)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是()x+4填空题44.(2007•绍兴)如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是﹣2≤a≤2.45.(2007•张家界)若有意义,则函数y=kx﹣1的图象不经过第二象限.≥46.(2007•益阳)某函数的图象经过(1,﹣1),且函数y的值随自变量x的值增大而增大.请你写出一个符合上述条件的函数关系式:y=x﹣2.47.(2007•贵港)在一次函数y=x+2中,y的值随x值的增大而增大.48.(2007•白银)若一次函数y=kx+b的图象经过点(0,﹣2)和(﹣2,0),则y随x的增大而减小.解:根据题意,得:.49.(2007•钦州)请写出直线y=6x上的一个点的坐标:(0,0).50.(2007•哈尔滨)直线y=kx+b经过点A(﹣2,0)和y轴正半轴上的一点B,如果△ABO(O为坐标原点)的面积为2,则b的值为2.的面积是51.(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是(﹣2,0)或(4,0).就是已知一次函数的一次项系数是或﹣±.时,求可得;时,求可得.x+或x+52.(2007•常州)已知一次函数y=kx+b的图象经过点A(0,﹣2),B(1,0),则b=﹣2,k=2.,.53.(2007•上海)如图,正比例函数图象经过点A,该函数解析式是y=3x.55.(2007•孝感)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是x<2.56.(2007•泰州)直线y=﹣x,直线y=x+2与x轴围成图形的周长是.(结果保留根号)解得,则由三个点所围成三角形得底边的交点为:BA=BO=,+=2+2.57.(2007•南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式y=3x.58.(2007•江西)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(升)的函数关系式是y=4.75x.59.(2007•巴中)2007年4月,巴中市出租车收经费方式全面调整,具体收费方式如下:行驶距离在3千米以内(包括3千米)付起步价3元,超过3千米后,每多行驶1千米加收1.4元,试写出乘车费用y(元)与乘车距离x(千米)x>3之间的函数关系式为y=1.4x﹣1.2.60.(2007•南平)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是(0,1.5).。

2014中考数学一次函数图像与应用题汇总

2014中考数学一次函数图像与应用题汇总

2014中考数学一次函数图像与应用题汇总1、(鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地距离y (千米)与x (小时)之间的函数关系.请根据图象解答下列问题: (1)轿车到达乙地后,货车距乙地多少千米? (2)求线段CD 对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD 段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).2、(•黄石)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如右图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数关系式;(2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.)3、(长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.(第21题)4、(淮安)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.5、(•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.6、(•牡丹江)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后,小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.37、(绥化)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y 乙(千米)与时间x (小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?8、(吉林省)甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲方与学校相距甲y(千米),乙与学校相离乙y(千米),甲离开学校的时间为t (分钟). 甲y、乙y与x 之间的函数图象如图所示,结合图象解答下列问题: (1)电动车的速度为 千米/分钟; (2)甲步行所用的时间为 分; (3)求乙返回到学校时,甲与学校相距多远?9、某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s 与时间t之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19试通过计算说明哪几个植树点符合要求.10、今年4月18日,我国铁路第六次大提速,在甲、乙两城市之间开通了动车组高速列车.已知每隔1h 有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间()h,点B的纵坐标300的意义是(2)请你在原图中直接画出第二列动车组列车离开甲城的路程s(单位:km)与时间t(单位:h)的函数图象;(3)若普通快车的速度为100km/h,①求BC的解析式,并写出自变量t的取值范围;②求第二列动车组列车出发后多长时间与普通列车相遇;③直接写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.5。

2023~2014北京十年中考数学分类汇编——一次函数与反比例函数综合(原卷版)

2023~2014北京十年中考数学分类汇编——一次函数与反比例函数综合(原卷版)

2023~2014北京十年中考数学分类汇编——一次函数与反比例函数综合1.(2023•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.2.(2022•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.3.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x 的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.4.(2020•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.5.(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y =﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.6.(2018•北京)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.7.(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x ﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.8.(2016•北京)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y =2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.9.(2015•北京)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014中考试题分类汇编(一次函数)
一、选择题
1、(2014福建福州)已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( ) A .1a > B .1a <
C .0a >
D .0a <
2、(2014上海市)如果一次函数y kx b =+的图象经过第一象限,且与
y 轴负半轴相交,那么( )
A .0k >,0b >
B .0k >,0b <
C .0k <,0b >
D .0k <,0b <
3、(2014陕西)如图2,一次函数图象经过点A ,且与正比例函数
图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+
C .2y x =-
D .2y x =--
4、(2014浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

A 、y =2x +2
B 、y =2x -2
C 、y =2(x -2)
D 、y =2(x +2)
5、(2014浙江宁波)如图,是一次函数y=kx+b 与反比例函数y=
2
x
的图像,则关于x 的方程kx+b=
2
x
的解为( ) (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-1
6、(2014四川乐山)已知一次函数y kx b =+的图象如图(6)所示,当
1x <时,y 的取值范围是( )
A.20y -<< B.40y -<<
C.2y <-
D.4y <-
7、(2014浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2 D .3
a
b +
第7题
图1
图(6) y 图2
二、填空题
1、(2014福建晋江)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

2、(2014广西南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降, 即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.
当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式
3、(2014湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .
4、(2014浙江杭州)抛物线()2
226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

5、(2014四川成都)在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过
点(11)
P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 .
6、(2014山东淄博)从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经过第四象限的概率是________.
7、(2014上海)如图7,正比例函数图象经过点A ,该函数解析式是 .
三、解答题
1、(2014甘肃白银等7市)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产
品的日销售量y (件)之间的关系如下表:
若日销售量y 是销售价x 的一次函数.
(1)求出日销售量y (件)与销售价x (元)的函数关系式; (2)求销售价定为30元时,每日的销售利润.
(第3题图)
图7
时间/时
164020
2、(2014福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。

⑴试用文字说明:交点P 所表示的实际意义。

⑵试求出A 、B 两地之间的距离。

3,(2014南充市)平面直角坐标系中,点A 的坐标是(4,0),点P 在直线y =-x +m 上,且AP =OP =4.求m 的值.
4、(2014湖北宜昌)2014年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.
甲队在上午11时30分到达终点黄柏河港. (1)哪个队先到达终点?乙队何时追上甲队?
(2)在比赛过程中,甲、乙两队何时相距最远?
5.(2012•河南)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半小时后返回A 地.如图是他们离A 地的距离y (千米)与时间x (时)之间的函数关系图象.
(1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x 的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?
小时)
6.(2011南通)甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙
前进的路程与时间的函数图象如图所示.根据图象信息,下列说法
正确的是【 】
A .甲的速度是4km/h
B .乙的速度是10km/h
C .乙比甲晚出发1h
D .甲比乙晚到B 地3h
7.(2011南通)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y (km )与时间x (h )之间的函数关系,折线BCDE 表示轿车离甲地距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题:
(1)线段CD 表示轿车在途中停留了 h ; (2)求线段DE 对应的函数解析式;
(3)求轿车从甲地出发后经过多长时间追上货车.
8.(20113南通)小李和小陆从A 地出发,骑自行车沿同一条路行驶到B 地,他们离出发地的距离S (单位:km )和行驶时间t (单位:h )之间的函数关系的图象如图所示,根据图中的信息,有下列说法:
(1)他们都行驶了20 km ;(2)小陆全程共用了1.5h ;(3)小李和小陆相遇后,小李的速度小于小陆的速度(4)小李在途中停留了0.5h 。

其中正确的有【 】
A .4个
B .3个
C .2个
D .1个。

相关文档
最新文档