一元二次函数.ppt
合集下载
二次函数与一元二次方程二次函数优秀ppt课件
7.一元二次方程 3 x2+x-10=0的两个根是x1=-
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
一元二次函数ppt课件
a 0, b 0, c 0 ,
二次函数图象开口向上、对称轴 x
而选项中二次函数图象对称轴 x
错,不符合题意;
b
在区间[0,+∞]上,函数值y随自变量x的增大而增大;
函数在x=0处有最小值,记作ymin=0.
当a<0时,抛物线开口向下;
在区间(-∞,0]上,函数值y随自变量x的增大而增大;
在区间上[0,+∞],函数值y随自变量x的增大而减小;
函数在x=0处有最大值,记作:ymax=0
02
探索新知
思考
y=ax2(a≠0)的图象与y=-ax2(a≠0)的图象有什么内在关系?
1.二次项系数a决定了函数图象的开口方向及开口大小.
2.直线−
是一元二次函数图象的对称轴,所以a和b共同决定了抛物线对称轴的位置.
2
3.c的值决定了抛物线y=ax2+bx+c(a≠0)与y轴交点的位置.
当x=0时,y=c,所以抛物线y=ax2+bx+c(a≠0)与y轴有且只有一个交点(0,c),故
一元二次函数y=ax2+bx+c = ( + ) +
(a,b,c是常数,且a≠0)
2
4
函数
变化趋势
b
在区间 , 上,y随x的增大而减小,
2a
b
在区间 , 上,y随x的增大而增大
2a
b
在区间 , 上,y随x的增大而增大,
2a
在区间(-∞,0]上,函数值y随自变量x的增大而减小;
在区间[0,+∞]上,函数值y随自变量x的增大而增大;
函数在x=0处有最小值,记作ymin=0.
y=-2x2,抛物线开口向下;
二次函数图象开口向上、对称轴 x
而选项中二次函数图象对称轴 x
错,不符合题意;
b
在区间[0,+∞]上,函数值y随自变量x的增大而增大;
函数在x=0处有最小值,记作ymin=0.
当a<0时,抛物线开口向下;
在区间(-∞,0]上,函数值y随自变量x的增大而增大;
在区间上[0,+∞],函数值y随自变量x的增大而减小;
函数在x=0处有最大值,记作:ymax=0
02
探索新知
思考
y=ax2(a≠0)的图象与y=-ax2(a≠0)的图象有什么内在关系?
1.二次项系数a决定了函数图象的开口方向及开口大小.
2.直线−
是一元二次函数图象的对称轴,所以a和b共同决定了抛物线对称轴的位置.
2
3.c的值决定了抛物线y=ax2+bx+c(a≠0)与y轴交点的位置.
当x=0时,y=c,所以抛物线y=ax2+bx+c(a≠0)与y轴有且只有一个交点(0,c),故
一元二次函数y=ax2+bx+c = ( + ) +
(a,b,c是常数,且a≠0)
2
4
函数
变化趋势
b
在区间 , 上,y随x的增大而减小,
2a
b
在区间 , 上,y随x的增大而增大
2a
b
在区间 , 上,y随x的增大而增大,
2a
在区间(-∞,0]上,函数值y随自变量x的增大而减小;
在区间[0,+∞]上,函数值y随自变量x的增大而增大;
函数在x=0处有最小值,记作ymin=0.
y=-2x2,抛物线开口向下;
第二章 一元二次函数、方程和不等式复习课-(新教材人教版必修第一册)(21张PPT)
<m},则 m=________.
根,
m>1, 且m>1⇒1+m=6a,
1·m=a
⇒ma==22., ]
不等式恒成立问题 【例4】 (1)若不等式x2+mx-1<0对于任意x∈{x|m≤x≤m+1}都 成立,则实数m的取值范围是________. (2)对任意-1≤m≤1,函数y=x2+(m-4)x+4-2m的值恒大于零, 求x的取值范围.
c<a 对于C: b2≥0⇒cb2≤ab2 cb2<ab2,C错,即C不一定成立. 对于D:ac<0,a-c>0⇒ac(a-c)<0,D正确,选C.]
不等式真假的判断,要依靠其适用范围和条件来确定,举反例是判 断命题为假的一个好方法,用特例法验证时要注意,适合的不一定对, 不适合的一定错,故特例只能否定选择项,只要四个中排除了三个,剩 下的就是正确答案了.
数学(人教版) 必修第一册
第二章 一元二次函数、方 程和不等式
章末复习课
不等式的性质
【例 1】 如果 a,b,c 满足 c<b<a 且 ac<0,则以下列选项中不
一定成立的是( ) A.ab>ac C.cb2<ab2
B.c(b-a)>0 D.ac(a-c)<0
C [c<b<a,ac<0⇒a>0,c<0. 对于A: ba>>c0⇒ab>ac,A正确. 对于B: bc<<0a⇒b-a<0⇒c·(b-a)>0,B正确.
5.若不等式 ax2-2x+2>0 对于满足 1<x<4 的一切实数 x 恒成立,求 实数 a 的取值范围.
[解] ∵1<x<4, ∴不等式 ax2-2x+2>0 可化为 a>2xx-2 2. 令 y=2xx-2 2,且 1<x<4, 则 y=2xx-2 2=-21x-122+12≤12,
人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .
②
[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .
②
[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.
一元二次函数 ppt课件
-3
3
二次函数 y = x2的图象是一条曲线,它的 形状类似于投篮球时球在空中所经过的路线, 只是这条曲线开口向上,这条曲线叫做抛物 线 y = x2 ,
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
y轴对称,y轴就
的值最小,最小值是0.
是它的对称轴.
8
6
4
对称轴与抛物 线的交点叫做
当x<0 (在对称轴的
2
抛物线的顶点.
左侧)时,y随着x的增大而
1
减小. -4
-3 -2
-1
0
1
2 当x3>0 (在4对称x轴的
-2
右侧)时, y随着x的增大而
增大.
在学中做—在做中学
(1)二次函数y=-x2的图象是什么形状?
y x2
当x<0 (在对称轴的 左侧)时,y随着x的增大而
减小.
当x>0 (在对称轴的 右侧)时, y随着x的增大而
增大.
当x=-2时,y4 当x=-1时,y=1
抛物线y=x2在x轴的 上方(除顶点外),顶点 是它的最低点,开口 向上,并且向上无限 伸展;当x=0时,函数y 的值最小,最小值是0.
7 2018
一元二次函数
1.在某一问题中,保持不变 的量叫常量,可以取不同数值 的 量,叫做变量.
2.函数:在同一变化过程中,有两个变量x和y,如果对于 x的每—个值,y都有__唯__一__确_定__的__值___与之对应,我们就把 y叫做x的函数,其中x叫做自变量.如果自变量x取a时,y 的值是b,就把b叫做x=a时的函数值.
2.3二次函数与一元二次方程、不等式(第一课时)课件(人教版)
(2)x2-4x+4≤0;
(3)-x2-3x+4<0.
1
答案:(1){x|x<- ,或
2
x>2}
(3){x|x<-4,或x>1}
(2){x|x =2}
特别的,若一元二次不等式情势如下,则可直接写相
应解集:
1)(x-x1)(x-x2)>0(x1<x2)解集为 {x|x<x1 ,或 x>x2} ;
2)(x-a)2<b (b>0)解集为 {x|a- <x<a+ } .
数据分析
逻辑推理
数学运算
课堂小结
三、本节课训练的数学思想方法
函数结合
方程思想
转化与化归
分类讨论
基础作业:
.
02 能力作业:
.
01
03
拓展延伸:(选做)
例3. 求不等式-x2+2x-3 > 0 的解集 .
解:原不等式可化为x2-2x+3 < 0
因为判别式△=-8<0,
方程x2-2x+3 =0无实根.
原不等式的解集为.
方法总结:二次系数为负,先要化为正,再由判别式及函数
图像情况作出判断.
一元二次不等式求解流程图
练一练
求下列不等式的解集:
(1)2x2-3x>2;
a2-4<0,且判别式△=(a+2)2+4(a2-4)<0.
6
解得:-2≤a<
5
方
法
总
结
当二次系数含参变量时,要考虑它是否为零,
故需要分类讨论.
2.3.1 二次函数与一元二次方程、不等式
(3)-x2-3x+4<0.
1
答案:(1){x|x<- ,或
2
x>2}
(3){x|x<-4,或x>1}
(2){x|x =2}
特别的,若一元二次不等式情势如下,则可直接写相
应解集:
1)(x-x1)(x-x2)>0(x1<x2)解集为 {x|x<x1 ,或 x>x2} ;
2)(x-a)2<b (b>0)解集为 {x|a- <x<a+ } .
数据分析
逻辑推理
数学运算
课堂小结
三、本节课训练的数学思想方法
函数结合
方程思想
转化与化归
分类讨论
基础作业:
.
02 能力作业:
.
01
03
拓展延伸:(选做)
例3. 求不等式-x2+2x-3 > 0 的解集 .
解:原不等式可化为x2-2x+3 < 0
因为判别式△=-8<0,
方程x2-2x+3 =0无实根.
原不等式的解集为.
方法总结:二次系数为负,先要化为正,再由判别式及函数
图像情况作出判断.
一元二次不等式求解流程图
练一练
求下列不等式的解集:
(1)2x2-3x>2;
a2-4<0,且判别式△=(a+2)2+4(a2-4)<0.
6
解得:-2≤a<
5
方
法
总
结
当二次系数含参变量时,要考虑它是否为零,
故需要分类讨论.
2.3.1 二次函数与一元二次方程、不等式
新教材北师大版必修第一册 4.1一元二次函数 课件(46张)
2.参数“a,h,k”对y=a(x-h)2+k(a≠0)的图象的影响 (1)a的符号和绝对值大小分别决定了二次函数图象的开口方向和大小; (2)h决定了二次函数图象的对称轴的位置; (3)k决定了二次函数图象的顶点的高度.
【跟踪训练】
1.已知二次函数 y=x2-8x +c的图象的顶点在 x轴上,则c=
类型三 一元二次函数的最大值和最小值(数学运算)
角度1 求一元二次函数的最大值或最小值
【典例】求函数y= 1 x2-2x+4的最小值.
2
【思路导引】先配方变形,然后确定函数图象的开口方向和对称轴,最后求最小
值.
【解析】配方:y=
1 2
x2-2x+4=
1 (x 2)2 +2,此函数的图象是一条抛物线,开口
【拓展训练】 已知一元二次函数的图象经过点(1,0),(-5,0),且顶点纵坐标为 9 ,求这个函
2
数的解析式.
类型二 一元二次函数的函数值的变化趋势(逻辑推理) 【典例】试述一元二次函数y=3x2-6x-1函数值的变化趋势.
【解题策略】
一元二次函数y=ax2+bx+c(a≠0) 函数值的变化趋势
2
y=x2-mx+5的函数值y随x的增大而增大,所以 m ≤2,解得m≤4.
2
2.一元二次函数y=-x2+(m-1)x+m的图象与y轴交于(0,7)点. (1)求出m的值和此函数图象与x轴的交点坐标; (2)试述函数值的变化趋势.
【补偿训练】 试述一元二次函数y=4x2+16x+5函数值的变化趋势. 【解析】配方,得y=4x2+16x+5=4(x+2)2-11, 此函数的图象开口向上,对称轴是直线x=-2, 所以在区间 (-,-上2,]y随x的增大而减小; 在区间 [-2,上),y随x的增大而增大.
沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
北师大版141一元二次函数课件(47张)
k
m≤h≤n
h=m+2 n
a(m-h)2+k 或a(n-h)2+k
k
m+2 n<h≤n
a(m-h)2+k
k
[练习 3]求函数 y=x2-2x+3 在区间[0,a]上的最值,并求此时 x 的值.
解:函数图象的对称轴为直线 x=1,抛物线开口向上, 当 0<a≤1 时,在[0,a]上函数值随 x 的增大而减小, ∴当 x=0 时,ymax=3;当 x=a 时,ymin=a2-2a+3. 当 1<a<2 时,在[0,1]上函数值随 x 的增大而减小,在[1,a]上函数值随 x 的增大而增 大, ∴当 x=1 时,ymin=2;当 x=0 时,ymax=3. 当 a≥2 时,在[0,1]上函数值随 x 的增大而减小,在[1,a]上函数值随 x 的增大而增大, ∴当 x=1 时,ymin=2; 当 x=a 时,ymax=a2-2a+3.
任意一元二次函数 y=ax2+bx+c(a≠0)都可转化为 y=a(x-h)2+k 的形式,都可由 y =ax2 的图象经过适当的平移得到,具体平移方法,如图所示.
[练习1]画出一元二次函数y=12x2-6x+21的图象,并说明它是如何经过y=21x2平移得 到的.
解:∵y=12x2-6x+21=12(x-6)2+3, ∴抛物线的顶点坐标为(6,3),对称轴为x=6. 令x=0,求得y=21,它与y轴交点为(0,21),此交点距顶点太远,画图时利用不上; 令y=0,12x2-6x+21=0. ∵Δ<0,方程无实数解, ∴抛物线与x轴没有交点. 因此,画此函数图象,应利用函数的对称性列表,在顶点的两侧适当地选取两对对 称点,然后描点、画图即可.
a=-2, 解这个方程组得b=8,
c=-5.
一元二次函数方程和不等式课件
y>0, 即 x2-2x -3 >0
x <-1 或 x > 3 y=0,即x2-2x -3 =0 x =-1 或 x = 3
-1
3
y<0,即x2-2x -3 <0 -1< x < 3
y = x2-2x -3
变一变
一元二次方程: a x 2 + b x + c = 0 ( a > 0 ) ,
一元二次不等式:a x 2 + b x + c > 0 ( a > 0 ) ,
画一画
画出二次函数 y = x 2 - 2 x - 3 的图象.
y x
-1
3
看一看
说一说
(1)方程 x 2 - 2 x - 3 = 0 的根是
x 1 = -1, x 2 = 3 (2)不等式 x 2 - 2 x - 3 > 0 的解集是 { x | x﹤-1 或 x > 3 } (3)不等式 x 2 - 2 x - 3 < 0 的解集是 { x | -1 < x < 3} 思考: 二次方程、二次不等式、二次函数, 三者之间有什么关系? y = x 2-2x3 y -1 3 x
x2 +bx+c<0
x
的解集是 { x | -1 < x < 3 }, 求实数 b , c 的值.
解:依题意,-1 ,3 是方程
x2 +bx+c=0
x
y = x 2+ bx + c y -1 3 x
的两根 , 所以 -1 + 3 = - b, -1×3 = c, 解得b = -2 , c = -3.
a x 2+ b x + c < 0 ( a > 0 ) , 一元二次函数: y = a x 2 + b x + c ( a > 0 ) , 三者之间有什么关系?
一元二次函数方程和不等式课件ppt
y 3
= y
x
2-2x-
{ x | x﹤-1 或 x > 3 }
-1 3 x
(3)不等式 x 2 - 2 x - 3 < 0 的解集是
{ x | -1 < x < 3}
思考: 二次方程、二次不等式、二次函数, 三者之间有什么关系?
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
只需 f (1)< 0, 即 4-2 a < 0,
所以 a > 2. x
y
1x
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
例3. 若不等式 x 2 - 2 a x + 3 > 0 对任意 x ∈[ -1 , 3 ] 恒成立, 求实数 a 的取值范围.
看一看
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
说一说
(1)方程 x 2 - 2 x - 3 = 0 的根是
x1 (2)不等式 x
= -1, 2- 2
x x
2
-
= 3
3 >
0
的解集是
解:依题意,-1 ,3 是方程
x2 +bx+c=0
x
的两根 , 所以
-1 + 3 = - b, -1×3 = c,
解得 b = -2 , c = -3.
2.3二次函数与一元二次方程、不等式(共49张PPT)
(
)
A.a=6,c=1
B.a=-6,c=-1
C.a=1,c=1
D.a=-1,c=-6
解析:选 B.由题意知,方程 ax2+5x+c=0 的两根为 x1=13,x2=12,由根与 系数的关系得 x1+x2=13+12=-5a,x1x2=13×12=ac,解得 a=-6,c=-1.
4.不等式(2x-5)(x+3)<0 的解集为________. 答案:x-3<x<25
解不等式应用题的步骤
1.若产品的总成本 y(万元)与产量 x(台)之间的函数关系式是 y=3 000+20x
-0.1x2(0<x<240),每台产品的售价为 25 万元,则生产者不亏本(销售收入不
小于总成本)时的最低产量是
()
A.100 台
B.120 台
C.150 台
D.180 台
解析:选 C.由题意知 y-25x=-0.1x2-5x+3 000≤0, 即 x2+50x-30 000≥0, 解得 x≥150 或 x≤-200(舍去).
6x+10=0 无实根,又二次函数 y=x2-6x+10 的图象开口向上,所以原不 等式的解集为∅.
解不含参数的一元二次不等式的方法 (1)若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的 乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解 集. (2)若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平 方式始终大于或等于零,则不等式的解集易得. (3)若上述两种方法均不能解决,则应采用求一元二次不等式的解集的通法, 即判别式法.
含参一元二次不a(a-1)>0,(a∈R). 解:因为关于 x 的不等式 x2+x-a(a-1)>0, 所以(x+a)(x+1-a)>0, 当-a>a-1, 即 a<12时,x<a-1 或 x>-a, 当 a-1>-a,
高中数学新北师大版必修第一册 第1章 4.1 一元二次函数 课件(48张)
5.体会抽象概括的过程,加强直观想象素养的培
养.
一、二次函数的配方法
【问题思考】
1.y=4x2-4x-1如何配方?你能由此求出方程4x2-4x-1=0的根吗?
提示:y=4(x2-x)-1
=4 - ×
=4
+
- -2.
能求出方程的根,令 4
-1
-2=0
解法1:y>0对∀x∈[1,+∞)恒成立,等价于x2+2x+a>0对
∀x∈[1,+∞)恒成立.
设g(x)=x2+2x+a,x∈[1,+∞),那么问题转化为g(x)>0在
x∈[1,+∞)上恒成立,又g(x)在区间[1,+∞)上单调递增,从而
g(x)min=3+a.
于是当且仅当g(x)min=3+a>0,即a>-3时,g(x)>0对x∈[1,+∞)
任意三点时,设一般式;抛物线的顶点坐标常设顶点式;抛物线
与x轴的交点或交点的横坐标时,常设两根式.
【变式训练1】 一元二次函数的图象的对称轴是直线x=-1,
并且经过点(1,13)和(2,28),求一元二次函数的解析式.
解:设一元二次函数的解析式为 y=a(x+1)2+k(a≠0),
+ = ,
数y=f(x)的最值.
解:y=x2-4x-4=(x-2)2-8在区间[-3,2]上单调递减,在区间[2,4]上
单调递增,所以f(x)的最小值为-8.
又因为x=-3时,y=17,x=4时,y=-4,所以f(x)的最大值为17.
养.
一、二次函数的配方法
【问题思考】
1.y=4x2-4x-1如何配方?你能由此求出方程4x2-4x-1=0的根吗?
提示:y=4(x2-x)-1
=4 - ×
=4
+
- -2.
能求出方程的根,令 4
-1
-2=0
解法1:y>0对∀x∈[1,+∞)恒成立,等价于x2+2x+a>0对
∀x∈[1,+∞)恒成立.
设g(x)=x2+2x+a,x∈[1,+∞),那么问题转化为g(x)>0在
x∈[1,+∞)上恒成立,又g(x)在区间[1,+∞)上单调递增,从而
g(x)min=3+a.
于是当且仅当g(x)min=3+a>0,即a>-3时,g(x)>0对x∈[1,+∞)
任意三点时,设一般式;抛物线的顶点坐标常设顶点式;抛物线
与x轴的交点或交点的横坐标时,常设两根式.
【变式训练1】 一元二次函数的图象的对称轴是直线x=-1,
并且经过点(1,13)和(2,28),求一元二次函数的解析式.
解:设一元二次函数的解析式为 y=a(x+1)2+k(a≠0),
+ = ,
数y=f(x)的最值.
解:y=x2-4x-4=(x-2)2-8在区间[-3,2]上单调递减,在区间[2,4]上
单调递增,所以f(x)的最小值为-8.
又因为x=-3时,y=17,x=4时,y=-4,所以f(x)的最大值为17.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 函数——一元二次函数与一元二次不等式
知识巩固
判别式Δ=b2-4ac 二次函数y=ax2+bx+c (a>0) 的图像
“三个二次”:二次函数、二次方程、 二次不等式间的主要关系。
Δ>0 Δ=0 Δ<0
x1
x2
x1=x2 有两个相等实 根 b
二次方程ax2+bx+c=0 (a≠0)的根
有两个相异实根
4ac b 2 [ , ) 4a
实数集R
4ac b 2 (, ] 4a
( , 增区间: ( 减区间:
单调性
b , ) 2a b ( , ) 减区间: 2a ( 增区间:
b , ) 2a
b ) 2a
第二章 函数——一元二次函数与一元二次不等式
二次函数的图像与性质
第二章 函数——一元二次函数与一元二次不等式
知识回顾
函数的性质
1、函数的单调性
如果函数y=f(x)在区间(a,b)上是增函数或是减函 数,那么就说函数y=f(x)在区间(a,b)内具有单调性 , 区间(a,b)叫做函数y=f(x)的单调区间。
2、函数的奇偶性
如果一个函数f(x)是奇函数或偶函数,那么我们就 说函数f(x)具有奇偶性。
第二章 函数——一元二次函数与一元二次不等式
知识学习
2
观察一元二次函数的图像性质
y 3( x 1) 2
y 3x 1 2
2
y
y 3x 1 2
2
y 3x 2
y 3x 1 2
2
y 3x 1
2
X=1
第二章 函数——一元二次函数与一元二次不等式
x h时,ymax k
在对称轴左侧,y随x的增大而减小 在对称轴右侧,y随x的增大而增大 在对称轴左侧,y随x的增大而增大
b 4ac b 2 x 时,ymin 2a 4a b 4ac b 2 x 时,ymax 2a 4a
y y x x
增 减 性
a>0
a<0
在对称轴右侧,y随x的增大而减小
抛物线
y a( x h)2 k
y ax2 bx c
b 4ac b 2 ( , ) 2a 4a
开口方向 当a>0时开口向上,并向上无限延伸;当a<0时开口向下,无限延伸. 顶点坐标 对称轴 (h,k)
直线 x h
直线 x
b 2a
a>0
最 值 a<0
x h时,ymin k
第二章 函数——一元二次函数与一元二次不等式
2.3.1 一元二次函数
沧州工贸学校
第二章 函数——一元二次函数与一元二次不等式
知识要点
一元二次函数的概念 一元二次函数的图像 【重点】顶点坐标的求解
【难点】单调区间的的判断
【教法】自学辅导法、讨论法、讲授法
【学法】归纳——讨论——练习 【教学手段】多媒体电脑与投影仪
②、 y ax2 bx c(a 0) ③、 y a( x x1 )(x x2 )(a 0)
(顶点式)
(一般式)
(交点式)
第二章 函数——一元二次函数与一元二次不等式
知识学习
2、二次函数 y=ax2+bx+c(a≠0) 的图像与性质:
a0
图像
a0
定义域
值域
实数集R
1
(1,-4)
第二章 函数——一元二次函数与一元二次不等式
知识学习
一元二次函数的性质
定义域:R 图像:一条抛物线
顶点坐标:
对称轴:
b 4ac b 2 ( , ) 2a 4a
b x 2a
第二章 函数——一元二次函数与一元二次不等式
知识学习
二次函数的几种表达式:
①、 y a( x h)2 k (a 0)
知识学习
写出二次函数 的图象.
观察一元二次函数的图像性质
-1 0 1 0 -3 -4 2 3 -3 0 4 7
…
…
的顶点坐标,对称轴,并画出它 y x2 2x 3
x y
…
…
-2 7
当x为பைடு நூலகம்时,y=0?
x2 2x 3 0
N
M
x=-1, x=3
即:当x2-2x-3=0时,有
x=-1, x= 2 3
知识总结
a
二次函数y=ax2+bx+c(a≠0)的系数a, b,c,△与抛物线的关系。
a决定开口方向:a>0时开口向上, a<0时开口向下
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧 a,b a、b异号时对称轴在y轴右侧 b=0时对称轴是y轴 c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴 c c=0时抛物线过原点 c<0时抛物线交于y轴的负半轴
△
△决定抛物线与x轴的交点:△>0时抛物线与x轴有两个交点 △=0时抛物线与x轴有一个交点 △<0时抛物线于x轴没有交点
第二章 函数——函数的性质
课后练习 作业
P38 练习2.3.1 1、2、3题
b b 2 4ac x1,2 2a
x1 x2
没有实根
2a
实数集R
二次不等式ax2+bx+c>0 {x | x x1或x x2 } (a>0)的解集
二次不等式ax2+bx+c<0 (a>0)的解集
b {x | x } 2a
{x | x1 x x2 }
φ
φ
第二章 函数——函数的性质
知识学习 例题
求二次函数y=x2+x-2的图像与x轴的交点坐 标,并求出函数的单调区间和最值。 解:令y=0,则x2+x-2=0. 解得:x1=-2, x2=1
所以,二次函数y=x2+x-2的图像与x轴的交点 坐标是(-2,0)和(1,0)
第二章 函数——函数的性质
第二章 函数——一元二次函数与一元二次不等式
知识回顾
初中接触过的一元二次函数
例如:y=2x2-3x+1 例如:y=-x2-x+2 例如:y=x2的图像
第二章 函数——一元二次函数与一元二次不等式
知识学习
一元二次函数的概念
一般地,如果y=ax2+bx+c(a、b、c是常数, a≠0),那么y叫做x 的一元二次函数。 其中,a是二次项系数,b是一次项系数, c是常数项。
知识学习 例题
求函数的单调区间和最值。 1、y=x2+2x-1的图像
b 1 所以: 2a 2
4ac b 2 9 4a 4
1 增区间为 ( , ) 2 1 (, ) 2
函数的减区间为
9 1 y 因为a>0,所以当 x 2 时,函数有最小值 max 4
第二章 函数——函数的性质
o
2 (1,-1)
第二章 函数——函数的性质
知识巩固 练习
求函数的最大值或最小值 1、y=x2+2x-1 2、y= -x2+2x-1 3、y= x2-4x+3
第二章 函数——函数的性质
知识巩固 练习
求函数y=x2+2x-1的图像与x轴 交点坐标, 并写出顶点坐标、对称轴、单调区间和最值。
第二章 函数——一元二次函数与一元二次不等式
知识学习 例题
作二次函数y=x2-2x的图像。 解:函数的定义域为R,顶点为(1,-1),对称轴为 x=1,在定义域内取几个值,列表如下:
x y=x2-2x …… …… -1 3 0 0 1 -1 2 0 3 3 …… ……
以表中的x值为横坐标,y值 为纵坐标,在直角坐标系中 作出相应的点,用光滑的曲 线联结这些点,得到函数的 图像。