第四章形状记忆材料与智能材料PPT课件

合集下载

形状记忆原理及应用PPT课件(2024版)

形状记忆原理及应用PPT课件(2024版)
形状记忆原理及应用
形状记忆合金(shape memory alloy)作为一种新型功能材料已经被广泛使用。该合金可以认为是始于1963年美国海军武器试验室(Naval Ordianace Laboratory)W.J.Buehler博士的研究小组对TiNi合金的研究。他们发现TiNi合金构件因为温度不同,敲击时发出的声音明显不同,这说明该合金的声阻尼性能和温度相关。进一步研究发现,等原子比TiNi合金具有良好的形状记忆效应。后来TiNi合金作为商品进入市场,给等原子比的TiNi合金商品取名为NiTinol,后面的三个字母就是该研究室的3个英文单词的第一个字母。目前形状记忆合金已广泛应用于航空、航天、能源、汽车工业、电子、医疗、机械、建筑、服装、玩具等各个领域。 形状记忆材料主要包括形状记忆合金、形状记忆陶瓷和形状记忆聚合物,其记忆机制各不相同。本章将对与热弹性马氏体相变有关的形状记忆效应做基础性介绍。
需要解决的技术难点:
需要综合考虑应用的可靠性 冷加工的能力 宽的相变滞后(实现室温加工与储存)
宽滞后铜基记忆管接头的制备工艺路线:
合金成分设计 →熔炼、铸锭→均匀化退火 →车削表面→热挤毛坯管 →中间热处理冷拉 →车 削→记忆热处理 →记忆连接件室温 扩 径(扩径量为7.5%)→配接工艺→性能 测试。
冷却时,在无应力条件下马氏体在母相转变为马氏体的开始温度Ms时开始形成。若施加应力,马氏体可以在Ms以上温度形成,这种马氏体称为应力诱发马氏体(Stress-Induced Martensite,简称SIM)。它的相变驱动力不是热能而是机械能。
形状记忆合金记忆效应机理
大部分合金记忆材料是通过马氏体相变而呈现形状记忆效应。马氏体相变具有可逆性,将马氏体向高温相(奥氏体)的转变称为逆转变。形状记忆是热弹性马氏体相变产生的低温相在加热时向高温相进行可逆转变的结果。

2024年智能材料课件

2024年智能材料课件

智能材料课件一、引言智能材料是一种能够对外界刺激做出响应并改变其性能的材料。

这些材料在许多领域都有广泛的应用,包括医疗、建筑、能源和交通运输等。

智能材料的研究和发展是一个跨学科的领域,涉及材料科学、化学、物理学、生物学和工程学等多个学科。

本课件旨在介绍智能材料的基本概念、分类和应用。

二、智能材料的基本概念智能材料是一类具有感知、处理和响应外部刺激能力的材料。

这些外部刺激可以是温度、压力、湿度、光线、电磁场等。

智能材料的响应可以是形状、颜色、硬度、电导率、磁导率等性能的改变。

这种响应是可逆的,即当外部刺激消失时,材料的原始性能可以恢复。

三、智能材料的分类智能材料可以根据其响应机制和性能特点进行分类。

常见的智能材料包括:1.形状记忆材料:这类材料可以在外部刺激的作用下改变形状,并在去除外部刺激后恢复原始形状。

形状记忆合金和形状记忆聚合物是其中的代表。

2.液晶材料:液晶材料具有各向异性的物理性质,可以通过外部刺激(如温度、压力、电磁场等)来改变其光学性质。

液晶显示器就是利用液晶材料的这种性质制成的。

3.酞菁化合物:酞菁化合物是一类具有特殊结构的有机化合物,可以通过外部刺激来改变其颜色和电导率。

酞菁化合物在传感器和显示技术等领域有广泛的应用。

4.磁性材料:磁性材料可以通过外部磁场来改变其磁导率和磁化强度。

这种材料在数据存储和信息处理等领域有重要应用。

四、智能材料的应用1.医疗领域:智能材料可以用于制造可植入的医疗器械和药物输送系统。

例如,智能支架可以通过感知血管内的压力来调节其直径,以保持血管通畅。

2.建筑领域:智能材料可以用于建筑结构的健康监测和修复。

例如,智能混凝土可以通过感知裂缝和损伤来发出警报,并自我修复。

3.能源领域:智能材料可以用于制造高效能源转换和存储设备。

例如,智能窗户可以通过感知外界光线来调节其透光性,以节约能源。

4.交通运输领域:智能材料可以用于制造智能交通工具和交通安全设施。

例如,智能轮胎可以通过感知路面状况来调整其硬度,以提高行驶安全。

形状记忆PPT

形状记忆PPT

形状记忆效应 马氏体
高温奥氏体快速冷却形成的体心立方 体心 体心立方或体心 体心立方 四角(正方)相。 四角
马氏体相变
由高温奥氏体(面心立方相)转变为低温马氏 体(体心立方或体心四角相)的无扩散 无扩散性相变。 无扩散 主要特征是: 主要特征 替换原子无扩散(成分不改变,近邻原子关系 替换原子无扩散 不改变) 切变(母相和马氏体之间呈位向关系) 切变 形状改变(抛光面呈现浮突) 形状改变
防止树脂 流动并记 忆起始态 的固定相
形状记忆聚合物
Back>>
固定相
聚合物交联结构或部分结晶结构, 聚合物交联结构或部分结晶结构,在工作温度 范围内保持稳定, 范围内保持稳定,用以保持成型制品形状即记忆 起始态。 起始态。
可逆相
能够随温度变化在结晶与结晶熔融态( 能够随温度变化在结晶与结晶熔融态(Tm) 或玻璃态与橡胶态间可逆转变(Tg),相应结构 或玻璃态与橡胶态间可逆转变( ),相应结构 发生软化、硬化可逆变化—保证成型制品可以改 发生软化、硬化可逆变化 保证成型制品可以改 变形状。 变形状。
形状记忆聚合物
Back>>
电致感应型SMP 电致感应型SMP
它是热致型 热致型形状记忆高分子材料与具有导电 热致型 导电 性能物质(如导电炭黑、金属粉末及导电高分子 性能 等)的复合材料 复合材料。 复合材料 其记忆机理与热致感应型形状记忆高分子相 同, 该复合材料通过电流产生的热量使体系温度 升高, 致使形状回复, 所以既具有导电性能,又 具有良好的形状记忆功能。
形状记忆陶瓷
陶瓷材料具有优良的物理性质,但不能在室温下 进行塑性加工,性质硬脆,因而限制了它的许多 应用。 在陶瓷中已经发现两种机制产生的形状记忆效应 1)粘弹性机制导致的形状回复 粘弹性机制导致的形状回复; 粘弹性机制导致的形状回复 2)和金属合金中相类似的马氏体相变及逆相变 和金属合金中相类似的马氏体相变及逆相变 有关的形状记忆;其中,马氏体可以是热诱发的 有关的形状记忆 ,应力诱发的,或外电场(磁场)诱发的。

形状记忆材料应用ppt课件

形状记忆材料应用ppt课件
精选课件
形状记忆合金由于具有许多优异的 性能,因而广泛应用于航空航天、机械 电子、生物医疗、桥梁建筑、汽车工业
及日常生活等多个领域。
• (1)工程应用

形状记忆合金在工程上的应用很多,最早
的应用就是作各种结构件,如紧固件、连接件、
密封垫等。另外,也可以用于一些控制元件,
如一些与温度有关的传感及自动控制。
将会更加广泛。
精选课件
• (3)日常生活应用

(a) 防烫伤阀
• 在家庭生活中,已开发的形状记忆阀
可用来防止洗涤槽中、浴盆和浴室的热水意外烫伤;这些阀
门也可用于旅馆和其他适宜的地方。如果水龙头流出的水温
达到可能烫伤人的温度(大约 48℃)时,形状记忆合金驱动阀门
关闭,直到水温降到安全温度,阀门才重新打开。
精选课件
两端对准插入接头;最后,当管子处于工作状态,温度回升到转变温度 以上,镍钛合金发挥形状记忆效应,管接头自动收缩,管径变细,回复 第一次加工的尺寸,它就把两根管子紧紧地连在一起。
还可用于制造探索宇宙奥秘的月球天线,人们利用形状记忆合金在 高温环境下制做好天线,再在低温下把它压缩成一个小铁球,使它的体 积缩小到原来的千分之一,这样很容易运上月球,太阳的强烈的辐射使 它恢复原来的形状,按照需求向地球发回宝贵的宇宙信息。另外,在卫 星中使用一种可打开容器的形状记忆释放装置,该容器用于保护灵敏的 锗探测器免受装配和发射期间的污染。

(b) 眼镜框架

在眼镜框架的鼻梁和耳部装配 TiNi 合金可使人感到舒适并抗磨损,由
于 TiNi 合金所具有的柔韧性已使它们广泛用于改变眼镜时尚界。用超弹性

把形状记忆合金制成的弹簧与普通弹簧安装,

马氏体相变与形状记忆效应

马氏体相变与形状记忆效应
– Ms、As、Mf、Af-表征记忆合金热弹性马氏体相变的特征温度,也是 形状记忆过程中变形及形状恢复的特征温度.热滞后(As-Ms)也是记忆 合金的一个重要参量.
5
二.形状记忆效应的晶体学机制
• 形状记忆合金有三个特征: – 合金能够发生热弹性马氏体相变; – 母相和马氏体的晶体结构通常均为有序的(所谓有序结构, 即溶质原子在 晶格点阵中有固定位置); – 母相的晶体结构具有较高的对称性,而马氏体的晶体结构具有较低的对 称性.
• 当母相是B2型有序结构时,马氏体的晶体结构可看成是以图4-5 a) 第一行所 示(下页)的密排面为底面沿z方向按一定方式的堆垛. – 为保证密排堆垛结构,堆垛时必须按照以下的规则:若第一层的原点在A, 则第二层的原点可放在B或C . 若第二层的原点在B,则第三层的原点可 放在A或C,以此类推. • 当堆垛的顺序是ABABAB…时是2H结构 . • 当堆垛的顺序是ABCABC…时是3R结构. • 当堆垛的顺序是ABCBCACABABCBCACAB…时是9R结构,如图45b)所示 .
12
因此,记忆合金能够回复的最大变形不能超出马氏体完全再取向后所能贡 献出的相变应变.
• 如果马氏体完全再取向后继续施加外力,马氏体将以滑移和孪生的形式继续 变形,这时发生的变形是不可回复的塑性变形.组织中出现位错、形变孪晶 等晶体缺陷,破坏合金的热弹性马氏体相变,损害形状记忆效应.
三.应力诱发马氏体相变与记忆合金的超弹性
17
• 双程记忆训练:通过各种工艺处理方法在合金内部产生特定的内应力场,使 合金具有双程记忆效应.
• 双程记忆训练方法主要有: (1)SIM法:在母相态对记忆合金元件施加变形. (2)SME法:在马氏体态对记忆合金元件施加变形. (3)SIM+SME法:在母相状态下进行变形,约束其应变,冷却到Mf点以 下;或在马氏体状态下进行变形,约束其应变,加热 到Af点以上.也可将这二者结合起来. (4)约束ห้องสมุดไป่ตู้热法:将试样变形,约束其变形并在合金析出第二相的温度进 的行适当的加热.

《智能材料》PPT课件

《智能材料》PPT课件

《智能材料》PPT课件•智能材料概述•智能材料的结构与性能•智能材料制备技术与方法•智能材料在传感器领域应用目录•智能材料在驱动器领域应用•智能材料在能源转换与存储领域应用•总结与展望01智能材料概述定义与发展历程定义智能材料是一种能够感知外部环境或内部状态变化,并作出相应响应或自适应调整的材料。

发展历程从传统的被动材料到主动材料,再到具有感知和响应功能的智能材料,经历了数十年的发展。

感知能力能够感知外部环境或内部状态的变化。

响应能力能够根据感知到的变化作出相应的响应。

•自适应性:能够自适应调整自身性能以适应环境变化。

优势提高材料的性能和功能。

增强材料的可靠性和稳定性。

拓展材料的应用范围。

01020304应用领域举例用于制造自适应机翼、智能蒙皮等,提高飞行器的性能和安全性。

用于制造智能轮胎、自适应悬挂系统等,提高汽车的舒适性和安全性。

用于制造智能医疗器械、药物传递系统等,提高医疗效果和患者体验。

用于制造智能电池、自适应太阳能板等,提高能源利用效率和环保性。

航空航天汽车工业生物医学能源领域02智能材料的结构与性能结构类型及特点晶体结构具有周期性排列的原子或分子,呈现出特定的物理和化学性质。

非晶体结构原子或分子排列无序,具有各向同性和良好的可塑性。

复合结构由两种或两种以上不同材料组成,具有协同效应和多功能性。

性能参数指标力学性能包括强度、硬度、韧性等,反映材料抵抗外力破坏的能力。

物理性能包括热学、电学、磁学等性能,决定材料在特定环境下的行为。

化学性能包括耐腐蚀性、抗氧化性等,影响材料的稳定性和耐久性。

结构与性能关系探讨结构决定性能材料的性能往往由其内部结构决定,如晶体结构影响材料的力学性能和物理性能。

性能反映结构通过对材料性能的测试和分析,可以推断出其内部结构的特点。

结构与性能的优化通过改变材料的内部结构,可以优化其性能,满足特定应用需求。

例如,通过合金化、热处理等手段改善金属材料的力学性能。

03智能材料制备技术与方法原料选择与预处理原料选择根据智能材料的性能要求,选择适当的原材料,如高分子材料、金属材料、陶瓷材料等。

4形状记忆合金PPT课件

4形状记忆合金PPT课件
马氏体相变分三步进行
21
马氏体相变的G-T转变模型
{11}1 //1{1}0a',差1 110 //111a' ,差 2
3
形状记忆效应
❖形状记忆效应:固体材料在发生了塑性变形后, 经过加热到某一温度之上,能够恢复到变形前的 形状,这种现象就叫做形状记忆效应。
普通金属材料
形状记忆合金
4
形状记忆效应简易演示实验
初始形状
拉直
加热后恢复
5
形状记忆效应与马氏体相变
➢形状记亿效应是在马氏体相变中发现的 ➢马氏体相变中的的高温相叫做母相(P),低温相 叫做马氏体相(M) ➢马氏体正相变、马氏体逆相变。 ➢马氏体逆相变中表现的形状记忆效应,不仅晶 体结构完全回复到母相状态,晶格位向也完全回 复到母相状态,这种相变晶体学可逆性只发生在 产生热弹性马氏体相变的合金中。 ➢马氏体相变的临界温度:Ms、Mf、As、Af
形状记忆合金 Shape Memory Alloys
1
形状记忆合金概述
❖ 发展历史 ❖ 基本概念
形状记忆效应及其临界温度 热弹性马氏体相变 马氏体变体与自协作 应力诱发马氏体相变 相变伪弹性(超弹性)
2Hale Waihona Puke 形状记忆合金发展历史❖ 30年代,美国哈佛大学A. B. Greninger等发现CuZn合金在加热与冷却的 过程中,马氏体会随之收缩与长大
15
马氏体相变
❖马氏体相变的热力学持征 ❖马氏体相变机制的几个晶体学经典模型
Bain转变模型 K-S转变模型 西山转变模型 G-T转变模型
16
马氏体相变的热力学持征
❖相变得以进行需要驱动力,相变驱动力来自 于新旧两相的自出能差
❖马氏体相变时需要较大的驱动力。这主要是 由于相转变时的切变过程需要很高的塑性变 形能,用以产生浮凸,产生高密度位错或孪 晶等,同时,为了维持两相的共格,以及因 体积的变化会引起晶格的弹性畸变,导致较 大的能量提高。所以,马氏体相变的的驱动 力主要是为了克服相变时的切变阻力和变形 阻力,包括弹性变形和塑性变形。

(2024年)智能材料PPT课件

(2024年)智能材料PPT课件
自组装技术
自组装技术利用分子间的相互作用力,使分子自发地组装成具有特 定结构和功能的智能材料。
仿生制备技术
仿生制备技术借鉴自然界中的生物结构和功能,通过模仿生物的结构 和功能来制备智能材料。
2024/3/26
16
04
CATALOGUE
智能材料在传感器中的应用
2024/3/26
17
应变传感器
应变材料的特性
3
定义与发展历程
2024/3/26
定义
智能材料是一种能够感知、响应 并适应环境变化的功能材料,具 有自感知、自驱动、自适应等特 性。
发展历程
智能材料起源于20世纪80年代, 经历了从单一功能到多功能、从 简单响应到复杂自适应的发展历 程。
4
分类及应用领域
分类
根据功能特性,智能材料可分为传感 型、驱动型、自适应型等类型。
应用领域
微纳机器人、生物医学、光电子学等。
26
06
CATALOGUE
智能材料在能源领域的应用
2024/3/26
27
太阳能电池板材料
2024/3/26
晶体硅材料
具有高转换效率和稳定性,是当前主流太阳能电池板材料 。
薄膜太阳能材料
轻便、柔性好,可应用于可穿戴设备和移动能源领域。
多结太阳能电池材料
利用不同光谱吸收特性,提高太阳能利用率。
2024/3/26
6
02
CATALOGUE
智能材料的特性与功能
2024/3/26
7
感知功能
01
02
03
传感器功能
智能材料能够感知外部环 境的变化,如温度、压力 、湿度等,并将这些变化 转化为可测量的电信号。

课件§2形状记忆材料和智能材料PPT文档共38页

课件§2形状记忆材料和智能材料PPT文档共38页
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
课件&#;2形状记忆材料和智能材 料
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
谢谢!

《形状记忆合金》PPT课件

《形状记忆合金》PPT课件

形状记忆合金的用途归纳
<1>汽车:后雾灯罩、手动变速箱的防噪音装置、燃 料蒸发气体排出控制阀;<2>电子设备:电子炉灶换 气门的开闭器、空调风向自动调节器、咖啡牛奶沸腾 感知器、电饭锅压力调节器、电磁调理器过热感知器、 温泉浴池调理器等;<3>安全器具:过热报警器、火 灾报警器、烟灰缸灭火栓等;<4>医疗方面:人工牙 根、牙齿矫正丝、导线等;<5>生活用品:自动干燥 库门开闭器、卫生间洗涤器水管转换开关、空调进出 口风向调节器、浴池保温器、玩具、路标方向指示转 换器、家庭换气门开闭器、防火挡板、净水器热水防 止阀、恒温箱混合水栓温度调节阀、眼镜固定件、眼 镜框架、胸罩丝、钓鱼线、便携天线、装饰品等.
形状记忆合金的分类
〔1〕单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢
复变形前的形状,这种只在加热过程中存在记忆效应
某些合金加热时恢复高温相形状,冷却时又能恢 复低温相形状,称为双程记忆效应. 〔3〕全程记忆效应
加热时恢复高温相形状,冷却时变为形状相
形状记忆效应与形状记忆合金
一般金属材料受到外力作用后,首先发生弹性 变形,达到屈服点,就产生塑性变形,应力消除后 留下永久变形.但有些材料,在发生了塑性变形 后,经过合适的热过程,能够回复到变形前的形 状,这种现象叫做形状记忆效应〔SME〕.
具有形状记忆效应的金属一般是两种以上金属 元素组成的合金,称为形状记忆合金〔SMA〕
在室温下用形状记忆合金制 成抛物面天线,然后把它揉成 直径5厘米以下的小团,放入 阿波罗11号的舱内,在月面上 经太阳光的照射加热使它恢 复到原来的抛物面形状.这样 就能用空间有限的火箭舱运 送体积庞大的天线了.
形状记忆合金的用途〔二〕
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.2 主要几类形状记忆合金
Ti-Ni基形状记忆合金 Cu基形状记忆合金 Fe基形状记忆合金
形状记忆合金的应用
形状记忆合金片断
形状记忆材料 1、Ti-Ni基形状记忆合金
优点:记忆效应优良、性能稳定、生物相容性好 缺点:制造过程较复杂,价格高昂
Ti-Ni合金通过在1000℃左右固溶后,在400℃ 进行时效处理,再淬火得到马氏体。
形状记忆材料
在Af 温度以上变形,因应力使Ms升高,发生M转 变,应力一旦解除,因Af点低于环境温度,立即产 生逆相变,回到母相状态,在应力作用下产生的宏 观变形也随逆相变而完全消失。
其中应力与应变的关系表现出明显的非线性,这种 非线性弹性和相变密切相关,叫做相变伪弹性,即 超弹性。
形状记忆材料
第四章 形状记忆材料与智能材料
教学重点: ✓形状记忆效应 ✓形状记忆合金和形状记忆陶瓷的性能特点 ✓智能材料的概念及基本结构
形状记忆材料和智能材料
4.1 形状记忆材料 4.2 智能材料
形状记忆材料和智能材料 Ti-Ni形状记忆合金制造的人造卫星天线
形状记忆材料
具有形状记忆效应的材料——形状记忆材料
形状记忆效应(Shape Memory Effect ,简称SME) 形状记忆效应——将材料在一定条件下进行一定限度
以内的变形后,再对材料施加适当 的外界条件,材料的变形随之消失 而回复到变形前的形状的现象。
形状记忆效应实验演示片断1
形状记忆材料
具有形状记忆效应的金属,通常是由2种以上的金 属元素构成的合金,故称为形状记忆合金 (Shape Memory Alloys,简称SMA)。
形状记忆材料 (1) Ti-Ni基记忆合金中的基本相和相变 在Ti-Ni二元合金系中有TiNi、Ti2Ni和Ti3Ni三种金 属间化合物。
升温
As
母 相
奥 氏 体
0
温度
图7 随温度变化发生马氏体相变时电阻的变化
Ms——冷却时产生热弹性马氏体的起始温度
Mf——冷却时转变的终止温度
As——升温时逆转变的起始温度 热弹性马氏体实验演示1
Af——逆转变终止温度
热弹性马氏体实验演示2
形状记忆材料
具有较
具有较
低的对 称性的 正交或 单斜晶
高的对 称性的 立方点 阵
图3 全程形状记忆效应
形状记忆材料
4.1.1 马氏体相变与形状记忆原理
➢ 热弹性马氏体相变 ➢ 超弹性和伪弹性 ➢ 应力诱发马氏体相变
4.1.2 主要的几类形状记忆合金 4.1.3 形状记忆陶瓷
形状记忆材料
4.1.1 马氏体相变与形状记忆原理 大部分合金和陶瓷记忆材料是通过热弹性马氏体 相变而呈现形状记忆效应。
图1 单程形状记忆效应
形状记忆材料 双程形状记忆效应——加热时恢复高温相形状,冷 却时恢复低温相形状,即通 过温度升降自发可逆地反复 恢复高低温相形状的现象, 或称为可逆形状记忆效应。
图2 双程形状记忆效应
形状记忆材料 全程形状记忆效应——当加热时恢复高温相形状,冷
却时变为形状相同而取向相反 的高温相形状的现象。只能在 富镍的Ti- Ni合金中出现。
普通的马氏体相变是钢的淬火强化方法,即把钢加 热到某个临界温度以上保温一段时间,然后迅速冷 却,钢转变为一种马氏体结构,并使钢硬化。
冷却 奥氏体(A) 马氏体(M)
加热
钢的马氏体相变不可逆
A M
图4 45#钢淬火工艺曲线
a) 奥氏体(多边形等轴晶粒)
b)板条状马氏体
图5 奥氏体与马氏体金相显微组织
形状记忆材料
在某些合金中发现热弹性马氏体相变:
马氏体一旦生成可以随着温度降低继续长大,当温度 回升时,长大的马氏体又可以缩小,直至恢复到原来 的母相状态,即马氏体随着温度的变化可以可逆地长 大或缩小——热弹性马氏体
冷却
A 加热
M 可逆性
马氏体相变动力学:
G TP M G c P M G n P c M G s
超弹性或伪弹性
超弹性片段演示
图10
形状记忆合金发生超弹 性变形的应力应变曲线
(Af温度以上加载)
应力诱发马氏体相变
在T0与Ms之间的某一温度对合金施加外力也可引 起马氏体转变。
应力诱发马氏体演示片断1 应力诱发马氏体演示片断2
由外部应力诱发产生的马氏体相变称为应力诱 发马氏体相变 (Stress-Induceed Martensite Transformation)。
G T P M — G 母c P 相M 转 变G n P 为 M 马c 氏 G 体s的驱动力
G cTP MG MGP—母驱相动转力变为马氏体的化学
G c P M G n P M c G —s非 变化化学产驱生动的力应变(相能变)时新旧相体积
G n P M0年代先后在高分子聚合物、陶瓷材料、 超导材料中发现形状记忆效应。
形状记忆材料
形状记忆效应可分为3种类型:
①单程形状记忆效应 ②双程形状记忆效应 ③全程形状记忆效应
形状记忆材料 单程形状记忆效应——材料在高温下制成某种形状, 在低温相时将其任意变形, 再加热时恢复为高温相形状, 而重新冷却时却不能恢复低 温相时的形状。
本质:应力作用使材料的MS点升高。
应力/MPa 140
120
加载
100
卸载
80
60
40
20
0
270
290 310
MS AS
275K
330 350 温度/K 环境温度
图11 Cu-34.1-Zn-1.8Sn合金Ms与拉伸应力的关系
图10
形状记忆合金发生超弹 性变形的应力应变曲线
(Af温度以上加载)
定值)
形状记忆材料
G
G
P c
G
M c
G T P M G c P M G n P M c G s
M G c P M G n P M c G s
MS T0
T
图6 马氏体相变驱动力与温度的关系
热弹性马氏体随温度变化的相变过程
电 阻 低 马 Mf
温氏 相体
降温
Ms
Af
系,内
部是孪
晶变形
或层错 热弹性马氏体相变时伴随有形状的变化。
形状记忆效应的实质:
是在温度的作用下,材料内部热弹性马氏体形成、 变化、消失的相变过程的宏观表现。
原子排列面的切应变
结构相同,位相 不同的马氏体
变形前后M 结构未变
变体界面移动, 相互吞食
图8 形状记忆效应机制示意图
形状记忆材料
图9 形状记忆合金晶体结构变化模型
相关文档
最新文档