等腰三角形经典练习题(有难度)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形练习题
一、计算题:
1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB
求∠A 的度数
设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45°
【
2.如图,CA=CB,DF=DB,AE=AD
求∠A 的度数
设∠A 为x,
由5x=180°
得∠A=36° :
3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°,
求∠AFD 的度数 ∠AFD=160° `
C
F
D
x
A
B
4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA
求∠A 的度数
设∠A 为x
∠A=7180
?
5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15
—
B
B
2x x -15°
6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1, 求∠ABC 的度数
延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° |
在Rt △DBF 中, BD=21,DF=1
所以∠F =∠1=30°
7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值
F
A
E
[
在AC 上取一点E,使AE=AB
可证△ABD ≌△ADE 所以∠B=∠AED
由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1
二、证明题:
8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC
于点D 、E
求证:DE=BD+AE
证明△PBD 和△PEA
是等腰三角形
,
9. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点
A ,问:DF 、AD 、AE 间有什么样的大小关系
C ~
B
A D
E P A D B
DF+AD=AE
在AE上取点B,使AB=AD
?
10. 如图,△ABC中,∠B=60°,角平分线AD、
CE交于点O
求证:AE+CD=AC
在AC上取点F,使AF=AE
易证明△AOE≌△AOF,
得∠AOE=∠AOF
由∠B=60°,角平分线AD、CE,得∠AOC=120°
¥O
A
B
!
C
D E
F
所以∠AOE=∠AOF=∠COF=∠COD=60°
故△COD ≌△COF,得CF=CD 所以AE+CD=AC
11. 如图,△ABC 中,AB=AC, ∠A=100°,BD
平分∠ABC,
求证:BC=BD+AD
延长BD 到点E,使BE=BC,连结CE 在BC 上取点F,使BF=BA
易证△ABD ≌△FBD,得AD=DF 再证△CDE ≌△CDF,得DE=DF 故BE=BC=BD+AD
也可:在BC 上取点E,使BF=BD,连结DF 在BF 上取点E,使BF=BA,连结DE @
先证DE=DC,再由△ABD ≌△EBD,得AD=DE,最后证明DE=DF 即可
A
C F
A
C
E
F
、
12. 如图,△ABC中,AB=AC,D为△ABC外一点,
且∠ABD=∠ACD =60°
求证:CD=AB-BD
—
在AB上取点E,使BE=BD,
在AC上取点F,使CF=CD
得△BDE与△CDF均为等边三角形,只需证△ADF≌△AED A
B
C D
E
F
13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB
边上的中线
求证:CD=2
1CE 延长CD 到点E,使DE=CD.连结
证明△ACE ≌△BCE
,
14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC
求证:BD=ED
在CE 上取点F,使AB=AF 易证△ABD ≌△ADF,
得BD=DF,∠B=∠AFD \
由∠B+∠BAC+∠C=∠DEC+∠EDC+∠C=180°
所以∠B=∠DEC 所以∠DEC=∠AFD 所以DE=DF,故BD=ED
|
E
C
A
:
B D E
1 2
F
15. 如图,△ABC中,AB=AC,BE=CF,EF交BC于点G
求证:EG=FG
16. 如图,△ABC中,∠ABC=2∠C,AD是BC 边上的高,B到点E,使BE=BD
求证:AF=FC A
(
B D
F E
C F