函数与图像综合测试卷

合集下载

北师大版八年级上册数学 4.3一次函数的图像 同步测试卷 (含答案)

北师大版八年级上册数学 4.3一次函数的图像 同步测试卷 (含答案)

北师大版八年级上册数学 4.3一次函数的图像同步测试卷一.选择题1.下列各点在直线y=2x+6上的是()A.(﹣5,4)B.(﹣7,20)C.(,)D.(,1)2.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.3.点P(2,m)是正比例函数y=2x图象上的一点,则点P到原点的距离为()A.2B.C.4D.4.把直线l1:y=3x﹣2向右平移2个单位可以得到直线l2,要得到直线l2,也可以把直线l1()A.向上平移2个单位B.向下平移2个单位C.向上平移6个单位D.向下平移6个单位5.已知一次函数y=(a+3)x+b+1的图象经过过一、二、四象限,那么a,b的取值范围是()A.a>﹣3,b>﹣1B.a<﹣3,b<﹣1C.a>﹣3,b<﹣1D.a<﹣3,b>﹣1 6.一次函数y=﹣x﹣1的图象不经过第()象限.A.四B.三C.二D.一7.函数y=|x﹣1|的图象是()A.B.C.D.8.在平面直角坐标系xOy中,直线y=﹣2x+4与坐标轴所围成的三角形的面积等于()A.2B.4C.6D.89.一次函数y=kx+3经过点(1,0),那么这个一次函数()A.y随x的增大而增大B.y随x的增大而减小C.图象经过原点D.图象不经过第二象限10.已知点(﹣3,y1)、(﹣1,3)、(2,y2)在一次函数y=kx+5的图象上,则y1,y2,3的大小关系正确()A.3<y2<y1B.y1<3<y2C.y2<y1<3D.y2<3<y1二.填空题11.已知直线y=2x﹣2,则直线与y轴的交点坐标为.12.若将正比例函数y=2x的图象向上平移3个单位,得直线y=kx+b,则k+b的值为.13.当x=时,函数y=2x﹣3与函数y=﹣3x+5有相同的函数值.14.已知点(﹣6,m),(8,n)都在直线y=﹣x﹣b上,则m n.(填大小关系)15.若一次函数y=(k﹣2)x+3﹣k的图象经过第一,二,三象限,则k的取值范围是;若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k的取值范围是.三.解答题16.已知直线l:y=kx+3k(k≠0)经过点A(1,4).(1)求k的值;(2)点(﹣1,a)在这条直线l上,求a的值.17.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.参考答案1.解:A、当x=﹣5时,y=2×(﹣5)+6=﹣4,∴点(﹣5,4)不在直线y=2x+6上;B、当x=﹣7时,y=2×(﹣7)+6=﹣8,∴点(﹣7,20)不在直线y=2x+6上;C、当x=时,y=2×+6=,∴点(,)在直线y=2x+6上;D、当x=﹣时,y=2×(﹣)+6=﹣1,∴点(﹣,1)不在直线y=2x+6上.故选:C.2.解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=bx﹣k的一次项系数b>0,y随x的增大而增大,经过一三象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过一三四象限,故选:D.3.解:当x=2时,y=2×2=4,∴m=4,∴点P的坐标为(2,4),∴OP==2.故选:D.4.解:把直线l1:y=3x﹣2向右平移2个单位可以得到直线l2,则直线l2的解析式是:y =3(x﹣2)﹣2=3x﹣8.把直线l1:y=3x﹣2向下平移6个单位也可以得到直线l2:y=3x﹣2﹣6=3x﹣8.故选:D.5.解:一次函数y=(a+3)x+b+1的图象经过过一、二、四象限,故a+3<0,b+1>0,∴a<﹣3,b>﹣1,故选:D.6.解:∵一次函数y=﹣x﹣1中的k=﹣1<0,∴该函数图象经过第二、四象限.又∵b=﹣1<0,∴该函数图象与y轴交于负半轴,∴该函数图象经过第二、三、四象限,即不经过第一象限.故选:D.7.解:∵函数y=|x﹣1|=,∴当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小;故选:B.8.解:∵直线y=﹣2x+4与坐标轴的交点为(2,0)和(0,4),∴直线y=﹣2x+4与坐标轴所围成的三角形的面积等于,故选:B.9.解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故选:B.10.解:∵(﹣1,3)在一次函数y=kx+5的图象上,∴3=﹣k+5,解得:k=2,∴函数解析式为y=2x+5,∵点(﹣3,y1)、(2,y2)在一次函数y=2x+5的图象上,∴y1=﹣6+5=﹣1,y2=2×2+5=9,∵﹣1<3<9,∴y1<3<y2,故选:B.11.解:∵一次函数的解析式为y=2x﹣2.当x=0时,y=2x﹣2=﹣2,∴直线与y轴的交点坐标为(0,﹣2),故答案为(0,﹣2).12.解:∵正比例函数y=2x的图象向上平移3个单位,则平移后所得图象的解析式是:y =2x+3,∴k=2,b=3,∴k+b=5.故答案为:5.13.解:联立两函数解析式,得:,解得:.故答案为:.14.解:∵直线y=﹣x﹣b中,k=﹣1<0,∴y随x的增大而减小,∵﹣6<8,∴m>n.故答案为:>.15.解:一次函数y=(k﹣2)x+3﹣k的图象经过第一,二,三象限,则,解得2<k<3;若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k﹣2>0且3﹣k≥0,解得2<k≤3;故答案为2<k<3,2<k≤3.16.解:(1)∵直线l:y=kx+3k(k≠0)经过点A(1,4),∴k+3k=4,解得:k=1;(2)由(1)得直线l的解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,∴a=2.17.解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.。

成都市中考核心考点-第九讲 函数与图形综合(24题)(B卷)

成都市中考核心考点-第九讲 函数与图形综合(24题)(B卷)
18成都图14成都图
2.(17成都)在平面直角坐标系 中,对于不在坐标轴上的任意一点 ,我们把点 称为点 的“倒影点”.直线 上有两点 ,它们的倒影点 均在反比例函数 的图像上.若 ,则 ____________.
3、(15成都)如果关于 的一元二次方程 有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是.(写出所有正确说法的序号)
10成都图
7.(11成都)在平面直角坐标系 中,已知反比例函数 满足:当 时,y随x的增大而减小。若该反比例函数的图象与直线 都经过点P,且 ,则实数k=_________.
8.(10成都)如图,在 中, , , ,动点 从点 开始沿边 向 以 的速度移动(不与点 重合),动点 从点 开始沿边 向 以 的速度移动(不与点 重合).如果 、 分别从 、 同时出发,那么经过_____________秒,四边形 的面积最小.
5.(13成都)在平面直角坐标系 中,直线 ( 为常数)与抛物线 交于 , 两点,且 点在 轴左侧, 点的坐标为 ,连接 .有以下说法: ; 当 时, 的值随 的增大而增大; 当 时, ; 面积的最小值为 .其中正确的是_______.(写出所有正确说法的序号)
6.(12成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数 ( 为常数,且 )在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线F的面积为 ,则 =________.(用含 的代数式表示)
9.(18成华区一诊)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴的负半轴,y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形OA´B´C´,BC与OA´相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N矩形OABC的面积为S,tan∠A′OB′= ,则BN的长为。

专题:函数图像精选训练题(有答案)

专题:函数图像精选训练题(有答案)

专题:函数图像训练题精选一、选择题1.下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11112.若函数()()22m xf x x m-=+的图象如图所示,则m 的取值范围是( )A.(),1-∞-B. ()1,2C. ()1,2-D. ()0,23.已知函数()y f x =的图象与ln y x =的图象关于直线y x =对称,则()2f =( )A .1B .eC .2eD .()ln 1e -4.函数()2cos ln f x x x =-⋅的部分图象大致是( )5.将()y f x =的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的13,则所得函数的解析式为( ) A .3(3)y f x = B .11()33y f x =C .1(3)3y f x =D .13()3y f x = 6.如图所示的四个容器高度都相同,将水从容器顶部一个小孔以相同的速度注入其中,注满为止.用下面对应的图像显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的....是A .1个B .2个C .3个D .4个7.在同一坐标系中,函数1()x y a=与)(log x y a -=(其中0a >且1a ≠)的图象只可能是( )8.如图,函数()y f x =的图象为折线ABC ,设()()g x f f x =⎡⎤⎣⎦, 则函数()y g x =的图象为( )9.如图,函数y =f (x )的图像为折线ABC ,设f 1(x )=f (x ),f n+1(x )=f [f n+1(x )], n ∈N *,则函数y =f 4(x )的图像为yxo 1 1 yx o 1 1 yx o 1-1 yx o 1-1ABCD10.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )11.若函数)1,0()1()(≠>--=-a a a a k x f x x 在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是( )12.函数|1|||ln --=x e y x 的图象大致是 ( )13.),10(log )(,)(2≠>==-a a x x g a x f a x 且,0)4()4(<-⋅g f 若则)(),(x g y x f y ==在同一坐标系内的大致图象是第5题14.已知函数2()4f x x =-,()y g x =是定义在R 上的奇函数,当0x >时,2()log g x x =,则函数()()f x g x ⋅的大致图象为 ( )15.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系里的图像是( )16.当0<a <1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( )17.函数1||2)(+-=x x f 的图像大致为 ( ▲ )y xy yy xxxoo o-1 1-1 1 2-112 1 o-1 112 121 B A C D18.函数||2x y =的定义域为],[b a ,值域为]16,1[,则点),(b a 表示的图形可以是( ▲ )19.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射是20.二次函数bx ax y +=2与指数函数xab y )32(=的图象,只有可能是下列中的哪个选项21.已知函数bx ax y +=2和xbay =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能... 是( )BC DAxy123123 B.xy123123 C.xy0123123 A.A .B .C .D .22.已知函数9()4,(0,4)1f x x x x =-+∈+,当x a =时,()f x 取得最小值b ,则函数b x )a ()x (g +=1的图象为( )23.已知0,1a a >≠,函数log ,,x a y x y a y x a ===+在同一坐标系中的图象可能是24.函数()112xf x =-的图像是1xy11xy11xy 1-01xy1-25.函数()()112122x x f x ⎡⎤=+--⎣⎦的图象大致为26.若直角坐标平面内的两个不同点M 、N 满足条件:① M 、N 都在函数()y f x =的图像上; ② M 、N 关于原点对称. 则称点对[,]M N 为函数()y f x =的一对“友好点对”. (注:点对[,]M N 与[,]N M 为同一“友好点对”)已知函数32log (0)()4(0)x x f x x x x >⎧=⎨-- ⎩≤,此函数的“友好点对”有A. 0对B. 1对C. 2对D. 3对27.已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为28.已知函数x x x f sin 21)(2+=,则)('x f 的大致图象是( )29.下列函数图象中,正确的是30.已知函数32()(,0)f x ax bx x a b R ab =++∈≠且的图像如图,且12||||x x >,则有( )A .0,0a b >>B .0,0a b <<C .0,0a b <>D .0,0a b ><31.如下图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )32.已知二次函数()x f 的图象如图1所示 , 则其导函数()x f '的图象大致形状是( )33.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )34.已知0lg lg =+b a ,则函数x a x f =)(与函数x x g b log )(-=的图象可能( )35.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是( )A .B . C. D.36.已知函数log (1)3,a y x =-+(01)a a >≠且的图像恒过点P ,若角α的终边经过点P ,则2sin sin2αα- 的值等于( )A.133 B.135 C. 133- D. 135- 37.已知函数的图象如图所示则函数的图象是( )38.如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )39.已知在函数||y x =([1,1]x ∈-)的图象上有一点(,||)P t t ,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )40.函数|)1lg(|-=x y 的图象是( )41.函数2()log 2f x x =与1()2x g x -=在同一直角坐标系下的图象大致是( )42.已知,()()()a b f x x a x b >=--函数的图象如右图,则函数()log ()a g x x b =+的图象可能为43.函数lg ||x y x=的图象大致是二、填空题44.已知函数211x y x -=-的图像与函数2y kx =-的图像恰有两个交点,则实数k 的取值范围是 .45.当直线y kx =与曲线|ln ||2|x y e x =--有3个公共点时,实数k 的取值范围是 .46.已知函数8log (3)9a y x =+-(0,1a a >≠)的图像恒过定点A ,若点A 也在函数()3x f x b =+的图像上,则b = 。

二次函数的图像和性质基础知识测试题

二次函数的图像和性质基础知识测试题

二次函数的图像和性质基础知识测试题九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.y=(x-1)2+2的对称轴是直线()A.x=-1B.x=1C.y=-1D.y=13.抛物线y x221的顶点坐标是()A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)4.函数y=-x-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y mx2x m(m2)的图象经过原点,则m的值为()A.或2.B.0.C.2.D.无法确定6.函数y=2x-3x+4经过的象限是()A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限7.已知二次函数y ax2bx c(a)的图象如图5所示,有下列结论:①abc;②a+b+c>0③a-b+c<0.其中正确的结论有()A.1个D.4个8、已知二次函数y13x2、y2x2、y3x2,它们的图像开口由小到大的顺序是A、y1y2y3B、y3y2y1C、y1y3y2D、y2y3y19、与抛物线y=-1x2+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。

y = x2+3x-5 B。

y=-x2+2x C。

y =x2+3x-5 D。

y=x210.正比例函数y=kx的图象经过二、四象限,则抛物线y=kx2-2x+k2的大致图象是()删除了明显有问题的段落。

改写后的文章:九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.抛物线y=(x-1)²+2的对称轴是直线()A.x=-1 B.x=1 C.y=-1 D.y=13.抛物线y=(x+2)²+1的顶点坐标是()A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)4.函数y=-x²-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y=mx²+x+m(m-2)的图象经过原点,则m的值为()A.2或-2 B.0 C.2 D.无法确定6.函数y=2x-3x²+4经过的象限是()A.一、二、四象限B.一、二象限C.三、四象限D.一、三、四象限7.已知二次函数y=ax²+bx+c(a≠0)的图象如图5所示,有下列结论:①abc>0;②a+b+c>0③a-b+c<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个8、已知二次函数y1=-3x²、y2=-x²、y3=x²,它们的图像开口由小到大的顺序是A、y1<y2<y3B、y3<y2<y1C、y1<y3<y2D、y2<y3<y19、与抛物线y=-x²+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。

第四章第六单元三角函数的图像和性质综合测试

第四章第六单元三角函数的图像和性质综合测试

第四章第六单元三角函数的图像和性质综合测试一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1、已知3cos 5α=-,0απ<<,则tan α等于 ( ) A 、 34 B 、 34- C 、 34± D 、 34-答案:B解析:由3cos 5α=-,0απ<<易得到4sin 5α=,又由sin 4tan cos 3ααα==- 2、化简αβααβαsin )cos(cos )sin(---的结果是( )A 、βsin -B 、βcosC、)2sin(βα-D、)2cos(βα-答案:A解析:由和差角公式易知sin()cos cos()sin sin()sin()sin αβααβααβαββ---=--=-=-3、在ABC ∆中,下列关系恒成立的是 ( )A 、 CB A cos )cos(=+ B 、C B A tan )tan(=+ C 、 sin sin 22A B C +=D 、 2sin 2cos CB A =+ 答案:D解析:利用三角形内角和为π,cos()cos()cos A B C C π+=-=-,同理tan()tan A B C +=-,sinsin cos 222A B C Cπ+-==,故A 、B 、C 都错 4、 已知函数f (x)sin(x )cos(x )=+ϕ++ϕ为奇函数,则ϕ的一个取值为( )A 、0B 、2πC 、4π- D 、π 答案:C解析:由f (x)sin(x )cos(x ))4π=+ϕ++ϕ=+ϕ+,结合选项知可求得:当4πϕ=-时,f (x))x 44ππ=-+=为奇函数。

5、函数5sin(2)2y x π=+的图象一条对称轴方程是( ) A 、 2x π=- B 、 4x π=-C 、 8x π=D 、 54x π=答案:A解析:由对称轴方程对应的函数值为最值可知53sin[2()]sin 1222y πππ=⨯-+==-6、将函数)621cos(π+=x y 的图象经过怎样的平移,可以得到函数x y 21cos =的图象( )A 、向左平移6π个单位 B 、向左平移3π个单位C 、向右平移3π个单位 D 、向左平移12π个单位答案:C解析:由平移知识易知)621cos(π+=x y 向右平移3π个单位得到11cos[()]cos 2362y x x ππ=-+=的图像。

初中数学一次函数的图像专项练习30题(有答案)ok

初中数学一次函数的图像专项练习30题(有答案)ok

一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>−14;③二次函数y=(x−x1)(x−x2)+m的图象与x轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有()A.0B.1C.2D.33.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是()A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-54.如图,抛物线y=−x2+mx的对称轴为直线x=2,若关于x的一元二次方程−x2+mx−t=0(t为实数)在1≤x≤3的范围内有解,则t的取值错误的是()A.t=2.5B.t=3C.t=3.5D.t=45.若关于的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A.x轴的上方B.x轴下方C.x轴上D.y轴上6.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…0√54…y…0.37﹣10.37…A.0或4B.√5或4﹣√5C.1或5D.无实根7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=−m有实数根,则m的最大()A.3B.−3C.−6D.98.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1,x2,a,b的大小关系是()A.a<x1<x2<b B.x1<a<x2<b C.x1<a<b<x2D.x1<x2<a<b9.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧10.已知b>0,二次函数y=ax2+bx+a2−1的图象为下列之一,则a的值为()A.1B.-1C.−1−√52D.−1+√5211.已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.二次函数y=ax2+bx+c的部分图象如图所示,对称轴方程为x=−1,图象与x轴相交于点(1,0),则方程cx2+bx+a=0的根为()A.x1=1,x2=−3B.x1=−1C.x1=1,x2=−13D.x1=−1二、填空题(共6题;共6分)13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=−1,与x轴的一个交点为(1 , 0),与y轴的交点为(0 , 3),则方程ax2+bx+c=0(a≠0)的解为.14.如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②a﹣b+c<0;③b+2a=0;④当y<0时,x的取值范围是﹣1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是.15.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx−c=0(c为实数),在﹣1≤x≤4范围内有解,则c的取值范围为.16.已知二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和是.17.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.三、综合题(共6题;共70分)19.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.已知:二次函数y=ax2+bx+ 12(a>0,b<0)的图象与x轴只有一个公共点A.(1)当a=12时,求点A的坐标;(2)求A点的坐标(只含b的代数式来表示);(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m 的取值范围.22.已知抛物线y=x2-(m+1)x+m(1)求证:抛物线与x轴一定有交点;(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且1OA−1OB=−34,求m的值. 23.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?24.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】B11.【答案】A12.【答案】C13.【答案】x1=114.【答案】①③⑤⑥15.【答案】−1≤c≤816.【答案】217.【答案】a<518.【答案】x1=−219.【答案】(1)解:设每件降低x元,获得的总利润为y元则y=(40﹣x)(20+2x)=﹣2x2+60x+800(2)解:∵当y=1200元时,即﹣2x2+60x+800=1200∴x1=10,x2=20∵需尽快减少库存∴每件应降低20元时,商场每天盈利1200元。

人教版数学九年级上册《二次函数的图像和性质》综合练习(附答案)

人教版数学九年级上册《二次函数的图像和性质》综合练习(附答案)

22.1二次函数图像性质 综合练习题(附答案)1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。

2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。

3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。

4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。

5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。

6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。

求:(1)求出此函数关系式。

(2)说明函数值y 随x 值的变化情况。

7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。

2、()k h x a y +-=2的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。

2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。

3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。

4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。

5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。

(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。

北师大版八年级上册一次函数之图像测试题含答案与详细解析

北师大版八年级上册一次函数之图像测试题含答案与详细解析

八上数学——一次函数综合提升测试题一.填空题(共15小题)1.(2011•呼和浩特)已知关于x一次函数y=mx+n 图象如图所示,则可化简为__ __ .2.(2004•包头)已知一次函数y=ax+b(a≠O)图象如图所示,则|a+b|﹣(a﹣b)= ___ .3.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3k值,则所得一次函数中y随x增大而增大概率是.4.一次函数y=k(x﹣k)(k>0)图象不经过第象限.5.已知一次函数y=kx+b,kb<0,则这样一次函数图象必经过公共象限有个,即第象限.6.若一次函数y=ax+1﹣a中,它图象经过一、二、三象限,则|a﹣1|+= .7.已知一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限,化简+结果是.8.(2013•镇江)已知点P(a,b)在一次函数y=4x+3图象上,则代数式4a﹣b﹣2值等于.9.在平面直角坐标系中,点O是坐标原点,过点A(1,2)直线y=kx+b与x轴交于点B,且S△AOB=4,则k值是.10.如图,已知直线l:y=x,过点A(0,1)作y轴垂线交直线l于点B,过点B作直线l垂线交y轴于点A1;过点A1作y轴垂线交直线l于点B1,过点B1作直线l垂线交y轴于点A2;…按此作法继续下去,则点A2013坐标为.11.(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则值为.12.(2004•郑州)点M(﹣2,k)在直线y=2x+1上,点M到x轴距离d= .13.将直角坐标系中一次函数图象与坐标轴围成三角形,叫做此一次函数坐标三角形.例如,图中一次函数图象与x、y轴分别交于点A、B,则△ABO为此一次函数坐标三角形,一次函数坐标三角形周长是(第1题图) (第2题图) (第10题图) (第13题图)14.(2013•浦东新区模拟)已知点P在直线y=﹣2x﹣3上,且点P到x轴距离是4,那么点P坐标是.15.(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x取值范围是_________ .二.解答题(共15小题)16.(2012•花都区一模)直线l:y=mx+n(m、n是常数)图象如图所示,化简:.17.若函数y=(a+3b)x+(2﹣a)是正比例函数且图象经过第二、四象限,试化简:.18.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9交点在y轴上;(3)k为何值时,图象平行于y=﹣2x图象;(4)k为何值时,y随x增大而减小.19.如图,直线y=x+b(b>0)与x轴负半轴、y轴正半轴分别交于A、B两点,正比例函数y=kx(k<0)图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=10,BN=3,(1)求A、B两点坐标;(用b表示)(2)图中有全等三角形吗?若有,请找出并说明理由.(3)求MN长.20.若点(m,n)在一次函数y=2x﹣8图象上,先化简,再求值:.21.在平面直角坐标系中,已知直线y=mx+n(m<0,n>0),若点A(﹣2,y1)、(﹣3,y2)、C(1,y 3)在直线y=mx+n上,则y1、y2、y3大小关系为: ____(请用“<”符号连接).22.已知:直线y=x+1与x轴交于点A,与y轴交于点B.(1)分别求出A、B两点坐标.(2)过A点作直线AP与y轴交于点P,且使OP=2OB,求△ABP面积.23.已知一次函数y=ax+b图象经过点,,C(﹣2,c)求a2+b2+c2﹣ab﹣bc﹣ca值.24.如图,平面直角坐标系中,直线y=x﹣2与x轴相交于点A,点B(4,3),(1)求点A坐标;(2)画出线段AB绕点A逆时针旋转90°后线段A B′,并求出点B′坐标.25.已知A、B坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m值.26.(2003•甘肃)如图,在梯形ABCD中,BC∥AD,∠A=90°,AB=2,BC=3,AD=4,E为AD中点,F为CD中点,P为BC上动点(不与B、C重合).设BP为x,四边形PEFC面积为y,求y关于x函数关系式,并写出x取值范围.27.如图,在直角△ABC中,∠B=90°,∠C=30°,AC=4,D是AC边上一个动点(不与A、C点重合),过点D作AC边垂线,交线段BC于点E,点F是线段EC中点,作DH⊥DF,交射线AB于点H,交射线CB于点G.(1)求证:GD=DC.(2)设AD=x,HG=y.求y关于x函数解析式,并写出它定义域.28.当k为何值时,函数y=(k2+2k)是正比例函数?29.已知:是一次函数,求m值.30.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF长.八上数学——一次函数综合提升测试题参考答案与试题解析一.填空题(共15小题)1.(2011•呼和浩特)已知关于x一次函数y=mx+n图象如图所示,则可化简为n .考点:二次根式性质与化简;一次函数图象与系数关系.专题:数形结合.分析:根据一次函数图象与系数关系,确定m、n符号,然后由绝对值、二次根式化简运算法则解得即可.解答:解:根据图示知,关于x一次函数y=mx+n图象经过第一、二、四象限,∴m<0;又∵关于x一次函数y=mx+n图象与y轴交于正半轴,∴n>0;∴=n﹣m﹣(﹣m)=n.故答案是:n.点评:本题主要考查了二次根式性质与化简、一次函数图象与系数关系.一次函数y=kx+b(k≠0,b≠0)图象,当k>0时,经过第一、二、三象限;当k<0时,经过第一、二、四象限.2.(2004•包头)已知一次函数y=ax+b(a≠O)图象如图所示,则|a+b|﹣(a﹣b)=﹣2a.考点:一次函数图象与系数关系.专题:探究型.分析:先根据一次函数图象判断出a、b符号及大小,再根据绝对值性质进行解答即可.解答:解:令x=﹣1,则y>0,即﹣a+b>0;令x=1,则y<0,即a+b<0,故a<b<0,故原式=﹣(a+b)﹣a+b=﹣a﹣b﹣a+b=﹣2a.故答案为:﹣2a.点评:本题考查是一次函数图象与系数关系,根据题意判断出a、b符号及大小是解答此题关键.3.(2008•宁夏)从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3k值,则所得一次函数中y随x增大而增大概率是.考点:概率公式;一次函数图象与系数关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小,函数y=1•x+3和y=2•x+3都是y随x增大而增大,所以符合题意概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到知识点为:概率=所求情况数与总情况数之比;一次函数未知数比例系数大于0,y随x增大而增大.4.一次函数y=k(x﹣k)(k>0)图象不经过第二象限.考点:一次函数图象与系数关系.分析:根据k,b符号判断一次函数一次函数y=k(x﹣k)图象经过象限.解答:解:由已知,得y=kx﹣k2,又k>0,则b=﹣k2<0.故图象必经过第一、三、四象限.即不经过第二象限.点评:能够根据k,b符号正确判断直线所经过象限.5.已知一次函数y=kx+b,kb<0,则这样一次函数图象必经过公共象限有 2 个,即第一、四象限.考点:一次函数图象与系数关系.专题:函数思想.分析:根据k,b取值范围确定图象在坐标平面内位置.解答:解:∵kb<0,∴k、b符号相反;∴当k>0 b<0 时,一次函数y=kx+b图象经过一、三、四象限.当k<0 b>0 时,一次函数y=kx+b图象经过一、二、四象限.所以一次函数y=kx+b图象必经过公共象限有2个,即第一、四象限.故答案是:2,一、四.点评:本题主要考查一次函数图象在坐标平面内位置与k、b关系.解答本题注意理解:直线y=kx+b所在位置与k、b符号有直接关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.若一次函数y=ax+1﹣a中,它图象经过一、二、三象限,则|a﹣1|+= 1 .考点:一次函数图象与系数关系;二次根式性质与化简.分析:根据一次函数图象所经过象限求得a取值范围,然后根据a取值范围去绝对值、化简二次根式.解答:解:∵一次函数y=ax+1﹣a中,它图象经过一、二、三象限,∴,解得,0<a<1,则|a﹣1|+=1﹣a+a=1,故答案是:1.点评:本题主要考查一次函数图象在坐标平面内位置与k、b关系.解答本题注意理解:直线y=kx+b所在位置与k、b符号有直接关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.已知一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限,化简+结果是5﹣2m .考点:一次函数图象与系数关系;二次根式性质与化简.分析:首先根据一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限确定m取值范围,然后根据m取值范围进行化简即可.解答:解:∵一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限,∴∴+==2﹣m+3﹣m=5﹣2m.故答案为:5﹣2m.点评:本题考查了一次函数图象与系数关系及二次根式性质与化简,解题关键是根据一次函数图象经过位置确定m取值范围.8.(2013•镇江)已知点P(a,b)在一次函数y=4x+3图象上,则代数式4a﹣b﹣2值等于﹣5 .考点:一次函数图象上点坐标特征.分析:把点P坐标代入一次函数解析式可以求得a、b间数量关系,所以易求代数式4a﹣b﹣2值.解答:解:∵点P(a,b)在一次函数y=4x+3图象上,∴b=4a+3,∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2值等于﹣5.故答案是:﹣5.点评:本题考查了一次函数图象上点坐标特征,经过函数某点一定在函数图象上9.(2013•牡丹江)在平面直角坐标系中,点O是坐标原点,过点A(1,2)直线y=kx+b与x轴交于点B,且S △AOB=4,则k值是k=或﹣.考点:一次函数图象上点坐标特征.专题:计算题.分析:先表示出B点坐标为(﹣,0);再把A(1,2)代入y=kx+b得k+b=2,则b=2﹣k,然后根据三角形面积公式得到|﹣|•2=4,即||=4,所以||=4,然后解方程即可.解答:解:把y=0代入y=kx+b得kx+b=0,解得x=﹣,所以B点坐标为(﹣,0);把A(1,2)代入y=kx+b得k+b=2,则b=2﹣k,∵S△AOB=4,∴|﹣|•2=4,即||=4,∴||=4,解得k=或﹣.故答案为k=或﹣.点评:本题考查了一次函数图象上点坐标特征:一次函数y=kx+b(k≠0)图象上点满足其解析式.10.(2013•东营)如图,已知直线l:y=x,过点A(0,1)作y轴垂线交直线l于点B,过点B作直线l垂线交y轴于点A1;过点A1作y轴垂线交直线l于点B1,过点B1作直线l垂线交y轴于点A2;…按此作法继续下去,则点A2013坐标为(0,42013)或(0,24026).考点:规律型:点坐标;一次函数图象上点坐标特征.专题:压轴题.分析:根据所给直线解析式可得l与x轴夹角,进而根据所给条件依次得到点A1,A2坐标,通过相应规律得到A2013坐标即可.解答:解:∵直线l解析式为:y=x,∴l与x轴夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0,16),…,∴A2013纵坐标为:42013,∴A2013(0,42013).故答案为:(0,42013).点评:本题考查是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题突破点;根据含30°直角三角形特点依次得到A、A1、A2、A3…点坐标是解决本题关键.11.(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则值为﹣.考点:一次函数图象上点坐标特征.分析:将点(3,5)代入直线解析式,可得出b﹣5值,继而代入可得出答案.解答:解:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b﹣5=﹣3a,则==.故答案为:﹣.点评:本题考查了一次函数图象上点坐标特征,注意直线上点坐标满足直线解析式.12.(2004•郑州)点M(﹣2,k)在直线y=2x+1上,点M到x轴距离d= 3 .考点:一次函数图象上点坐标特征.专题:计算题.分析:将x=﹣2代入即可求得点M到x轴距离.解答:解:∵点M(﹣2,k)在直线y=2x+1上,∴k=2×(﹣2)+1=﹣3,故点M到x轴距离d=|﹣3|=3.点评:解答此题要熟知一次函数图象上点坐标特点,即一次函数图象上点纵坐标绝对值即为点到x轴距离.13.(2013•杨浦区二模)将直角坐标系中一次函数图象与坐标轴围成三角形,叫做此一次函数坐标三角形.例如,图中一次函数图象与x、y轴分别交于点A、B,则△ABO为此一次函数坐标三角形,一次函数坐标三角形周长是12 .14.(2013•浦东新区模拟)已知点P在直线y=﹣2x﹣3上,且点P到x轴距离是4,那么点P坐标是.15.(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x取值范围是x≥0且x≠3且x≠2.二.解答题(共15小题)16.(2012•花都区一模)直线l:y=mx+n(m、n是常数)图象如图所示,化简:.17.若函数y=(a+3b)x+(2﹣a)是正比例函数且图象经过第二、四象限,试化简:.18.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9交点在y轴上;(3)k为何值时,图象平行于y=﹣2x图象;(4)k为何值时,y随x增大而减小.19.如图,直线y=x+b(b>0)与x轴负半轴、y轴正半轴分别交于A、B两点,正比例函数y=kx(k<0)图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=10,BN=3,(1)求A、B两点坐标;(用b表示)(2)图中有全等三角形吗?若有,请找出并说明理由.(3)求MN长.20.若点(m,n)在一次函数y=2x﹣8图象上,先化简,再求值:.21.在平面直角坐标系中,已知直线y=mx+n(m<0,n>0),若点A(﹣2,y1)、(﹣3,y2)、C(1,y 3)在直线y=mx+n上,则y1、y2、y3大小关系为:y3<y1<y2(请用“<”符号连接).22.已知:直线y=x+1与x轴交于点A,与y轴交于点B.(1)分别求出A、B两点坐标.(2)过A点作直线AP与y轴交于点P,且使OP=2OB,求△ABP面积.23.已知一次函数y=ax+b图象经过点,,C(﹣2,c).求a2+b2+c2﹣ab ﹣bc﹣ca值.24.如图,平面直角坐标系中,直线y=x﹣2与x轴相交于点A,点B(4,3),(1)求点A坐标;(2)画出线段AB绕点A逆时针旋转90°后线段A B′,并求出点B′坐标.25.已知A、B坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m值.26.(2003•甘肃)如图,在梯形ABCD中,BC∥AD,∠A=90°,AB=2,BC=3,AD=4,E为AD中点,F为CD中点,P为BC上动点(不与B、C重合).设BP为x,四边形PEFC面积为y,求y关于x函数关系式,并写出x取值范围.。

二次函数图象性质与综合应用(44题)(原卷版)

二次函数图象性质与综合应用(44题)(原卷版)

二次函数图象性质与综合应用(44题)一、单选题A.抛物线的对称轴为直线C.A,B两点之间的距离为2.(2023·浙江台州·统考中考真题)抛物线若120x x+<,则直线A.4个4.(2023·四川自贡·统考中考真题)经过为自变量)与x轴有交点,则线段A.4个B6.(2023·四川泸州·统考中考真题)已知二次函数函数值y均为正数,则aA . . . . .(2023·四川广安·统考中考真题)如图所示,二次函数2y ax bx =++轴交于点()()3,0,1,0AB −0;②若点()12,y −和(50a b c −+=;④4a c + )A.1个B.212.(2023·四川眉山·统考中考真题)如图,二次函数()1,0,对称轴为直线=1x−,2A.1个B.213.(2023·浙江宁波·统考中考真题)已知二次函数A.点(1,2)在该函数的图象上B.当1−≤≤时,a=且13xC.该函数的图象与x轴一定有交点解;③若()11,t −,()24,t 是抛物线上的两点,则12t t <;④对于抛物线,223y ax bx =+−,当23x −<<时,2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题417.(2023·四川宜宾物线与y 轴的交点B①当31x −≤≤时,1y ≤;②当ABM 的面积为32③当ABM 为直角三角形时,在AOB 内存在唯一点1893+.三、解答题(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出PBC的最大面积及此时点(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.(1)求该抛物线的解析式;(2)点F是该抛物线上位于第一象限的一个动点,直线=时,求CD的长;①当CD CE②若CAD,CDE,CEF△的面积分别为,ABC外接圆的圆心为(1)求抛物线的函数解析式;(2)若直线()50x m m =−<<与抛物线交于点E ,与直线BC 交于点F . ①当EF 取得最大值时,求m 的值和EF 的最大值; ②当EFC 是等腰三角形时,求点E 的坐标.27.(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P −,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由.28.(2023·浙江·统考中考真题)已知点(),0m −和()3,0m 在二次函数23,(y ax bx a b =++是常数,0)a ≠的图像上.(1)当1m =−时,求a 和b 的值;时,求OBD与△(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值. (2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.(1)求点A,B的坐标;(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D.如图标及PDDB的最大值;≌;.求证:ACB BDEx(1)如果四个点()()()()0,00,21,11,1−、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上. ①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长; ③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m −是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.38.(2023年重庆市中考数学真题(A 卷))如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,点E,求PDE△周长的最大值及此时点(3)在(2)中PDE△周长取得最大值的条件下,将该抛物线沿射线点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.40.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()4,0A −、()2,0B ,且经过点()2,6C −.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.41.(2023·四川广安·统考中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x −,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.42.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =−−的顶点为P .直线l 过点()()0,3M m m ≥−,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.43.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++−−+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.44.(2023·湖南怀化·统考中考真题)如图一所示,在平面直角坐标系中,抛物线28y ax bx =+−与x 轴交于(4,0)(2,0)A B −、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA 标;(3)设直线135 :4l y kx k=+−交抛物线于点M、N,求证:无论存在一点E,使得MEN∠为直角.。

二次函数的图像和性质单元检测5

二次函数的图像和性质单元检测5

第22章二次函数的图像和性质单元测试二时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 22.(2016·衢州)二次函数y =ax 2+bx +c(a ≠0)图象上部分点的坐标(x ,y)对应值列表如下:则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =03.已知抛物线y =ax 2+bx +c 过(1,-1),(2,-4)和(0,4)三点,那么a ,b ,c 的值分别是( )A .a =-1,b =-6,c =4B .a =1,b =-6,c =-4C .a =-1,b =-6,c =-4D .a =1,b =-6,c =44.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为( )A .x 1=0,x 2=4B .x 1=1,x 2=5C .x 1=1,x 2=-5D .x 1=-1,x 2=55.(2016·牡丹江)将抛物线y =x 2-1向下平移8个单位长度后与x 轴的两个交点之间的距离为( )A .4B .6C .8D .106.(2016·宁波)已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( ) A .当a =1时,函数图象过点(-1,1) B .当a =-2时,函数图象与x 轴没有交点 C .若a >0,则当x ≥1时,y 随x 的增大而减小 D .若a <0,则当x ≤1时,y 随x 的增大而增大7.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出;若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,…,为了投资少而获利大,每个每天应提高( )A .4元或6元B .4元C .6元D .8元8.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )9.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为点O ,点B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y =-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴,若OA =10米,则桥面离水面的高度AC 为( )A .16940米 B .174米 C .16740米 D .154米10.(2016·达州)如图,已知二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴交于点A(-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1.下列结论:①abc >0;②4a +2b +c >0;③4ac -b 2<8a ;④13<a <23;⑤b >c.其中含所有正确结论的选项是( )A .①③B .①③④C .②④⑤D .①③④⑤二、填空题(每小题3分,共24分)11.(2016·哈尔滨)二次函数y =2(x -3)2-4的最小值为________.12.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则一元二次不等式ax 2+bx +c >0的解是____________.第12题图第16题图第17题图13.(2016·徐州)若二次函数y =x 2+2x +m 的图象与x 轴没有公共点,则m 的取值范围是________.14.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系是________________. 15.抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________.16.(2016·泰州)二次函数y =x 2-2x -3的图象如图所示,若线段AB 在x 轴上,且AB 为23个单位长度,以AB 为边作等边△ABC ,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为______________.17.(2016·内江)二次函数y =ax 2+bx +c 的图象如图所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是__________.18.(2016·台州)竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =________.三、解答题(共66分)19.(6分)已知:二次函数y =-2x 2+(3k +2)x -3k.(1)若二次函数的图象过点A(3,0),求此二次函数图象的对称轴; (2)若二次函数的图象与x 轴只有一个交点,求此时k 的值.20.(8分)(2016·牡丹江)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(-1,8)并与x轴交于A,B两点,且点B坐标为(3,0).(1)求抛物线的解析式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.21.(8分)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.22. (8分)已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)若A(-2,y1),B(5,y2)是抛物线y=2x2+bx+1上的两点,试比较y1与y2的大小关系;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.23.(8分)(2016·青岛)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx(a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34m ,到墙边OA 的距离分别为12m ,32m .(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线型图案?24.(9分)把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.25.(9分)(2016·天水)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x ≤5),20x +60(5<x ≤19).(1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)26.(10分)(2016·眉山)已知如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,(1)求经过A,B,C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|的最大值时点M 的坐标,并直接写出|PM-AM|的最大值.。

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试练习题(精选含解析)

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试练习题(精选含解析)

八年级数学下册第十七章函数及其图像综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两地相距s 千来,汽车从甲地匀速行驶到乙地,行驶的时间t (小时)关于行驶速度v (千米时)的函数图像是( )A .B .C .D .2、下列函数中,表示y 是x 的反比例函数的是( )A .y =B .a y x =C .21y x =D .13y x =3、把函数y =x 的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)4、火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④5、如图,点A 在双曲线k y x=上,AB x ⊥轴于B ,3AOB S =△,则k 的值为( )A .不能确定B .3C .18D .66、如图,Rt AOB Rt CDA ≌,且点A 、B 的坐标分别为(1,0),(0,2)B -,则OD 长是( )A .3-B .5C .4D .37、如图1,在Rt ABC 中,90C ∠=︒,点D 是BC 的中点,动点P 从点C 出发沿CA AB -运动到点B ,设点P 的运动路程为x ,PCD 的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ).A .10B .12C .D .8、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5x y = 9、在平面直角坐标系中,点()8,15-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限10、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M (a ﹣2,a +1)在第二象限,则a 的值为 _____.2、下列函数:①y kx =;②23y x =;③2(1)y x x x =--;④21y x =+;⑤22y x =-.其中一定是一次函数的有____________.(只是填写序号)3、观察图象可知:当k >0时,直线y =kx +b 从左向右______;当k<0时,直线y=kx+b从左向右______.由此可知,一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.4、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.5、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△PnAn﹣1An都是等腰直角三角形,点P1、P2、P3…Pn都在函数y=4x(x>0)的图象上,斜边OA1、A1A2、A2A3…An﹣1An都在x轴上.则点A2021的坐标为____.6、在平面内画两条互相垂直、原点重合的数轴,组成_______.水平的数轴称为x轴或______,取向______方向为正方向;竖直的数轴称为y轴或______,取向______方向为正方向.两坐标轴的交点为平面直角坐标系的______,一般用______来表示.7、在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.解:设y =kx +b (k ≠0)由题意得:14.5=b ,16=3k +b ,解得:b =___,k =___.所以在弹性限度内,y =___,当x =4时,y =0.5×4+14.5=___(厘米).即物体的质量为4千克时,弹簧长度为16.5厘米.8、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.9、如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行.反比例函数y =k x (k ≠0)的图象,与大正方形的一边交于点A (32,4),且经过小正方形的顶点B .求图中阴影部分的面积为 _____.10、自行车运动员在长为10000 m 的路段上进行骑车训练,行驶全程所用时间为t s ,行驶的平均速度为v m/s ,则vt =______,用t 表示v 的函数表达式为_______;y 与x 的乘积为-2,用x 表示y 的函数表达式为______.以上两个函数表达式都具有________的形式,其中________是常数.具有________的形式.三、解答题(5小题,每小题6分,共计30分)1、请根据学习“一次函数”时积累的经验和方研究函数2y x =-+的图象和性质,并解决问题.(1)填空:①当x =0时,2y x =-+= ;②当x >0时,2y x =-+= ;③当x <0时,2y x =-+= ;(2)在平面直角坐标系中作出函数2y x =-+的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,方程20x -+=有 个解; ②方程22x -+=有 个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是 .2、如图,在平面直角坐标系中,点B ,C ,D 的坐标分别是什么?3、如图分别是函数y=k1x,y=k2x,y=k3x,y=k4x的图象.(1)k1k2,k3k4(填“>”或“<”);(2)用不等号将k1,k2,k3,k4及0依次连接起来.4、如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为_______,点B的坐标为______;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)②试求线段OQ长的最小值.5、某通讯公司推出①②两种收费方式供用户选择,其中一种有月租费,另一种没有月租费,且两种收费方式的通话时间x(分钟)与收费y(元)的关系如图所示:(1)分别求出①②两种方案的收费y(元)与通话时间x(分钟)之间的函数关系式.(2)当x值为多少时两种方案收费相等.(3)选择哪种收费方案更合算?-参考答案-一、单选题1、B【解析】【分析】直接根据题意得出函数关系式,进而得出函数图象.解:由题意可得:t=sv,是反比例函数,故只有选项B符合题意.故选:B.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.2、D【解析】略3、C【解析】【分析】由函数“上加下减”的原则解题.【详解】解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,当x=2时,y=2+2=4,所以在平移后的函数图象上的是(2,4),故选:C.【点睛】本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.4、D【分析】根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5、D【解析】【分析】根据反比例函数k 的几何意义直接求解即可【详解】解:∵3AOB S =△ ∴=32k 函数图象经过一、三象限0k ∴>6k ∴=故选D【点睛】 本题考查了反比例函数0k y k x=≠()中比例系数k 的几何意义:过反比例函数图象上任意一点分别作x 轴、y 轴的垂线,则垂线与坐标轴所围成的矩形的面积为k .6、D【解析】【分析】利用全等三角形的性质证明即可.【详解】解:∵A (-1,0),B (0,2),∴OA =1,OB =2,∵△AOB ≌△CDA ,∴OB =AD =2,∴OD =AD +AO =2+1=3,故选D .【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.7、D【解析】【分析】由图像可知, 当08x ≤≤时,y 与x 的函关系为:y =x ,当x =8时,y =8,即P 与A 重合时,PCD ∆的面积为8,据此求出CD ,BC ,再根据勾股定理求出AB 即可P .【详解】解:如图2,当08x ≤≤时,设y =kx ,将(3,3)代入得,k =1,()08y x x ∴=≤≤ ,当P 与A 重合时,即:PC =AC =8,由图像可知,把x =8代入y =x ,y =8,8PCD S ∆∴=,1882DC ∴⨯=, 2DC ∴=, D 是BC 的中点,24BC CD ==在Rt ABC ∆中,AB故选:D .【点睛】本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.8、D【分析】根据正比例函数的定义逐个判断即可.【详解】解:A .是二次函数,不是正比例函数,故本选项不符合题意;B .是一次函数,但不是正比例函数,故本选项不符合题意;C .是反比例函数,不是正比例函数,故本选项不符合题意;D .是正比例函数,故本选项符合题意;故选:D .【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y =kx +b (k 、b 为常数,k ≠0)的函数,叫一次函数,当b =0时,函数也叫正比例函数.9、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】解:点()8,15-所在的象限是第四象限,故选:D .【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.10、C【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.二、填空题1、0或1##1或0【解析】【分析】根据点M 在第二象限,求出a 的取值范围,再由格点定义得到整数a 的值.【详解】解:∵点M (a ﹣2,a +1)在第二象限,∴a -2<0,a +1>0,∴-1<a <2,∵点M 为格点,∴a 为整数,即a 的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.2、②③⑤【解析】【分析】根据一次函数的定义条件解答即可.【详解】解:①y =kx 当k =0时原式不是一次函数; ②23y x =是一次函数;③由于2(1)y x x x =--=x ,则2(1)y x x x =--是一次函数;④y =x 2+1自变量次数不为1,故不是一次函数;⑤y =22−x 是一次函数.故答案为:②③⑤.【点睛】本题主要考查了一次函数的定义,一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1.3、 上升 下降 增大 减小【解析】略4、第二、四象限下降减少第一、三象限上升增大【解析】略5、(0)【解析】【分析】首先根据等腰直角三角形的性质,知点P1的横、纵坐标相等,再结合双曲线的解析式得到点P1的坐标是(2,2),则根据等腰三角形的三线合一求得点A1的坐标;同样根据等腰直角三角形的性质、点A1的坐标和双曲线的解析式求得A2点的坐标;根据A1、A2点的坐标特征即可推而广之.【详解】解:可设点P1(x,y),根据等腰直角三角形的性质可得:x=y,又∵y=4x,则x2=4,∴x=±2(负值舍去),再根据等腰三角形的三线合一,得A1的坐标是(4,0),设点P2的坐标是(4+y,y),又∵y=4x,则y(4+y)=4,即y2+4y-4=0解得,y1y2∵y>0,∴y,再根据等腰三角形的三线合一,得A2的坐标是(0);An点的坐标是(0).可以再进一步求得点A故点A2021的坐标为(0).故答案是:(0).【点睛】本题考查了反比例函数的综合应用,解决此题的关键是要根据等腰直角三角形的性质以及反比例函数的解析式进行求解.6、平面直角坐标系横轴右纵轴上原点O【解析】略x+ 16.57、 14.5 0.5 0.514.5【解析】略8、自变量【解析】略9、40【解析】【分析】根据待定系数法求出k即可得到反比例函数的解析式;利用反比例函数系数k的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积=大正方形的面积-小正方形的面积即可求出结果.【详解】解:反比例函数k y x=的图象经过点3(,4)2A , 4623k ∴=⨯=, ∴反比例函数的解析式为6y x=; 小正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,∴设B 点的坐标为(,)m m , 反比例函数6y x =的图象经过B 点, 6m m ∴=, 26m ∴=,∴小正方形的面积为2424m =,大正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,且3(,4)2A ,∴大正方形在第一象限的顶点坐标为(4,4),∴大正方形的面积为24464⨯=,∴图中阴影部分的面积=大正方形的面积-小正方形的面积642440=-=. 【点睛】本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k 的几何意义,正方形的性质,熟练掌握反比例函数系数k 的几何意义是解决问题的关键.10、 10000 10000v t = 2y x -= 分式 分子 (0)k y k x=≠ 【解析】略三、解答题1、(1)2;-x +2,x +2;(2)见解析;(3)函数图象关于y 轴对称;当x =0时,y 有最大值2;(4)①2 2;②1;③2a >.【解析】【分析】(1)利用绝对值的意义,分别代入计算,即可得到答案;(2)结合(1)的结论,画出分段函数的图像即可;(3)结合函数图像,归纳出函数的性质即可;(4)结合函数图像,分别进行计算,即可得到答案;【详解】解:(1)①当x =0时,22y x =-+=;②当x >0时,22y x x =-+=-+;③当x <0时,22y x x =-+=+;故答案为:2;-x +2;x +2;(2)函数y =-|x |+2的图象,如图所示:(3)函数图象关于y 轴对称;当x =0时,y 有最大值2.(答案不唯一)(4)①函数图象与x 轴有2个交点,方程20x -+=有2个解; ②方程22x -+=有1个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是2a >.故答案为:2;2;1;2a >.【点睛】本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.2、B (-2,3),C (4,-3),D (-1,-4)【解析】略3、 (1)<,<(2)k 1<k 2<0<k 3<k 4【解析】略4、 (1)(-3,0);(0,4)(2)证明见解析(3)①∠QPO ,∠BAQ ;②线段OQ 长的最小值为125 【解析】【分析】(1)根据题意令x =0,y =0求一次函数与坐标轴的交点;(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:443y x=+,推出点Q在直线y=﹣43x+4上运动,再根据垂线段最短,即可解决问题.(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=﹣3,∴A(﹣3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4).(2)证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,∵PB=PE,∴∠PBE=∠PEB=α,∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),∴∠BPE=2∠OAB.(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=∠BPE=2∠OAB,∵∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ﹣∠APB=∠BPE﹣∠APB.∴∠QPO=∠EPA.又∵PE=PB,AP=PQ∴∠PEB=∠PBE=∠PAQ=∠AQP.∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.∴与∠EPA相等的角有∠QPO,∠BAQ.故答案为:∠QPO,∠BAQ.②如图3中,连接BQ交x轴于T.∵AP=PQ,PE=PB,∠APQ=∠BPE,∴∠APE=∠QPB,在△APE和△QPB中,PA PQAPE QPBPE PB=⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△QPB(SAS),∴∠AEP=∠QBP,∵∠AEP=∠EBP,∴∠ABO=∠QBP,∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,∴∠BAO=∠BTO,∴BA=BT,∵BO⊥AT,∴OA=OT,∴直线BT的解析式为为:443y x=+,∴点Q在直线y=﹣43x+4上运动,∵B(0,4),T(3,0).∴BT=5.当OQ⊥BT时,OQ最小.∵S△BOT=12×3×4=12×5×OQ.∴OQ=125.∴线段OQ长的最小值为125.【点睛】本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.5、(1)①:y=0.1x+30;②:y=0.2x(2)当x值为300时两种方案收费相等(3)当0<x<300时,选择②种方案;当x=300时,两种方案一样;当x>300时,选择①种方案.【解析】【分析】(1)根据函数图象中的数据,用待定系数法可以分别求得①②两种方案的收费y(元)与通话时间x(分钟)之间的函数关系式;(2)令(1)中的两个函数值相等,即可求出当x 值为多少时两种方案收费相等;(3)根据(2)中的结果和函数图象,可以写出当x 何值时,选择哪种收费方案更合算.(1)解:设①种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =kx +b ,∵点(0,30),(500,80)在此函数图象上,∴3050080b k b =⎧⎨+=⎩, 解得0.130k b =⎧⎨=⎩, 即①种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =0.1x +30;设②种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =ax ,∵点(500,100)在此函数图象上,∴100=500a ,得a =0.2,即②种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =0.2x ;(2)解:令0.1x +30=0.2x ,解得x =300,答:当x 值为300时两种方案收费相等;(3)解:由(2)中的结果和图象可得,当0<x<300时,选择②种方案;当x=300时,两种方案一样;当x>300时,选择①种方案.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答.。

专题01 三角函数的图象与综合应用(精讲精练)(原卷版)

专题01 三角函数的图象与综合应用(精讲精练)(原卷版)

专题01 三角函数的图象与综合应用【命题规律】三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1、三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2、利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.3、三角恒等变换的求值、化简是高考命题的热点,常与三角函数的图象、性质结合在一起综合考查,如果单独命题,多用选择、填空题中呈现,难度较低;如果三角恒等变换作为工具,将其与三角函数及解三角形相结合求解最值、范围问题,多以解答题为主,中等难度.【核心考点目录】核心考点一:齐次化模型 核心考点二:辅助角与最值问题 核心考点三:整体代换与二次函数模型 核心考点四:绝对值与三角函数综合模型 核心考点五:ω的取值与范围问题 核心考点六:三角函数的综合性质【真题回归】1.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1B .32C .52D .32.(2022·全国·高考真题(理))设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤⎥⎝⎦3.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-4.(2022·全国·高考真题(文))将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .125.(多选题)(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 B .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭有两个极值点 C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 6.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________. 【方法技巧与总结】1、三角函数图象的变换(1)将sin y x =的图象变换为sin()y A x ωϕ=+(0,0)A ω>>的图象主要有如下两种方法:(2)平移变换函数图象的平移法则是“左加右减、上加下减”,但是左右平移变换只是针对x 作的变换; (3)伸缩变换①沿x 轴伸缩时,横坐标x 伸长(01)ω<<或缩短(1)ω>为原来的1ω(倍)(纵坐标y 不变);②沿y 轴伸缩时,纵坐标y 伸长(1)A >或缩短(01)A <<为原来的A (倍)(横坐标x 不变). (4)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. 2、三角函数的单调性 (1)三角函数的单调区间sin y x =的单调递增区间是2,2()22k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦Z ,单调递减区间是32,2()22k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ; cos y x =的单调递增区间是[2,2]()k k k π-ππ∈Z ,单调递减区间是[2,2]()k k k ππ+π∈Z ;tan y x =的单调递增区间是,()22k k k ππ⎛⎫π-π+∈ ⎪⎝⎭Z .(2)三角函数的单调性有时也要结合具体的函数图象如结合|sin |y x =,sin ||y x =, |cos |y x =,cos ||cos y x x ==的图象进行判断会很快得到正确答案.3、求三角函数最值的基本思路(1)将问题化为sin()y A x B ωϕ=++的形式,结合三角函数的图象和性质求解. (2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的图象和性质求解. (3)利用导数判断单调性从而求解. 4、对称性及周期性常用结论 (1)对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.(2)与三角函数的奇偶性相关的结论若sin()y A x ωϕ=+为偶函数,则有()2k k ϕπ=π+∈Z ;若为奇函数,则有()k k ϕ=π∈Z .若cos()y A x ωϕ=+为偶函数,则有()k k ϕ=π∈Z ;若为奇函数,则有()2k k ϕπ=π+∈Z . 若tan()y A x ωϕ=+为奇函数,则有()k k ϕ=π∈Z . 5、已知三角函数的单调区间求参数取值范刪的三种方法(1)子集法:求出原函数相应的单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正弦、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)周期性:由所给区间的两个端点到其相应对称中心的距离不超过14个周期列不等式(组)求解.【核心考点】核心考点一:齐次化模型【规律方法】齐次分式:分子分母的正余弦次数相同,例如:αααα++sin cos sin cos a b c d (一次显型齐次化)或者αααααααααα++⇒+222222sin cos +sin cos sin cos +sin cos sin cos a b c a b c (二次隐型齐次化)这种类型题,分子分母同除以αcos (一次显型)或者α2cos (二次隐型),构造成αtan 的代数式,这个思想在圆锥曲线里面关于斜率问题处理也经常用到.【典型例题】例1.(2022·广东揭阳·高三阶段练习)若tan 2θ=-,则()sin 1sin 24θθπθ-=⎛⎫- ⎪⎝⎭( )A .25B .25-C .65D .65-例2.(2022·江苏省丹阳高级中学高三阶段练习)已知tan 3α=,则3cos cos πcos 2ααα-=⎛⎫+ ⎪⎝⎭( )A .34-B .34C .310-D .310例3.(2022·湖南·高三阶段练习)已知曲线y =()1,4处的切线的倾斜角为2α,则1sin cos π14ααα++=⎛⎫+ ⎪⎝⎭( ) AB.C .12D .1例4.(2022·湖北·襄阳五中高三开学考试)若ππ2θ<<,tan 3θ=-,=( ) A .35 B .54-C .45-D .45核心考点二:辅助角与最值问题【规律方法】第一类:一次辅助角:αα±sin cos a b αϕ±).(其中ϕ=tan b a)第二类:二次辅助角()ωωω±>2sin cos cos ,0a x x b x a bωωω±=2sin cos cos a x x b x ()()ωωωϕϕ±+=±±=sin2cos212(tan )222a b b b x x x a【典型例题】例5.(2022·内蒙古·赤峰二中高三阶段练习(理))已知函数()41sin cos 55f x x x =+,当x β=时,()f x 取得最大值,则cos β=( ) ABC .47D .17例6.(2022·四川省成都市新都一中高三阶段练习(理))若2,43⎡⎤∈⎢⎥⎣⎦x ππ,则函数2()3sin cos =f x x x x 的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.D.[0,3+例7.(2022·四川省成都市新都一中高三阶段练习(文))若π0,2x ∈⎡⎤⎢⎥⎣⎦,则函数()23sin cos f x x x x=的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.⎡⎣ D.0,3⎡⎣例8.(2022·全国·高三专题练习)函数()222sin f x x x =+,若()()123f x f x ⋅=-,则122x x -的最小值是( ) A .23πB .4πC .3πD .6π例9.(2022·浙江省杭州第二中学高三阶段练习)已知关于x 的方程sin cos 2a x b x +=有实数解,则()()2211a b -+-最小值是______.例10.(2022·全国·高三专题练习)函数()44sin sin cos 44xf x x x =+的最小值为___________. 例11.(2022·全国·高三专题练习)已知2251x y -+=,,x y R ∈,则22x y +的最小值为____.核心考点三:整体代换与二次函数模型【规律方法】三角函数和二次函数交汇也是一种常见题型,我们将其分为三类,第一类是最简单的,就是sin x ,cos x 与cos2x 之间的二次函数关系,第二类则有一点隐藏,就是±sin cos x x 与sin cos x x 之间的关系,第三类则是+sin cos a x b x 与sin2x 之间的关系.【典型例题】例12.(2022·全国·高三专题练习)函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 例13.(2022·全国·高考真题(文))函数cos 22sin y x x =+的最大值为________.例14.(2022·全国·高考真题(理))函数sin cos sin cos y x x x x =++的最大值是_________. 例15.(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()f x 的最大值为___________.例16.(2022·全国·高三专题练习)若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值是 A.12+B.12-+C .1 D核心考点四:绝对值与三角函数综合模型 【规律方法】关于=sin y x 和=sin y x ,如图,=sin y x 将=sin y x 图像中x 轴上方部分保留,x 轴下方部分沿着x 轴翻上去后得到,故=sin y x 是最小正周期为π的函数,同理ωφ=+sin()y A x 是最小正周期为πω的函数;=sin y x 是将=sin y x 图像中y 轴右边的部分留下,左边的删除,再将y 轴右边图像作对称至左边,故=sin y x 不是周期函数.我们可以这样来表示:ππππππ⎧∈+⎪=⎨-∈-⎪⎩,,sin ([22])sin sin ((22))x x k k x x x k k ,⎧≥⎪=⎨-<⎪⎩sin (0)sin sin (0)x x x x x 【典型例题】例17.(2022·安徽·铜陵一中高三阶段练习(理))已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小正周期为πB .()f xC .()3f x f x π⎛⎫-= ⎪⎝⎭D .()f x 5,012π⎡⎤-⎢⎥⎣⎦上有解 例18.(2022·全国·高三专题练习)已知()sin |||sin |cos |||cos |=+++f x x x x x ,给出下述四个结论: ①()y f x =是偶函数; ②()y f x =在3,22ππ⎛⎫⎪⎝⎭上为减函数; ③()y f x =在(,2)ππ上为增函数; ④()y f x =的最大值为 其中所有正确结论的编号是( )A .①②④B .①③④C .①②③D .①④例19.(2022·江苏·泗阳县实验高级中学高三阶段练习)已知函数()cos ||2|sin |f x x x =-,以下结论正确的是( )A .π是()f x 的一个周期B .函数在2π0,3⎡⎤⎢⎥⎣⎦单调递减C .函数()f x 的值域为[D .函数()f x 在[2π,2π]-内有6个零点例20.(多选题)(2022·安徽·砀山中学高三阶段练习)已知函数()sin cos 336x x f x π⎛⎫=++ ⎪⎝⎭,则( ) A .()f x 的最小正周期为3π B .()f xC .()f x 在[5,7]ππ上单调递减D .()f x 在[4,4]ππ-上有4个零点例21.(2022·湖南省临澧县第一中学高三阶段练习)函数()sin sin cos cos f x x x x x =+++的最大值为______.例22.(2022·全国·高三专题练习)已知函数()sin 2f x x x π⎛⎫=- ⎪⎝⎭,则 ①()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最小值是1; ②()f x 的最小正周期是2π;③直线()2k x k Z π=∈是()fx 图象的对称轴;④直线2y x π=与()fx 的图象恰有2个公共点.其中说法正确的是________________.例23.(2022·陕西·长安一中高一期末)关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间()2,π上递增; ③()f x 在[]π,π-上有4个零点; ④()f x 的最大值为2.其中所有正确结论的编号__________.例24.(2022·云南省玉溪第一中学高二期中(文))设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________.①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点.核心考点五:ω的取值与范围问题【规律方法】1、()sin()f x A x ωϕ=+在()sin()f x A x ωϕ=+区间()a b ,内没有零点⎪⎪⎩⎪⎪⎨⎧+≤+<+<+≤≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+≤-≥≤-⇒ωϕππωϕπk b k a T a b 2 同理,()sin()f x A x ωϕ=+在区间[]a b ,内没有零点 ⎪⎪⎩⎪⎪⎨⎧+<+<+<+<≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+<-><-⇒ωϕππωϕπk b k a T a b 2 2、()sin()f x A x ωϕ=+在区间()a b ,内有3个零点⎪⎩⎪⎨⎧+≤+<++<+≤≤-<⇒ππϕωππππϕωπk b k k a k Ta b T 432(1)(3)(24)T b a k T k a k k b πϕπϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒≤<⎨⎪⎪+<-≤-+-<≤⎪⎩同理()sin()f x A x ωϕ=+在区间[]a b ,内有2个零点⎪⎪⎩⎪⎪⎨⎧+<+≤++≤+<<-≤⇒ππϕωππππϕωπk b k k a k T a b T 32232(2))2(332k TT b k a k b a k πϕππϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+≤-<-+-≤<⎪⎩ 3、()sin()f x A x ωϕ=+在区间()a b ,内有n 个零点⇒(()(+1)1)(1)22n Tn T b a k k a k n k n b πϕππϕωωπϕπϕωω-+≤-⎧⎪⎪-+-⎪≤<⎨⎪⎪+-+-<≤⎩<⎪同理()sin()f x A x ωϕ=+在区间[]a b ,内有n 个零点(1)(1()()22+1)n T n T b k k a k n k n b a πϕππϕωωπϕπϕωω-+≤-<⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+-+-≤<⎪⎩4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为214n T +,则21(21)42n n T b a πω++==-. 5、已知单调区间(,)a b ,则2T a b -≤.【典型例题】例25.(2022·河南·模拟预测(文))已知函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,3x π=-为()f x 的一个零点,3x π=为()y f x =图象的一条对称轴,且()f x 在,20216ππ⎛⎫⎪⎝⎭内不单调,则ω的最小值为______. 例26.(2022·全国·高三专题练习)若函数()()cos 0f x x ωω=>在区间()2,3ππ内既没有最大值1,也没有最小值1-,则ω的取值范围是___________.例27.(2022·上海·高三专题练习)已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0ω>)有且仅有3个零点,则ω的最小值是_________.例28.(2022·宁夏·平罗中学高三期中(理))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在()2ππ,内单调且有一个零点,则ω的最大值是______________.例29.(2022·湖南·永州市第一中学高三阶段练习)若函数()()π2sin 04f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,46⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为________.例30.(2022·全国·高三阶段练习(理))已知函数π()2cos (0)4f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为T ,()f x 的一个极值点为πx=.若π2π33T <<,则ω的最大值是_____.例31.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))将函数()sin2cos 222x x x f x ωωω⎛⎫=-+ ⎪⎝⎭(0ω>)的图象向左平移π3个单位长度,得到曲线C .若C 关于y 轴对称,则ω的最小值是______.例32.(2022·北京师大附中高三阶段练习)记函数()()()cos 0,0f x x ωϕωϕ=+><<π的最小正周期为T ,若()f T =π12x =为()f x 的零点,则ω的最小值为_______. 例33.(2022·云南·高三阶段练习)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,()f x 在区间5π7π,1818⎛⎫⎪⎝⎭上有最大值点无最小值点,且5π7π1818f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,记满足条件的ω的取值集合为M ,则=M ______.例34.(2022·四川成都·模拟预测(理))已知函数()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,若03f π⎛⎫=⎪⎝⎭,且()f x 在5,312ππ⎛⎫ ⎪⎝⎭上有最大值,没有最小值,则ω的最大值为______. 例35.(2022·全国·高三专题练习(理))设函数()sin()f x x ωϕ=+,其中0ω>.且1(0),0263f f f ππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,则ω的最小值为________.例36.(2022·福建省福州教育学院附属中学高三开学考试)已知()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,则ω=______.例37.(多选题)(2022·山西·高三阶段练习)已知函数()(0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间π,π3⎛⎤⎥⎝⎦内没有零点,则ω的值可以是( )A .18B .12C .76D .32核心考点六:三角函数的综合性质 【典型例题】例38.(多选题)(2022·山东德州·高三期中)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭同时满足下列三个条件:②该函数图象的两条对称轴之间的距离的最小值为π; ③该函数图象关于5,03π⎛⎫⎪⎝⎭对称. 那么下列说法正确的是( ) A .ϕ的值可唯一确定B .函数56f x π⎛⎫-⎪⎝⎭是奇函数 C .当52()6x k k ππ=-∈Z 时,函数()f x 取得最小值 D .函数()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增例39.(多选题)(2022·湖北襄阳·高三期中)函数π()sin(2)3f x x =-的图象向左平移π4个单位长度,得到函数()g x 的图象,则下列结论正确的有( ) A .直线5π6x =-是()g x 图象的一条对称轴B .()g x 在ππ(,)26-上单调递增C .若()g x 在(0,)α上恰有4个零点,则23π29π(,]1212α∈ D .()g x 在ππ[,]42上的最大值为12例40.(多选题)(2022·江苏南通·高三期中)已知函数()f x ,()g x 的定义域均为R ,它们的导函数分别为()f x ',()g x '.若()1y f x =+是奇函数,()()cos g x x π'=,()f x 与()g x 图象的交点为()11,x y ,()22,x y ,…,(),m m x y ,则( )A .()f x 的图象关于点()1,0-对称B .()f x '的图象关于直线1x =对称C .()g x 的图象关于直线12x =对称D .()1mi i i x y m =+=∑例41.(多选题)(2022·山东菏泽·高三期中)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,则下列说法正确的是( ).A .π2f ⎛⎫= ⎪⎝⎭B .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 C .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭上有且仅有2个零点 D .将()f x 的图象向右平移π12个单位长度后,可得到一个奇函数的图象 例42.(多选题)(2022·河北·模拟预测)已知函数π()sin()(0,0π),()04f x x f ωϕωϕ=+><<=,且对任意x ∈R均有π()(),()2f x f f x 在π[0,]2上单调递减,则下列说法正确的有( ) A .函数()f x 为偶函数B .函数()f x 的最小正周期为2πC .若1()([0,2π])3f x x =∈的根为(1i x i =,2,⋯,)n ,则14πn i i x ==∑ D .若(2)()f x f x >在(,)m n 上恒成立,则n m -的最大值为π3例43.(多选题)(2022·广东·深圳实验学校光明部高三期中)已知函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图(1)所示,函数()()1111()cos 0,0,||πg x A x A ωαωα=+>><的部分图象如图(2)所示,下列说法正确的是( )A .函数()y f x =的周期为2πB .函数()y f x =的图象关于直线1912x π=对称 C .函数()1y f x =-在区间[0,2]π上有4个零点 D .将函数()y f x =的图像向左平移23π可使其图像与()y g x =图像重合例44.(多选题)(2022·福建·厦门外国语学校高三期中)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图像上所有的点向右平移π6个单位长度,得到函数()g x 的图像,则下列说法正确的是( ) A .()g x 的最小正周期为π B .()g x 图像的一个对称中心为7π,012⎛⎫⎪⎝⎭C .()g x 的单调递增区间为()π5ππ,πZ 36k k k ⎡⎤++∈⎢⎥⎣⎦D .()g x 的图像与函数πsin 26y x ⎛⎫=- ⎪⎝⎭的图像重合例45.(多选题)(2022·黑龙江齐齐哈尔·高三期中)已知()44cossin 22x xf x =+,则下列说法错误的是( ) A .函数()f x 的最小正周期为2π B .函数4f x π⎛⎫- ⎪⎝⎭为奇函数C .函数()f x 在,63ππ⎛⎫⎪⎝⎭上的值域为5,18⎛⎫⎪⎝⎭D .函数()34y f x =-在区间[]2,2ππ-上的零点个数为8【新题速递】一、单选题1.(2022·河北·张家口市第一中学高三期中)函数()()πtan 0,02f x x ωϕϕω⎛⎫=+<<> ⎪⎝⎭某相邻两支图象与坐标轴分别交于点π,06A ⎛⎫ ⎪⎝⎭,2π,03B ⎛⎫⎪⎝⎭,则方程()[]πsin 2,0,π3f x x x ⎛⎫=-∈ ⎪⎝⎭所有解的和为( ) A .5π12B .5π6 C .π2D .π2.(2022·北京市第十一中学高三阶段练习)已知函数()2π2cos 4f x x ⎛⎫=- ⎪⎝⎭则( )A .()f x 是奇函数B .函数()f x 的最小正周期为4πC .曲线()y f x =关于π2x =对称D .()()12f f >3.(2022·贵州·顶效开发区顶兴学校高三期中(理))已知函数()()sin f x x ωϕ=+(0ω>,π<ϕ),其图象相邻两条对称轴的距离为π2,且对任意x ∈R ,都有()7π12f x f ⎛⎫⎪⎝⎭,则在下列区间中,()f x 为单调递减函数的是( ) A .ππ,63⎡⎤-⎢⎥⎣⎦B .7π0,12⎡⎤⎢⎥⎣⎦C .π12π,2⎡⎤⎢⎥⎣⎦D .7π,π12⎡⎤⎢⎥⎣⎦4.(2022·吉林长春·模拟预测)定义域为[]0,π的函数())()1cos cos 02f x x x x ωωωω=-+>,其值域为1,12⎡⎤-⎢⎥⎣⎦,则ω的取值范围是( ) A .30,2⎛⎤ ⎥⎝⎦B .3,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .12,33⎡⎤⎢⎥⎣⎦5.(2022·江苏南通·高三期中)已知112tan sin =-αα,则πtan 4α⎛⎫-= ⎪⎝⎭( )A .7-B .17-C .19D .436.(2022·河南·高三阶段练习(理))设函数()sin()(0)5f x x πωω=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论中,正确结论的编号是( ) ①()f x 在(0,2)π有且仅有3个极大值点②()f x 在(0,2)π有且仅有2个极小值点③()f x 在05π⎛⎫⎪⎝⎭,单调递增④ω的取值范围是1229510⎡⎫⎪⎢⎣⎭, A .①④B .②③C .①②③D .①③④7.(2022·天津市南开中学滨海生态城学校高三阶段练习)下列关于函数()4cos cos 3f x x x ⎛⎫=- ⎪⎝⎭π的命题,正确的有( )个(1)它的最小正周期是π2(2)π,012⎛⎫-⎪⎝⎭是它的一个对称中心 (3)π6x =是它的一条对称轴 (4)它在π0,3⎛⎤⎥⎝⎦上的值域为[]2,3A .0B .1C .2D .38.(2022·宁夏六盘山高级中学高三期中(理))已知函数()()sin f x x ωϕ=+(其中0,2πωϕ><),()30,88f f x f ππ⎛⎫⎛⎫-=≤ ⎪ ⎪⎝⎭⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,给出下列命题①()f x 是偶函数;②()304f f π⎛⎫= ⎪⎝⎭;③ω是奇数;④ω的最大值为3;其中正确的命题有( )A .①②③B .①②④C .②③④D .①③④二、多选题9.(2022·重庆八中高三阶段练习)已知函数()()sin 2(0π)f x x ϕϕ=+<<,曲线()y f x =关于点7π,012⎛⎫- ⎪⎝⎭中心对称,则( )A .将该函数向左平移π6个单位得到一个奇函数B .()f x 在3π7π,46⎛⎫⎪⎝⎭上单调递增 C .()f x 在π7π,1212⎛⎫-⎪⎝⎭上只有一个极值点 D .曲线()y f x '=关于直线π6x =对称10.(2022·福建·泉州五中高三期中)已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .直线7π6x =是()fx 的对称轴B .点2π,03⎛⎫⎪⎝⎭是()f x 的对称中心 C .()f x 在区间π22π,3⎡⎤⎢⎥⎣⎦上单调递减D .()f x 的图象向右平移7π12个单位得cos 2y x =的图象11.(2022·山东青岛·高三期中)已知函数i π()sin 23s n 2cos π66f x x x x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭,则( )A .()f x 的最大值为2B .π3x =是()f x 的图象的一条对称轴C .()f x 在ππ,63⎛⎫-⎪⎝⎭上单调递减 D .()f x 的图象关于π,06⎛⎫ ⎪⎝⎭对称12.(2022·湖北·荆门市龙泉中学高三阶段练习)设()()sin f x x ωϕ=+(其中ω为正整数,π2<ϕ),且()f x 的一条对称轴为π12x =-;若当0ϕ=时,函数()f x 在ππ,55⎡⎤-⎢⎥⎣⎦单调递增且在ππ,33⎡⎤-⎢⎥⎣⎦不单调,则下列结论正确的是( ) A .2ω=B .()f x 的一个对称中心为5π,06⎛⎫⎪⎝⎭C .函数()f x 向右平移π12个单位后图象关于y 轴对称 D .将()f x 的图象的横坐标变为原来的一半,得到()g x 的图象,则()g x 的单调递增区间为()ππ5ππ,Z 242242k k k ⎛⎫-++∈ ⎪⎝⎭三、填空题13.(2022·甘肃·兰州市外国语高级中学高三阶段练习(文))已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的相邻对称轴之间的距离为π2,且()f x 图象经过点π,03P ⎛⎫⎪⎝⎭,则下列说法正确的是___________.(写出所有正确的题号)A .该函数解析式为()πsin 23f x x ⎛⎫=+ ⎪⎝⎭;B .函数()f x 的一个对称中心为2π,03⎛⎫-⎪⎝⎭C .函数y =()π5ππ,π2424k k k ⎡⎤-++∈⎢⎥⎣⎦Z D .将函数()y f x =的图象向右平移(0)b b >个单位,得到函数()g x 的图象,且函数()g x 的图象关于原点对称,则b 的最小值为π3.14.(2022·四川省遂宁市教育局模拟预测(文))正割(Secant ,sec )是三角函数的一种,正割的数学符号为sec ,出自英文secant .该符号最早由数学家吉拉德在他的著作《三角学》中所用,正割与余弦互为倒数,即1sec cos x x=.若函数()sec sin f x x x x =⋅-,则下列结论正确的有__ ①函数()f x 的图像关于直线x π=对称;②函数()f x 图像在(),()f ππ处的切线与x 轴平行,且与x 轴的距离为π; ③函数()f x 在区间95,168ππ⎡⎤⎢⎥⎣⎦上单调递增; ④()f x 为奇函数,且()f x 有最大值,无最小值.15.(2022·河南·驻马店市第二高级中学高三阶段练习(理))若1sin cos 2θθ=,则()sin 1sin 2sin cos θθθθ-=+______.16.(2022·吉林·东北师大附中模拟预测)已知函数()sin ||f x x x =,若关于x 的方程()f x m =在4π,2π3⎛⎤- ⎥⎝⎦上有三个不同的实根,则实数m 的取值范围是_________. 四、解答题17.(2022·江西·丰城九中高三开学考试(理))已知函数()2cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)若函数()()g x f x k =-在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的零点,求实数k 的取值范围.18.(2022·江苏盐城·高三阶段练习)已知函数()22cos 2sin cos sin (04)f x x x x x ωωωωω=+-<<,且_____.从以下①②③三个条件中任选一个,补充在上面条件中,并回答问题:①过点;8π⎛⎝②函数()f x 图象与直线0y 的两个相邻交点之间的距离为;π③函数()f x 图象中相邻的两条对称轴之间的距离为2π.(1)求函数()f x 的单调递增区间;(2)设函数()2cos 23g x x π⎛⎫=-⎪⎝⎭,则是否存在实数m ,使得对于任意1[0,]2x π∈,存在2[0,]2x π∈,()()21m g x f x =-成立?若存在,求实数m的取值范围;若不存在,请说明理由.19.(2022·黑龙江·哈师大附中高三阶段练习)已知函数()4sin cos 3f x x x π⎛⎫=- ⎪⎝⎭(1)求函数()f x 的单调递增区间;(2)若函数()()32g x f x =-在区间(0,π)上恰有2个零点()1212,x x x x <,求()12cos x x -的值.20.(2022·福建省诏安县桥东中学高三期中)已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图象横坐标不变,纵坐标缩短到原来的12倍,得到函数()g x 图象,再将()g x 图象右平移π12个单位后得到()h x 的图象,求函数()y h x =在π3π,124x ⎡⎤∈⎢⎥⎣⎦上的单调减区间.21.(2022·青海·西宁市海湖中学高三期中)某同学用“五点法”画函数()sin()0,||2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:()f x 的解析式;(2)将()y f x =图象上所有点向左平移(0)θθ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5,012π⎛⎫⎪⎝⎭,求θ的最小值.22.(2022·北京·北大附中高三阶段练习)已知函数()()sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭的部分图像如下图所示.(1)直接写出()f x 的解析式;(2)若对任意0,3s π⎡⎤∈⎢⎥⎣⎦,存在[]0,t m ∈,满足()()f s f t =-,求实数m 的取值范围.。

专题01 一次函数的概念与图像(真题测试)(解析版)

专题01 一次函数的概念与图像(真题测试)(解析版)

专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。

中考数学总复习专题测试卷函数和图像

中考数学总复习专题测试卷函数和图像

函数及其图象专题测试卷(考试时间:90分钟) 姓名__________学号__________成绩_________一、选择题(本题共15 小题,每小题3 分,满分45分) 1.要使式子a +2a有意义,a 的取值范围是( ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 2.已知反比例函数 y=a-2x的图象在第二、四象限,则a 的取值范围是( ) A .a≤2 B .a ≥2 C .a <2 D .a >23.如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .4.若 ab >0,bc<0,则直线y=-a b x -cb 不通过( )A .第一象限B 第二象限C .第三象限D .第四象限5.若二次函数y=x 2-2x+c 图象的顶点在x 轴上,则c 等于( ) A .-1 B .1 C .21D .26.已知抛物线2:310c y x x =+-,将抛物线C 平移得到抛物线C '若两条抛物线C 、C ' 关于直线1=x 对称,则下列平移方法中,正确的是 ( ) A .将抛物线C 向右平移25个单位 B .将抛物线C 向右平移3个单位C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位7.已知一次函数y= kx+b 的图象经过第一、二、四象限,则反比例函数y=kbx的图象大致为( )。

8.二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为( ).A .1B .3C .4D .69二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = ax 与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )火车隧道oyxoy xoy xoyx2图10.如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F→H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )11.已知一次函数y=kx+b 的图象如图所示,当x <0时,y 的取值范围是( )。

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

八年级数学下册第十七章函数及其图像达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(n >0).若△ABC 是等腰直角三角形,且AB =BC ,当0<a <1时,点C 的横坐标m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >32、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米3、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2--4、甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离(千米)与时间t (小时)之间的关系如图所示,以下说法正确的是( )A .甲的速度是60km/hB .乙的速度是30km/hC .甲乙同时到达B 地D .甲出发两小时后两人第一次相遇5、如果点P (﹣5,b )在第二象限,那么b 的取值范围是( )A .b ≥0B .b ≤0C .b <0D .b >06、已知()231m y m x -=-+是一次函数,则m 的值是( )A .-3B .3C .±3D .±27、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5xy =8、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是()A .x ≥2B .x ≤2C .x ≥3D .x ≤39、在下列图象中,y 是x 的函数的是( )A .B .C .D .10、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A 处匀速跑往B 处,乙同学从B 处匀速跑往A 处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x (秒),甲、乙两人之间的距离为y (米),y 与x 之间的函数关系如图所示,则图中t 的值是( )A .503B .18C .553D .20第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、点P (5,﹣4)到x 轴的距离是___.2、函数y x π=,当x >0时,图象在第____象限,y 随x 的增大而_________.3、一次函y =kx +b (k ≠0)的图象可以由直线y =kx 平移______个单位长度得到(当b >0时,向______平移;当b <0时,向______平移).4、在平面直角坐标系中,一次函数y kx =和y x b =-+的图象如图所示,则不等式kx x b >-+的解集为______5、反比例函数k y x=的图像是由两支_______组成的. (1)当k >0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______;(2)当k <0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______.6、将一次函数22y x =-的图像向上平移5个单位后,所得图像的函数表达式为______.7、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A 是第______象限内的点,点B 是第______象限内的点,点D 是______上的点.8、如图,直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P ,若点P (1,n ),则方程组4y kx b y x =+⎧⎨=-+⎩的解是_____.9、若点(),2P m m +在x 轴上,则m 的值为______.10、像y =x +1,s =-3t +1这些函数解析式都是常数k 与自变量的______与常数b 的______的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做______函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.三、解答题(5小题,每小题6分,共计30分)1、如图,一次函数y =-x +5的图象与反比例函数k y x= (k ≠0)在第一象限的图象交于A (1,n )和B 两点.(1)求反比例函数的表达式与点B 的坐标;(2)在第一象限内,当一次函数y =-x +5的值小于反比例函数k y x =(k ≠0)的值时,直接写出自变量x 的取值范围 .2、在平面直角坐标系xOy 中,已知点A 的坐标为(4,1),点B 的坐标为(1,﹣2),BC ⊥x 轴于点C .(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标;(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为;(3)求出以A,B,O为顶点的三角形的面积;(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.3、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.4、如图,直线l :22y x =-与y 轴交于点G ,直线l 上有一动点P ,过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E .将△PGE 沿直线l 翻折得到△PGE′,点E 的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E 的对应点E′;(2)如图2,当点E 的对应点E′落在x 轴上时,求点P 的坐标;(3)如图3,直线l 上有A ,B 两点,坐标分别为(-2,-6),(4,6),当点P 从点A 运动到点B 的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.5、直线()10l y kx b k =+≠:,与直线2:l y ax =相交于点(1,2)B .(1)求直线2l 的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线1l 与直线2l 和x 轴围成的区域内(不含边界)为W .k=-时,直接写出区域W内的整点个数;①当1②若区域W内的整点恰好为2个,结合函数图象,求k的取值范围.-参考答案-一、单选题1、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB 和△BDC 中,AOB BDC BAO CBD AB BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB +BD =2+a =m ,∴2a m =-∴2<m <3,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.2、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A 选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.3、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,,A BOD=∠=︒∠+∠=︒∠+∠=︒909090≌,OA OB AOB A AOC AOC BOD∠=∠,故有AOC OBD ,,进而可得B点坐标.21====OD AC BD OC【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BOD ACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOC OBD AAS ≌∴21OD AC BD OC ====,∴B 点坐标为(1,2)--故选D .【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.4、A【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是(10040)(32)60(/)km h -÷-=,故选项A 符合题意;乙的速度为:60320(/)km h ÷=,故选项B 不符合题意;甲先到达B 地,故选项C 不符合题意; 甲出发240603÷=小时后两人第一次相遇,故选项D 不符合题意; 故选:A .【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.5、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b 的取值范围.【详解】解:∵点P (﹣5,b )在第二象限,∴b >0,故选D .【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.6、A【解析】略7、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.8、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.9、D【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【详解】解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.故选:D.【点睛】本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.10、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=10050,63故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.二、填空题1、4【解析】【分析】根据点的纵坐标的绝对值就是点到x轴的距离即可求解【详解】点P(5,﹣4)到x轴的距离是4故答案为:4【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.2、一减少【解析】略3、 b 上 下【解析】略4、1x >【解析】【分析】根据函数图象写出一次函数y kx =在y x b =-+上方部分的x 的取值范围即可.【详解】解:一次函数y kx =和y x b =-+的图象交于点()1,2所以,不等式kx x b >-+的解集为1x >.故答案为:1x >【点睛】本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.5、 双曲线 一、三 减小 二、四 增大【解析】略6、23y x =+【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数22y x =-的图像向上平移5个单位,∴所得图像的函数表达式为:22523y x x =-+=+故答案为:23y x =+【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.7、 象限 不属于 一 三 y 轴【解析】略8、13x y =⎧⎨=⎩【解析】【分析】由两条直线的交点坐标P (1,n ),先求出n ,再求出方程组的解即可.【详解】解:∵y =﹣x +4经过P (1,n ),∴n =-1+4=3,∴n =3,∴直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P (1,3),∴13x y =⎧⎨=⎩, 故答案为13x y =⎧⎨=⎩. 【点睛】本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.9、2-【解析】【分析】根据x 轴上点的纵坐标为0,即可求解.【详解】∵点(),2P m m +在x 轴上,∴20m += ,解得:2m =- .故答案为:2-【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.10、 积 和 一次【解析】略三、解答题1、 (1)反比例函数的表达式为4y x=,B 的坐标为(4,1); (2)4x >或01x <<【解析】【分析】(1)将点A 的横坐标代入直线的解析式求出点A 的坐标,然后将的A 的坐标代入反比例函数的解析式即可;(2)一次函数y =−x +5的值大于反比例函数k y x=(k≠0)的值时,双曲线便在直线的下方,所以求出直线与双曲线及x 轴的交点后可由图象直接写出其对应的x 取值范围.(1)解:∵一次函数y =-x +5的图象过点A (1,n ),∴n =-1+5=4∴点A 坐标为(1,4), ∵反比例函数k y x =(k ≠0)过点A (1,4), ∴k =4, ∴反比例函数的表达式为4y x= 联立54y x y x =-+⎧⎪⎨=⎪⎩,解得1114x y =⎧⎨=⎩,2241x y ,即点B 的坐标为(4,1)(2)解:如图:由图象可知:当4x >或01x <<时一次函数y =−x +5的值小于反比例函数4y x=的值.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是掌握反比例函数与一次函数的交点与它们的解析式的关系.2、 (1)作图见解析,C 点坐标为()1,0(2)()23--,(3)4.5(4)E 点坐标为()5.52-,或()3.52--, 【解析】【分析】(1)在平面直角坐标系中表示出A ,B ,C 即可.(2)由题意知,AB CD ,将点C 向下移动3格,向左移动3格到点D ,得出坐标.(3)利用分割法求面积,ABC 的面积等于矩形减去3个小三角形的面积,计算求值即可.(4)设E 点坐标为()2m ,-,由题意列方程求解即可.(1)解:如图,点A ,B ,C 即为所求,C 点坐标为(1,0)故答案为:(1,0).(2)解:∵点A 向下移动3格,向左移动3格到点B ,AB CD∴点C 向下移动3格,向左移动3格到点D∴D 点坐标为()23--,故答案为:()23--,. (3) 解:∵11134141233 4.5222AOB S ⨯-⨯⨯-⨯⨯-⨯⨯== ∴以A ,B ,O 为顶点的三角形的面积为4.5.(4)解:设E 点坐标为()2m ,-由题意可得112 4.52m ⨯⨯﹣= 解得: 5.5m =或 3.5m =∴E 点坐标为()5.52-,或()3.52--,. 【点睛】本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.3、 (1)k =2;(2)7; (3)32≤m ≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l 2的解析式,分别求得D 、C 、N 的坐标,再利用四边形OCNB 的面积=S △ODC - S △NBD 求解即可;(3)先求得点P 的纵坐标,根据题意列不等式组求解即可.(1)解:令x =0,则y =2;∴B (0,2),∴OB =2,∵AB∴OA 1,∴A (-1,0),把B (-1,0)代入y =kx +2得:0=-k +2,∴k =2;(2)解:∵直线l 2平行于直线y =−2x .∴设直线l 2的解析式为y =−2x +b .把(2,2)代入得2=−2⨯2+b ,解得:b =6,∴直线l 2的解析式为26y x =-+.令x =0,则y =6,则D (0,6);令y =0,则x =3,则C (3,0),由(1)得直线l 1的解析式为22y x =+.解方程组2226y x y x =+⎧⎨=-+⎩得:14x y =⎧⎨=⎩, ∴N (1,4),四边形OCNB 的面积=S △ODC - S △NBD =()113662122⨯⨯-⨯-⨯=7;(3)解:∵点P 的横坐标为m ,∴点P 的纵坐标为26m -+,∴PM =26m -+,∵PM ≤3,且点P 在线段CD 上,∴26m -+≤3,且m ≤3. 解得:32≤m ≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.4、 (1)见解析 (2)5,32⎛⎫ ⎪⎝⎭ (3)6【解析】【分析】(1)作出过点E 的l 的垂线即可解决;(2)设直线l 交x 轴于点D ,则由直线解析式可求得点D 、点G 的坐标,从而可得OD 的长.由对称性及平行可得E D E G ''=,设点P 的坐标为(a ,2a -2),则可得点E 的坐标,由E G EG '=及勾股定理可求得点E '的坐标;(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长,故只要求得CM 的长即可,由A 、B 两点的坐标即可求得CM 的长.(1)所作出点E 的对应点E′如下图所示:(2)设直线l 交x 轴于点D在y =2x -2中,令y =0,得x =1;令x =0,得y =-2则点D 、点G 的坐标分别为(1,0)、(0,-2)∴OD =1,OG =2由对称性的性质得:E G EG '=,EGD E GD '∠=∠∵GE ∥x 轴∴EGD E DG '∠=∠∴E GD E DG ''∠=∠∴E D E G ''=∴E D EG '=设点P 的坐标为(a ,2a -2),其中a >0,则可得点E 的坐标为(a ,-2)∴EG =a∴E D a '=∴1OE E D OD a ''=-=-在Rt △OGE '中,由勾股定理得:2222(1)a a +-=解得:52 a=当52a=时,5232232a-=⨯-=所以点P的坐标为5,3 2⎛⎫ ⎪⎝⎭(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM 上运动,根据对称性知,点E'运动路径的长度等于CM的长∵A,B两点的坐标分别为(-2,-6),(4,6)∴CM=4-(-2)=6则点E'运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.5、 (1)直线2l 为2y x =;(2)①当1k =-时,整点个数为1个,为(1,1);②k 的取值范围为112k -<-或1132k < 【解析】【分析】(1)根据待定系数法求得即可;(2)①当k =1时代入点A 坐标即可求出直线解析式,进而分析出整点个数;②当k <0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k 的值;当k >0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k 的值,根据图形即可求得k 的取值范围.(1)解:直线2:l y ax =过点(1,2)B .2a ∴=,∴直线2l 为2y x =.(2)解:①当1k =-时,y x b =-+,把(1,2)B 代入得21b =-+,解得:3b =,3y x ∴=-+,如图1,区域W 内的整点个数为1个,为(1,1).②如图2,若0k <,当直线过(1,2),(2,1)时,1k =-.当直线过(1,2),(3,1)时,12k =-. 112k ∴-<-, 如图3,若0k >,当直线过(1,2),(1,1)-时,12k =. 当直线过(1,2),(2,1)-时,13k =. ∴1132k <. 综上,若区域W 内的整点恰好为2个,k 的取值范围为112k -<-或1132k <. 【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.。

正余弦函数的图像与性质综合测试题

正余弦函数的图像与性质综合测试题

正余弦函数的图像与性质测试题班级 姓名 一,选择题 1.函数sin y x = 的一个单调增区间是( ) A. ,44ππ⎛⎫-⎪⎝⎭ B. 3,44ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭2.设函数()2cos()24f x x ππ=- 若对R 任意都有,()12()()f x f x f x ≤≤ 则21||x x - 的最小值为( )A. 4B. 2C. 1D. 123.函数cos 23y x π⎛⎫=+⎪⎝⎭图像的一个对称中心是( ) A. ,012π⎛⎫-⎪⎝⎭ B. ,012π⎛⎫ ⎪⎝⎭ C. ,06π⎛⎫ ⎪⎝⎭ D. ,03π⎛⎫⎪⎝⎭4.函数sin(2)()|1|x f x x -=+ 的部分图像大致为( )A. BC D5.已知函数()x f x a=(0a >且1a ≠)过定点P ,且点P 在角θ的终边上,则函数()sin y x θ=+的单调递增区间为( )A. 22,233k k ππππ⎡⎤-+⎢⎥⎣⎦(k Z ∈) B. 42,233k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈) C. 52,266k k ππππ⎡⎤-+⎢⎥⎣⎦(k Z ∈) D. 72,266k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈)6.已知函数()()()2sin 2f x x ϕϕπ=-+<,若()f x 在区间5,58ππ⎛⎫⎪⎝⎭上单调递增,则ϕ的取值范围是( ) A. 93,1010ππ⎡⎤--⎢⎥⎣⎦ B. 29,510ππ⎡⎤⎢⎥⎣⎦ C. ,104ππ⎡⎤⎢⎥⎣⎦D.,,104ππππ⎡⎤⎛⎫--⋃ ⎪⎢⎥⎣⎦⎝⎭ 7.已知函数()23f x ax bx a b =+++是定义在[]1,2a a -上的偶函数,则()2cos 3y a b x π⎡⎤=+-⎢⎥⎣⎦的最小正周期是( )A. 6πB. 5πC. 4πD. 2π8.设函数()()2cos f x x ωϕ=+对任意的x R ∈,都有33f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,若函则()()3s i n 2g x x ωϕ=+-,则3g π⎛⎫⎪⎝⎭的值是( ) A. 1 B. 5- 或3 C. 2- D. 12二填空题9.函数22sin 3sin 1y x x =-+ ,[5,66ππ]的值域为_______ 10.方程212sin 2cos 0x x m -+-= 有解,则实数m 的范围是________. 11.定义运算()*{()a ab a b b a b ≤=>,例如: 1*21=,则函数()sin *cos f x x x =的值域为__________.12.已知函数f (x )=sin(x +6π),其中x ∈,32ππ⎡⎤-⎢⎥⎣⎦,则f (x )的值域是________. 13.已知函数cos 233y a x π⎛⎫=++ ⎪⎝⎭, 0,2x π⎡⎤∈⎢⎥⎣⎦的最大值为4,则正实数a 的值为__________. 14.函数()()lg 2sin 1f x x =-的定义域为__________.三、解答题15.若2()122cos 2sin f x a a x x =---的最小值为()g a . (1)求()g a 的表达式; (2)求能使()g a =12的a 值,并求当a 取此值时,()f x 的最大值16.已知函数()()sin 2023f x x πφφπ⎛⎫=++<< ⎪⎝⎭,若()04f x f x π⎛⎫--=⎪⎝⎭对x R ∈恒成立,且()0.2f f π⎛⎫>⎪⎝⎭(1)求()y f x =的解析式和单调递增区间;(2)当,122x ππ⎡⎤∈-⎢⎥⎣⎦时,求()y f x =的值域;17.已知函数()()sin (0,0,0)2f x A x A πωφωφ=+>>≤≤的图象过点10,2M ⎛⎫⎪⎝⎭,最小正周期为23π,且最小值为1-.(1)求()f x 的解析式;(2)求()f x 在区间5,189ππ⎡⎤⎢⎥⎣⎦上的单调区间.18、已知()sin f x a b x =+,(),a b R ∈,x R ∈,且函数()f x 的最大值为3,最小值为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第十八章函数及其图象综合测试卷姓名 得分 一、填空题(每小题2分,共20分)1.已知点M (a-3,a+2)在y 轴上,则a= 。

32.点P (-6,4)到x 轴的距离为 ,到y 轴的距离为 。

4,6 3.函数125432---=x x x y 中的自变量x 的取值范围是 。

x>1/24.函数741-=x y 的图象与y 轴的交点是 (0,-7) ,与x 轴的交点是(27,0) 。

5.若反比例函数xky = 的图象经过点(3,-4),则此函数的解析式为 y= -12/x 。

6.若点P(a,b)在第四象限,则点(b,-a)在第 三 象限。

7.一次函数y=kx+b 中,y 随x 的增大而减小,且kb>0,则这个函数的图象一定经过第 象限。

二、三、四 8.写出一个y 随x 的增大而减小的正比例函数的表达式 。

y= -2x 等9.A 、B 两地之间的距离是160千米,若汽车以平均每小时80千米的速度从A 地开往B 地,则汽车距B 地的路程y (千米)与行驶时间x (小时)10.如图,一个机器人从O 点出发,向正东方向走3米到达北方向走6米到达A 2点,再向正西方向走9米到达A 312米到达A 4点,再向正东方向走15米到达A 5器人走到A 6点时,它的位置可表示为 。

(单位长度二、选择题(每小题3分,共30分)11.点P (-3,5)关于x 轴对称的点P /的坐标是 (A (3,5) B (5,-3) C (3,-5) D (-3,-5) 12.当自变量x 由小到大时,函数y 的值反而减少的是( )CA B y=2x C D y=-2+5x13.经过点(2,-3)的双曲线是 ( )AA B C D14.为鼓励居民节约用水,某市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某居民某月用水x 立方米,水费为y 元,则y 与x 的函数关系用图表示正确的是( ) BA B C D15.已知一次函数y=kx+b 的图象如图,当x<0时,y 的取值范围是 ( ) D A y >0 B y<0 C -2<y<0 D y<-216.已知y 是x A m=3 n=32 B m= -3 n=3 C m=3 n= -3 D m= -3 n= -317.一条直线平行于直线y=2x-1,且与两坐标轴围成的三角形面积是4,则直线的解析式是( )C A y=2x+4 B y=2x-4 C y= 2x±4 D y=x+2 18.函数y= -x-1的图象不可能经过( )AA 第一象限期B 第二象限C 第三象限D 第四象限 19.无论m 为何实数,直线y=x+2m 与y= -x+4的交点不可能在( )C A 第一象限 B 第二象限 C 第三象限 D 第四象限 20.甲、乙两人在一次赛跑中,路程s 与时间t 的关系如图 所示(图中实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象)小王根据图象得到如下四个信息, 其中错误的是( )CA 这是一次1500米的赛跑B 甲、乙两人中乙先到达终点C 甲、乙同时起跑D 甲的这次赛跑中的速度为5米/秒 三、解答题(共50分) 21.(8分)已知一次函数y=kx+b ,当x=-4时,y 的值为9,当x=2时,y 的值为-3。

(1)求这个函数的解析式;(2)在直角坐标系中画出这个函数的图象。

(1)y=-2x+1, (2) 略3xy =3x y -=x y 6-=x y 6=x y 23=xy 23-=22. (8分)在压力不变的情况下,某物体承受的压强P 是它的受力面积S 的反比例函数,其图象如图所示:(1)求P 与S 之间的关系式;(2)求当S=0.5时物体承受的压强P 。

(1)P=100/s (2)当s=0.5 时,P=20023.(8分)如图,直线l 1和l 2相交于点A (-1,2)且S △AOB =35,求直线l 1和l 2的解析式。

l 1:y= -2x ,l 2:y=3x+524. (8分)已知关于x 的一次函数y=kx+3b 和反比例函数xbk y 52+=的图象都经过点A (1,-2), 求:(1)一次函数和反比例函数的解析式;(2)这两个函数图象的另一个交点B 的坐标。

25.(9分)作出函数y=2x-4(1) 当 -2≤x ≤4时,求函数y 的取值范围; (2) 当x 取什么值时,y<0,y=0,y>0? (3) 当x 取何值时,-4<y<2?(1) -8≤y ≤4 (2)x<2, x=2, x>2 (3) 0<x<326. (9分)某影碟出租店要设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元,小彬常来租碟,若每月租碟数量为x 张,(1) 写出零星租碟方式应付金额y 1(元)与租碟数量x(张)之间函数关系式; (2) 写出会员卡租碟方式应付金额y 2(元)与租碟数量x(张)之间的函数关系式; (3) 小彬选取哪种方式更合算? (1) y 1=x, (2) y 2=0.4x+12 (3) 当x>20时,应选会员卡方式;当x=20时,两种方式一样;当x<20时,选零星租碟方式.xl八年级数学第十八章函数及其图象综合测试卷姓名 得分 一、填空题(每小题2分,共20分)1.已知点M (a-3,a+2)在y 轴上,则a= 。

2.点P (-6,4)到x 轴的距离为 ,到y 轴的距离为 。

3.函数125432---=x x x y 中的自变量x 的取值范围是 。

4.函数741-=x y 的图象与y 轴的交点是 ,与x 轴的交点是 。

5.若反比例函数xky = 的图象经过点(3,-4),则此函数的解析式为 。

6.若点P(a,b)在第四象限,则点(b,-a)在第 象限。

7.一次函数y=kx+b 中,y 随x 的增大而减小,且kb>0,则这个函数的图象一定经过第 象限。

8.写出一个y 随x 的增大而减小的正比例函数的表达式 。

9.A 、B 两地之间的距离是160千米,若汽车以平均每小时80千米的速度从A 地开往B 地,则汽车距B 地的路程y (千米)与行驶时间x (小时)之间的函数关系式为 。

10.如图,一个机器人从O 点出发,向正东方向走3米到达A 1点,再向正 北方向走6米到达A 2点,再向正西方向走9米到达A 3点,再向正南方向走 12米到达A 4点,再向正东方向走15米到达A 5点,按此规律走下来,当机 器人走到A 6点时,它的位置可表示为 。

(单位长度1米) 二、选择题(每小题3分,共30分)11.点P (-3,5)关于x 轴对称的点P /的坐标是 ( ) A (3,5) B (5,-3) C (3,-5) D (-3,-5) 12.当自变量x 由小到大时,函数y 的值反而减少的是( )A B y=2x C D y=-2+5x13.经过点(2,-3)的双曲线是 ( )A B C D14.为鼓励居民节约用水,某将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某居民某月用水x 立方米,水费为y 元,则y 与x 的函数关系用图表示正确的是( )A B C D15.已知一次函数y=kx+b 的图象如图,当x<0时,y 的取值范围是 ( ) A y >0 B y<0 C -2<y<0 D y<-216.已知y 是xA m=3 n=32 B m= -3 n=3 C m=3 n= -3 D m= -3 n= -317.一条直线平行于直线y=2x-1,且与两坐标轴围成的三角形面积是4,则直线的解析式是( ) A y=2x+4 B y=2x-4 C y= 2x±4 D y=x+2 18.函数y= -x-1的图象不可能经过( )A 第一象限期B 第二象限C 第三象限D 第四象限 19.无论m 为何实数,直线y=x+2m 与y= -x+4的交点不可能在( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 20.甲、乙两人在一次赛跑中,路程s 与时间t 的关系如图 所示(图中实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象)小王根据图象得到如下四个信息, 其中错误的是( )A 这是一次1500米的赛跑B 甲、乙两人中乙先到达终点C 甲、乙同时起跑D 甲的这次赛跑中的速度为5米/秒 三、解答题(共50分) 21.(8分)已知一次函数y=kx+b ,当x=-4时,y 的值为9,当x=2时,y 的值为-3。

(1)求这个函数的解析式;(2)在直角坐标系中画出这个函数的图象。

22. (8分)在压力不变的情况下,某物体承受的压强P 是它的受力面积S 的反比例函数,其图象如图所3xy =3x y -=x y 6-=x y 6=x y 23=xy 23-=示:(1)求P 与S 之间的关系式;(2)求当S=0.5时物体承受的压强P 。

23.(8分)如图,直线l 1和l 2相交于点A (-1,2)且S △AOB =35,求直线l 1和l 2的解析式。

24. (8分)已知关于x 的一次函数y=kx+3b 和反比例函数xbk y 52+=的图象都经过点A (1,-2), 求:(1)一次函数和反比例函数的解析式;(2)这两个函数图象的另一个交点B 的坐标。

25.(9分)作出函数y=2x-4(4) 当 -2≤x ≤4时,求函数y 的取值范围; (5) 当x 取什么值时,y<0,y=0,y>0? (6) 当x 取何值时,-4<y<2?26. (9分)某影碟出租店要设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元,小彬常来租碟,若每月租碟数量为x 张,(1) 写出零星租碟方式应付金额y 1(元)与租碟数量x(张)之间函数关系式; (2) 写出会员卡租碟方式应付金额y 2(元)与租碟数量x(张)之间的函数关系式; (3) 小彬选取哪种方式更合算?xl。

相关文档
最新文档