第1章线性规划详解
第一章 线性规划
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3
第一章线性规划-模型和图解法
a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
第一章线性规划
-1-第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选适当的决策变量,是我们建立有效模型的关键之一。
第1章线性规划
单击此处添加副标题内容
第1章 线性规划
1.1 原始问题 1.2 对偶问题 1.3 敏感分析 1.4 模型讨论
• 数学规划(mathematical programming)是 运筹学的一个主要分支,它是研究在一些 给定的条件下(即约束条件下),求的考 察函数(即目标函数)在某种意义下的极 值(极小或极大)。
表1.1 产品组合问题的数据表
生产单位产品所需时间
生产线
生产线每周可用时间
产品甲 产品乙
一
1
0
4
二
0
2
12
三
3
2
18
单位产品 的利润
3
5
此问题是在生产线可利用时间受到限制 的情形下寻求每周利润最大化的产品组合问 题。
在建立产品组合模型的过程中,以下问 题需要得到回答:
(1)要做出什么决策? (2)做出的决策会有哪些条件限制? (3)这些决策的全部评价标准是什么?
在使用单纯形法解决问题中,必须对线 性规划的一般形式进行变形,化为标准形式。
线性规划的标准形式: n
max z = c j x j
j 1
s.t.
n
j 1
aij x j
bi
(i 1,2,m)
xj 0
( j 1,2,n)
①目标函数取极大化, ②约束条件全为等式,
③约束条件右端常数项均为非负值,④变量
令非基变量x1=x2=0,解得x3=4, x4=12, x5=18,则x=(0,0,4,12,18)T是一个基解。因该基解 中所有变量取值为非负,满足线性规划问题的所有 约束条件,故也是基可行解。
1.2 对偶问题
例1.3(委托加工)对于例1.1的产品组合问 题,公司从交易市场上得到另一信息:某中 间商得到一笔生产与公司相同产品的合同。 但该中间商并没有生产这些产品的设备,欲 委托该公司为其加工产品。现在的问题是公 司应该让中间商至少付出多少代价,才能放 弃这两种新产品的生产,为中间商委托生产?
第一章1、线性规划问题的基本概念讲解
•通常称 x1, x2 ,, xn 为决策变量,c1,c2 ,,cn 为价值系数, a11, a12, , amn 为消耗系数,b1 , b2 ,, bm 为资源限制系数。
3
运筹学这一名词最早出现于1938年。当时英,美等国盟军 在与德国的战争中遇到了许多错综复杂的战略和战术问题难以 解决,比如
(1)防空雷达的布置问题:
(2)护航舰队的编队问题:
为了应付上述各种复杂问题,英美等国逐批召集不同专业 背景的科学家,在三军组织了各种研究小组,研究的问题都是 军事性质的,在英国称为“Operational Research”,其他英语 国家称为“Operations Research”,意思是军事行动研究。这 些研究小组运用系统优化的思想,应用数学技术分析军事问题, 取得了非常理想的效果。
例1:某制药厂生产甲、乙两种药品,生产这两种药品要消 耗某种维生素。生产每吨药品所需要的维生素量,所占用的 设备时间,以及该厂每周可提供的资源总量如下表所示:
维生素(公斤) 设备(台)
每吨产品的消耗
甲
乙
30
20
5
1
每周资源总量
160 15
已知该厂生产每吨甲、乙药品的利润分别为5万元和2万 元。但根据市场需求调查的结果,甲药品每周的产量不应超 过4吨。问该厂应如何安排两种药品的产量才能使每周获得 的利润最大?
8
4. 学习要求
掌握主要的优化模型的数学计算方法. 了解现代优化方法及其数学原理. 熟练掌握应用数学软件计算优化问题.
9
5. 参考书目
主要参考书目: 理论方面: (1) 解可新、韩健,《最优化方法》,天津大学出版社,2004 (2) 何坚勇, 《最优化方法》, 清华大学出版社, 2007 计算方面: (3) 马昌凤,《最优化方法及其MATLAB程序设计》,科学出版社, 2010 (4) 朱德通,《最优化模型与实验》, 同济大学出版社, 2003
第1章 线性规划-标准型和图解法
Y
x-y≥1
- x+2y≤0
O A1 X
39
例
max z=x+2y s.t. - x+2y≥1 x+y≤ - 2 x、y ≥0
x+y≤ - 2
Y
- x+2y≥1
O
X
40
图解法的启示:
1. 求解线性规划问题时,解的情况有:唯一最优解, 求解线性规划问题时,解的情况有:唯一最优解, 无穷多最优解,无界界,无可行解; 无穷多最优解,无界界,无可行解; 2. 若线性规划问题可行域存在,在可行域是一个凸 若线性规划问题可行域存在, 集; 3. 若线性规划问题最优解存在,在最优解或最优解 若线性规划问题最优解存在, 之一一定能够在可行域的某个顶点取得; 之一一定能够在可行域的某个顶点取得; 4. 解题思路是,先找凸集的任一顶点,计算其目标 解题思路是,先找凸集的任一顶点, 函数值。比较其相邻顶点函数值,若更优, 函数值。比较其相邻顶点函数值,若更优,则逐 点转移,直到找到最优解。 点转移,直到找到最优解。
C(1,3) 2x+2y=8 B(3,1) 4x+12y=24
x=7
2 4 6 7 (2,0) (4,0) A(6,0)G(7,0)
43
22
例
max = − x − y x + y ≥ 2 s.t.x ≤ 3 x , y无约束
23
解:令
x,当x ≥ 0 x′ = 0,当x < 0
y,当y ≥ 0 y′ = 0, 当y < 0
0, 当x ≥ 0 x ′′ = − x, 当x < 0
0,当y ≥ 0 y′′ = − y, 当y < 0
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
第1章-线性规划及单纯形法-课件(1)
✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1
⑵
⑴
✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi
第一章 线性规划
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?
甲
乙
丙
资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)
第1章 线性规划
第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。
1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。
(2) 建立简单的线性规划数学模型。
(3) 求解线性规划的图解法。
(4) 基、可行基及最优基的定义。
(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。
(6) 有唯一解、有无穷多解、无界解、无可行解的判断。
(7) 求解线性规划的单纯形法。
(8) 求解线性规划的人工变量法。
(9) 单纯形法中的5个计算公式。
2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。
(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。
(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。
(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。
(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。
3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。
4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。
建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。
运筹学第一章线性规划
《运筹学》 第一章 线性规划
Slide 18
4、无可行解——可行域为空集
X2
maxz=2X1+4X2
L3: X1<=4
s.t.
L1: X1+X2>=6
X1+X2>=6 X1+2X2<=6
L2: X1+2X2<=6
L4: X2<=3
X1 <=4, X2<=3
X1>=0, X2>=0
二、一般线性规划问题的建模过程(方法)
追求什么目标? 决策变量? 目标函数? 约束条件?
《运筹学》 第一章 线性规划
Slide 4
课本P4例1.1: 生产安排问题 设X1,X2,X3是甲、乙、丙三种产品的产量,Z是工厂 的总利润。 maxz=3X1+2X2+5X3
s.t. X1+2X2+X3<=430 ——第一道工序 3X1+2X3<=460 ——第二道工序 X1+4X2<=420 ——第三道工序 X1>=0, X2>=0 , X3>=0
b1
b2
Xm=
bm
-
a1m1 a2m1 amm1
Xm+1
a1n
a2n
-用…向-量的am形n 式Xn表示为:(1.j1m18a) j x j
b
n
ajxj
j m1
(1.19)
方程组的基是B,设XB是对应于这个基的基变量,XB=(
X1,X2,…,Xm)T
《运筹学》 第一章 线性规划
满足约束条件:
am
x1 1 am x2 2 x1, x2,, xn
第一 线性规划(共188张PPT)
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0
第一章 线性规划
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品
甲
乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两
第一章:线性规划基础
表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。
⑤
k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n
第1章线性规划引论详解
资源分配问题
▪ 资源分配(resource-allocation)问题是将有限的资源
▪ 分配到各种活动中去的线性规划问题。这一类问题的
▪ 共性是在线性规划模型中每一个函数限制均为资源限
▪ 制(resource constraint) , 并且每一种有限资源都可以表
资源分配问题一般形式
资源分配问题一般形式
▪ 我们用表示xj第j种活动的数量(水平),则目标 函数 最大化。
▪ 对于第i种资源, 我们有约束条件:
▪ 即资源消耗量不超过的资源总量
资源分配问题一般形式
▪ 因此,这类问题的数学模型为:
成本效益平衡问题一般形式
▪ 以上所讨论的成本效益平衡问题是通过选择 各种活动水平的组合,从而以最小的成本实 现最低可接受的各种效益水平。该问题的一 般形式可描述为:
一般形式
▪ 线性规划的一般形式为:
资源分配问题一般形式
▪ 资源分配问题是将有限的资源分配从事各种 活动的线性规划问题,其一般形式可以描述 为:
▪ 管理层计划用m种资源去从事n种活动,通过 收集每种资源的总量和每种活动单位资源使 用量以及单位贡献等数据如下表所示,来确 定活动的数量使得在资源许可的条件下贡献 最大。
▪ f14 + f24 + f34 = f45 + f46 ▪ 对仓库v5、v6,运进的产品数量等于其需求
量 ▪ f15 + f25+ f45 = 120 ▪ f46+ f36 = 130
物流网络配送问题
▪ 此外,对网络中有运输容量限制的路线的约 束是:该路线上的运输产品数量不超过该线 路的运输能力,即:
管理运筹学讲义 第1 章 线性规划
(3)约束条件:产量之和等于销量之和,故要满足:
供应平衡条件
x11+x12+x13+x14=50 x21+x22+x23+x24=20 x31+x32+x33+x34 =30
x11+x21+x31=20 x12+x22+x32=30 x13+x23+x33=10 x14+x24+x34=40
xij≥0 (i=1,2,3;j=1,2,3,4)
决策变量对目标函数和约束方程的影响是独立于其他变量的。 目标函数值是决策变量对目标函数贡献的总和。
(4)连续性假定
决策变量取值连续。
(5)确定性假定
所有参数都是确定的,不包含随机因素。
9 OR:SM
第一节 线性规划的一般模型
三、线性规划模型的特征
2、一般数学模型
• 用一组非负决策变量表示的一个决策问题; • 存在一组等式或不等式的线性约束条件; • 有一个希望达到的目标,可表示成决策变量的极值线性函数。
4 2 6
8
O
2
4
6
8
x1
OR:SM
23
• 当决策变量是三维的,如何求解? • 当维数再高时,又如何求解?
24
OR:SM
第二节 线性规划的一般模型
一、线性规划的标准型式
1、标准型表达方式
1)代数式
max Z c j x j
j 1 n
2)向量式
max Z CX
i 1,2,, m j 1,2,, n
20
OR:SM
第一节 线性规划的一般模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标函数, (1.2)中的几个不等式是问题的约束条件,记为 s.t.(即 subject to)。
5/39
数学 建模
目标函数及约束条件均为线性函数,故被称为线性 规划问题。线性规划问题是在一组线性约束条件的限制 下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数 学模型是很重要的一步,往往也是很困难的一步,模型 建立得是否恰当,直接影响到求解。而选适当的决策变 量,是我们建立有效模型的关键之一。
14/39
(3)求解的Lingo程序如下 model: sets: row/1..2/:b; col/1..3/:c,x; links(row,col):a; endsets data: c=2 3 -5; a=-2 5 -1 1 3 1; b=-10 12; enddata max=@sum(col:c*x); @for(row(i):@sum(col(j):a(i,j)*x(j))<b(i)); @sum(col:x)=7; end
数学 建模
解 (1)化成 Matlab 标准型 min w = - 2 x1 - 3 x2 + 5 x3 , 轾 x1 轾 轾 - 2 5 - 1犏 - 10 犏 x2 £ 犏 , s.t. 犏 犏 犏 犏 1 3 1 12 臌 臌 犏 x3 臌 [1, 1, 1]?[ x1 , x2 , x3 ]T 7 .
数学 建模
例 1.2 求解下列线性规划问题 max z = 2 x1 + 3 x2 - 5 x3 , s.t. x1 + x2 + x3 = 7 , 2 x1 - 5 x2 + x3 ? 10 , x1 + 3 x2 + x3 ? 12 , x1 , x2 , x3 ³ 0 .
10/39
数学 建模
例 1.2 求解下列线性规划问题 max z = 2 x1 + 3 x2 - 5 x3 , s.t. x1 + x2 + x3 = 7 , 2 x1 - 5 x2 + x3 ? 10 , x1 + 3 x2 + x3 ? 12 , x1 , x2 , x3 ³ 0 .
11/39
4/39
数学 建模
上述问题的数学模型:设该厂生产 x1 台甲机床和 x 2 乙 机床时总利润 z 最大,则 x1 , x2 应满足 max z = 4 x1 + 3 x2 , (1.1) ì 2 x1 + x2 ? 10, ï ï ï ï x1 + x2 ? 8, ï s.t.í (1.2) ï x2 £ 7, ï ï ï ï î x1 , x2 ³ 0. 变量 x1 , x2 称之为决策变量, (1.1)式被称为问题的目
3/39
数学 建模
1.1.1 线性规划的实例与定义
例 1.1 某机床厂生产甲、乙两种机床,每台销售后的 利润分别为 4 千元与 3 千元。生产甲机床需用 A、B 机器加 工,加工时间分别为每台 2 小时和 1 小时;生产乙机床需用 A、B、C 三种机器加工, 加工时间为每台各一小时。 若每天 可用于加工的机器时数分别为 A 机器 10 小时、 B 机器 8 小 时和 C 机器 7 小时,问该厂应生产甲、乙机床各几台,才能 使总利润最大?
x
资源向量, A, Aeq 为矩阵。
9/39
数学 建模
Matlab 中求解线性规划的命令为 [x,fval] = linprog(f,A,b) [x,fval] = linprog(f,A,b,Aeq,beq) [x,fval] = linprog(f,A,b,Aeq,beq,lb,ub) 其中 x 返回的是决策向量的取值, fval 返回的是目标函 数的最优值,f 为价值向量,A,b 对应的是线性不等式 约束,Aeq,beq 对应的是线性等式约束,lb 和 ub 分 别对应的是决策向量的下界向量和上界向量。
12/39
数学 建模
(2)求解的 Matlab 程序如下 f=[-2; -3; 5]; a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1)); x, y=-y
13/39
数学 建模
6/39
数学 建模
1.1.2 线性规划问题的解的概念
一般线性规划问题的(数学)标准型为
n
max
(1.3)
z=
å
cj xj ,
j= 1
n ì ï ï aij x j = bi i = 1, 2,L , m , å ï ï s.t. í j= 1 ï ï ï ï î x j ? 0 j 1, 2,L , n. 其中 bi ³ 0, i = 1, 2, 建模
1.1 线性规划问题
在人们的生产实践中,经常会遇到如何利用现有资源 来安排生产,以取得最大经济效益的问题。此类问题构成 了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记 LP)则是数学规划的一个重要分支。 自 从 1947 年 G. B. Dantzig 提出求解线性规划的单纯形方法 以来,线性规划在理论上趋向成熟,在实用中日益广泛与 深入。特别是在计算机能处理成千上万个约束条件和决策 变量的线性规划问题之后,线性规划的适用领域更为广泛 了,已成为现代管理中经常采用的基本方法之一。
线性规划的目标函数可以是求最大值, 也可以是求最 小值,约束条件的不等号可以是小于号也可以是大于号。 为了避免这种形式多样性带来的不便,Matlab 中规定线 性规划的标准形式为 min f T x ,
ì A祝 x b, ï ï ï s.t. í Aeq ? x beq , ï ï ï ï î lb #x ub. 其中 f , x, b, beq, lb, ub 为列向量, f 称为价值向量, b 称为
(1.4)
7/39
数学 建模
可行解 满足约束条件 (1.4) 的解 x = [ x1 ,L , xn ]T , 称为线性规划问题的可行解,而使目标函数(1.3)达 到最大值的可行解叫最优解。 可行域 域,记为 R 。 所有可行解构成的集合称为问题的可行
8/39
数学 建模
1.1.3 线性规划的Matlab标准形式及软件求解