研究论文:浅谈数学中的美
数学系毕业论文《浅谈数学中的美》
数学系毕业论文《浅谈数学中的美》第一篇:数学系毕业论文《浅谈数学中的美》哈尔滨师范大学本科毕业设计(论文)哈尔滨师范大学本科毕业设计(论文)自然的终极秘密是用一种我们还不能阅读的语言书写的,数学为这种原文提供了注释。
其中数学美感和审美能力是进行一切数学研究和创造的基础。
数学追求的目标是:从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。
数学的无穷无尽的诱人之处还在于,它里面最棘手的悖论也能盛开出魅力的理论之花。
数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。
数学具有简洁美、和谐美、奇异美等特征,但数学美却蕴藏于它所有的抽象符号、严格语言、演绎体系中。
英国著名数学家B-A-W-罗素(1872—1970)曾说过:“数学,如果正确的看它,不但拥有真理,而且也具有至高的美。
正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面。
这种美虽然没有音乐或绘画的那些华丽的装饰,但是它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地”。
数学就是这样一门“既美而真”的学科。
【关键词】:美;空间;二进制;黄金分割;杨辉三角;【正文】:一、简洁美简洁美是数学的重要标志。
数学的语言是最简洁的语言,用最哈尔滨师范大学本科毕业设计(论文)简洁的方式揭示自然的客观规律,这正是数学最迷人的所在。
爱因斯坦说过:“美,本质上终究是简单性”。
他还认为,只有借助数学,才能达到简单性的美学准则。
物理学家爱因斯坦的这种美学理论,在数学界也被多数人认同。
朴素、简单,是其外在形式。
只有既朴实清秀,又底蕴深厚,才称得上至美。
世事再纷繁,加减乘除算尽,宇宙虽广大,点线面体包完。
正是数学的这种简洁性,使人们更快更准确的把握理论的精髓,促进自身学科的发展,也使数学学科具有了很强的通用性。
目前数学已经成为了包括自然科学在内的所有科学的语言和工具。
为了更清楚地说明简洁美所导致的“真正的进步”,以二进位数制的建立为例来进行分析。
初中数学教学论文之数学的美
初中数学教学论文之数学的美第一篇:初中数学教学论文之数学的美初中数学教学论文之数学的美大范围结构也是近代数学发展的过程。
文学的局部到大范围,往往通过比兴的手法来处理:即对事物有不同的感受,同一事或同一物可以产生不同的吟咏。
对事物有不同的感受后,往往通过比兴的方法另有所指,例如“美人”有多重意思,除了指美丽的女子外,也可以指君主。
屈原《九章》:“结微情以陈词兮,矫以遗夫美人。
”也可以指品德美好的人,《诗经?邶风》:“云谁之思,西方美人。
”苏轼《赤壁赋》:“望美人兮天一方。
”而几何学和数论都有这一段历史,代数几何学家在研究奇异点时通过爆炸的手段,有如将整个世界浓缩在一点。
微分几何和广义相对论所见到的奇异点比代数流形复杂,但是也希望从局部开始,逐渐了解整体结构。
数论专家研究局部结构时则通过素数的模方法,将算术流形变成有限域上的几何,然后和大范围的算术几何对比,得出丰富的结果。
此外,数学家对某些重要的定理,也会提出很多不同的证明。
例如勾股定理的不同证明有10个以上,等周不等式亦有五六个证明,高斯则给出数论对偶定律6个不同的看法。
不同的证明让我们以不同的角度去理解同一个事实,往往引导出数学上不同的发展。
这也可算是局部到大范围的一个例子。
著名数学家陈省身先生曾不止一次地提出:“数学是美的。
”数学的美体现在方方面面,也许美在她是探求世间现象规律的出发点,也许美在她用几个字母符号就能表示若干信息的简单明了,也许美在她大胆假设和严格论证的伟大结合,也许美在她对一个问题论证时殊途同归的奇妙感受,也许美在数学家耗尽终生论证定理的锲而不舍,也许美在她在几乎所有学科中的广泛应用。
而美的数学,在自古崇尚诗书传世的中国,竟也浸染着扑鼻的书香。
中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样颜色,这就是数学的文采。
自然美刘勰《文心雕龙》以为文章之可贵,在尚自然。
文章是反映生活的一面镜子,脱离生活的文学是空洞的,没有任何用处。
研究论文:探析数学中的美
67770 数学论文探析数学中的美人们对于美好的事物总是不由自主的追求,如果你感到数学枯燥、无聊,那一定就是你没有尝试探索数学的美。
数学拥有着巨大的能量,它美丽诱人,神奇多变。
发现了数学的美,你就会深深的被数学的五彩缤纷所吸引。
历来有多少科学家为数学倾注了毕生精力,在数学的世界里不断的探索着未来。
“美”与数学同在,我们只有怀着一颗求美之心去了解数学,才能真正的感受到数学之“美”的博大精深与千变万化。
一、自然数与毕达哥拉斯数学中的自然数看似平常无奇,但只要我们深入研究,就会发现这些自然数中是蕴含着巨大的宝藏的。
自然数是人类对数学认识的开端,古希腊的毕达哥拉斯学派在自然数研究方面有着非常高的造诣,毕达哥拉斯认为“凡物皆数”:世界的秩序就是数,自然世界与数字是和谐统一于数的。
当他将数字的奇幻与美妙呈现在世人面前时,人们皆赞叹不已。
有人曾经问他:“交朋友跟数字有什么联系?”他回答:“朋友是灵魂的倩影,就像220和284一样亲密。
”人们不解的询问缘由,他说:“数字220的全部真因子1、2、4、5、10、11、20、22、44、55、110之和是284;而数字284的全部真因子1、2、4、71、142之和又恰好是220,这是亲密无间的亲和数。
真正的朋友正像这两个数字一样。
众人们无不被亲和数的“亲密无间”之美妙所感染、折服。
二、数学之简洁美爱因斯坦认为美的本质是简单性,他说:“只有借助数学,才能达到简单性的美学标准”。
他的这种美学观念和理论,在科学界有着较广泛的认同度。
当朴素、简单的外在形式与深厚底蕴相结合,就能形成为强烈的美。
我们看到,数学的理论、概念、公式都是非常简洁的,这些简洁的概括中又蕴含着整个世界的道理和完美性,这种简洁中就透着实在的美感。
在圆周长公式C=2πR 中,不论这世界上有多少个圆,他的周长C都和半径R都遵循这一规律,这一简单的公式就将圆的共性一笔概括。
数学中,又有多少这样实用而深刻的概括和公式呢?我想是数不尽数的。
数学之美征文
数学之美征文数学之美数学是一门古老而神奇的学科,它以其精确性和逻辑性而被广泛认可。
数学的美不仅仅体现在其应用和解决问题的能力上,更体现在其深刻而优雅的理论构建和思维方式上。
本文将探讨数学之美的不同方面,从数学的应用、数学的美学和数学的哲学角度来展开讨论。
一、数学的应用之美数学在现实生活中的应用无处不在,它为我们提供了解决问题的工具和方法。
从日常生活中的计算到科学研究中的模型构建,数学都扮演着重要的角色。
例如,在物理学中,数学为我们提供了描述自然界的规律和现象的语言;在经济学中,数学为我们提供了分析市场和预测趋势的工具;在工程学中,数学为我们提供了设计和优化系统的方法。
无论是在自然科学领域还是社会科学领域,数学都发挥着不可或缺的作用。
数学的应用之美还体现在它能够帮助我们解决实际问题的能力上。
通过数学的建模和推导,我们可以将复杂的问题简化为数学问题,进而利用数学方法进行求解。
数学的抽象思维和逻辑推理能力使得我们能够更好地理解问题的本质并找到解决问题的途径。
数学的应用之美在于它能够将抽象的数学理论与实际问题相结合,为我们提供切实可行的解决方案。
二、数学的美学之美数学的美学之美体现在其内在的结构和形式上。
数学的公理、定理和推导构成了一个严密而完整的体系,这种逻辑的结构给人一种美的享受。
数学的美学之美还体现在其简洁而优雅的表达方式上。
数学家们通过简练的符号和精确的定义来描述数学概念和关系,这种简洁性使得数学具有一种美的审美价值。
数学的美学之美还体现在其对称性和对应关系上。
在数学中,对称性是一种重要的美学原则,它体现了一种平衡和和谐的美感。
例如,对称图形和对称函数都给人以美的享受。
数学中的对应关系也是一种美的表现,例如,几何中的相似三角形和代数中的函数对应关系都呈现出一种美的结构。
三、数学的哲学之美数学的哲学之美体现在它对真理和存在的探索上。
数学是一种纯粹的思维活动,它通过逻辑推理和严密证明来寻求真理。
数学家们通过数学的推导和证明来揭示事物之间的内在联系和规律,这种追求真理的精神给人以一种哲学上的启迪。
浅谈数学中的美 毕业论文
浅谈数学中的美毕业论文引言数学是一门美妙而神奇的学科,在我们生活的方方面面都有着它的身影。
人们常常将数学称为“科学之王”,并把它与科学、技术、工程和数学等科目合并成STEM教育。
数学涉及到形式化、逻辑、几何、代数、分析等学科,是一种可以用语言、符号、图表和计算机程序描述的表达方式。
在数学领域中,有许多奇思妙想,而恰恰是这些奇思妙想赋予了数学以不可复制的美。
数学与美可大有关联。
在物理、化学、计算机科学等科学领域,数学被广泛地应用,以解决模型建立和模拟问题。
而数学在这些领域中所起到的美学作用也是不可忽视的。
本文将通过分析数学中的一些应用和美学,从多个方面展现数学中的美。
一、数学中的美学1. 对称性对称性是数学中最基本、最普遍的美学思想之一,约束着我们所处的世界。
它们不仅存在于几何中,还存在于代数、分析以及其他领域。
对称性是我们通常所称的“美学”,也是当代数学研究和教学的重要组成部分。
在数学中,这种美学体现在通过某种方式使事物的各个部分构成相互对称的形状,进而创造出一种和谐美感。
例如:菲莎围绕一个中心旋转1/7圈后的图形,一共有七个位置对称的小菱形。
2. 简单性在数学中,简明扼要是非常重要的,这种简单性不仅在公式推导中体现,而且在模型构建和实现中也同样显著。
数学偏向于使用简单的公式或规律来解决复杂的数学问题。
例如,在证明某个公式的基本定理时,数学家通常会发现通过简单的数学思想可以证明它;又比如,流行的图形推理游戏和数学竞赛中,简单的规则和模式可以帮助我们解决最难的问题。
简单性的价值在于,它可将数学概念从繁复和冗长的公式中解放出来,从而显示出“大部分数学是简单的”这一事实。
3. 矢量矢量在数学中很有用,因为它能帮助我们理解力学、电磁学、流体力学等物理学、工程学、计算机科学中的重要概念。
矢量的美在于,它能够用几何方法直观地表示出方向、旋转和平移等概念。
此外,矢量也为计算机生成图像、建筑设计、航空航天工程等领域提供了可靠的数学工具。
大学生数学毕业论文
目录摘要 (1)一、数学之美 (2)1.数学与哲学 (3)2.数学的简洁美 (3)3。
数学的对称美 (3)4.数学的和谐美 (4)5.数学的奇异美 (5)6.数学的统一美 (5)二、数学美的作用 (5)三、数学审美能力的培养 (6)四、数学审美感知能力的培养 (6)五、数学审美想象力的培养 (7)六、数学审美评判能力的培养 (7)总结 (8)浅析数学中的美摘要我们从小就开始接触和学习数学这一学科,它在我们的学生生涯中占了很重的位置.一方面往往把数学理解成很枯燥乏味的东西,对它丝毫没有兴趣,一连串的数字和一排排的公式,是我们对数学这门学科的直观认识,甚至一提起数学这两个字,很多同学就会犯困犯晕.然而,在另一方面,我们都有这样的体验,很多人都以能否学好数学来判断自己是否足够聪明,如果数学学不好,就会自信全无,甚至影响自己学习其他课程的热情.所以很多人的学习生涯,都是伴随着数学这一学科成长起来的.科学家说数学就是科学,哲学家说数学就是真理,艺术家说数学就是艺术.那么数学到底是什么呢,它真那么令人头痛吗?曾经有人说过,科学、艺术和哲学,好比金字塔底部的三个点,顺着那条线不断上升,就会越来越接近,最后到达顶点,变得完美。
亦即三者是可以和谐统一的。
比如我国著名数学家华罗庚就说过数学也是艺术之类的话。
20世纪最伟大的科学家爱因斯坦也说过,科学的艺术就是美的艺术,看来,数学并不是那么的枯燥乏味,如果我们能够拥有一颗审美之心去看待它的话,数学也可以是美的。
那么美是什么?可能仁者见仁,智者见智。
西方哲学家康德绕开这个问题,提出:审美是什么?他认识到的美是能够使我们内心产生愉悦的且不受客观世界影响亦即不受现实价值观等的自然的比较主观的东西。
现在就让我们抛却对数学的成见,带着一颗纯粹的审美之心,一起去发现数学中存在的美吧.关键词:简洁美;,统一美;协调美,对称美;奇异美、数学美的作用。
当你倘佯在音乐的殿堂,聆听优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“语不惊人死不休”的绝妙语句,一定能够领悟文学带给你的的“美”……美的事物,总是为人们乐意醉心追求的。
数学中的数学之美
数学中的数学之美数学,作为一门古老而又深奥的学科,一直以来都给人们带来无尽的探索和惊喜。
在数学的世界中,有着一种特殊而又独特的美感,被称之为“数学之美”。
这个概念源自于数学家吴军的著作《数学之美》,它揭示了数学与现实之间的美妙联系和奇妙的智慧。
本文将探讨数学中的数学之美,并举例说明其在几个重要数学领域的应用。
一、对称美数学中的对称美是数学之美的一种表现形式。
数学中的对称以及对称性在整个自然界都有着广泛的应用。
在几何中,我们可以看到各种各样的对称图形,如正方形、圆和螺旋线等。
而对称性的思想则进一步应用到代数中,如群论、格论等领域。
二、简洁美数学中的简洁美是指数学概念和原理能够用简洁而优美的方式表达出来。
数学家们通过推理和证明,将复杂的数学问题转化为简单的公式和方程,使得数学问题更具可读性和可解性。
例如,欧几里得几何学的五条公理,以及爱因斯坦的质能方程E=mc²,无一不展示着数学中的简洁美。
三、深邃美数学中的深邃美是指数学中的某些理论和定理能够揭示出人类观察和思考所无法达到的深邃世界。
高维几何、复数理论以及数论等领域都体现了这种深邃美。
例如,费马大定理和哥德巴赫猜想,这些问题困扰数学家数百年之久,却也催生出了一系列重要的数学发现和创新。
四、普适美数学中的普适美是指数学在各个学科和领域中都具有普适性和广泛的应用。
数学无处不在,从物理学到化学,从经济学到生物学,数学都能够为这些学科提供理论基础和工具方法。
例如,微积分的发展为物理学和工程学等提供了核心的数学工具,线性代数和概率论则为计算机科学和统计学等领域提供了基础。
总的来说,数学中的数学之美包含了对称美、简洁美、深邃美和普适美等多个方面。
这些美感在数学领域中的应用和发展中起到了重要的推动作用。
同时,数学之美也激发和启迪了人们对数学的兴趣和热爱,促进了数学教育和研究的发展。
数学,作为一门独特的语言和思维方式,不仅仅存在于数学书籍和公式中,更贯穿于人类的思维和生活的方方面面。
谈谈数学中的美
谈谈数学中的美谈谈数学中的美【】“哪里有数学,哪里就有美”。
只要我们用心体会,它们就会呈现出来,给我们以美的享受。
有:简洁美;符号美,抽象美,统一美;协调美,对称美;公式的普遍性;应用的广泛性;奇异美等。
【】美,符号,黄金分割,对称当你倘佯在音乐的殿堂,聆听那优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地,泣鬼神”的绝妙语句,一定能够领悟文学带给你的的“美”……其实,“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价.数学中同样存在着能够启迪智慧,陶冶情操的“美”。
数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。
下面结合初等数学谈谈我对数学美的理解。
1数学概念的简洁美数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。
如代数中因式分解的概念:把一个多项式分解成几个整式乘积的形式。
几何中线段垂直平分线的概念:“垂直于这条线段并且平分这条线段的直线等。
如:如在《图的初步知识》教学中,可以先让学生去探究过两点的直称图形。
这些性质使正方形获得了人们的喜爱和广泛应用。
如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。
人们也喜欢用正方形图案美化环境。
比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。
毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。
”因为这两种图形在任何方向上看都是对称的。
其实在我们身边随处可见根据对称设计的东西。
小到一块橡皮、一只球拍,大到一架飞机、一座建筑。
著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。
4公式的普遍性世界上存在着无数形状不同、大小不一的三角形,但面积公式S=1/2ah适用于一切三角形面积的计算,这也是数学美的具体体现。
数学数学之美
数学数学之美数学,是一门研究数量、结构、空间以及变化的学科,被誉为“科学之王”。
它的美不仅体现在它的创新性和深度上,更体现在它对现实世界的解释和应用中。
本文将讨论数学之美的几个方面,包括数学的逻辑美、形式美以及实用美。
1. 数学的逻辑美数学是一门严谨的学科,它追求准确性和逻辑性。
数学中的每个定理和推理都经过严格的证明和推导,不容忽视任何细节。
这种严谨性使得数学具有独特的美感,让人感受到逻辑的严密和真理的美妙。
数学的逻辑美可以通过各种公式、定理和证明来展示。
例如,费马定理的证明以及勾股定理的几何证明都展现出了数学中的逻辑美。
2. 数学的形式美数学具有独特的形式美,其美感来自于数学中的符号、图形和模式。
数学中的符号和公式可以简洁地表达复杂的概念和关系,让人们可以通过简单的方式处理复杂的问题。
数学中的图形可以展示出数学中的对称性和几何结构,例如,圆的完美形状以及分形图形的奇特之美。
数学中的模式则是一种重复出现的规律,让人们感受到宇宙中数学的普遍性。
所有这些形式美共同构成了数学的美妙之处。
3. 数学的实用美数学不仅有理论上的美,还有实际应用上的美。
数学通过建立模型和推导规律,为解决现实问题提供了有力的工具。
无论是物理学中的数学模型,经济学中的数学预测,还是工程学中的数值计算,数学都发挥着不可替代的作用。
数学的实用美体现在它能够解决实际问题、优化决策,并推动科技的发展。
没有数学的支持,现代社会的许多成就将无法实现。
综上所述,数学之美体现在它的逻辑美、形式美和实用美上。
数学追求严谨的逻辑性,让人们感受到真理的美妙;数学的符号、图形和模式展示了独特的形式美;数学的应用使得它在实际问题的解决中发挥出实用美。
正是数学的美妙之处,让人们对这门学科充满了无尽的探索与热爱。
我眼中的数学美3篇
我眼中的数学美第一篇:数学的美在哪里?数学是一门最基础的学科,是科学发展的基石,也是现代社会不可或缺的一部分。
数学美是多维度的,从基础的数学符号到复杂的数学公式,数学展现出了一种无与伦比的审美和美感。
首先,数学的美在于它的简洁性。
数学用极简的符号与语言表达复杂的概念,这种极简的表达方式不仅让人们更容易理解,而且还是一种美的体现。
例如,用一个小数点和无限数列来表示圆周率这一复杂无比的数字,简明的表达方式令人惊叹。
另一方面,数学公式通常也是非常简洁的。
事实上,有些数学公式只有几个符号,却能描述出很多现象和规律,这种极简的美感是其他学科所无法比拟的。
其次,数学的美在于它的规律性。
数学中不仅有数字、符号和公式等基础元素,还包括一系列的规律和定理。
这些定理和规律具有普适性和连续性,例如黄金分割比、费马小定理等,这些规律性的数学公式揭示了大自然中形形色色的规律,也体现了一种普遍性和优美性。
最后,数学的美在于它的创造性。
数学是一门富有创造性和发现性的学科。
从简单的加减乘除到高深的微积分、流形等,都是自然界和人类社会深刻的思考结晶。
在数学中,每个公式和定理的诞生都是数学家们不断思考和推理的产物。
这种创造性也使得数学成为了一门艺术,而这种艺术的美感又既超越了时间和空间的局限,又具有学问的深刻性。
数学的美并不是简单地可以用语言表达,往往需要通过实际体验来感受。
就如同艺术家可以用画笔或者音乐器来表现他们内心深处的美感,数学家则可以用数学来实现他们对于美的诠释和表达。
数学是一门独特而强大的语言,用它来交流和呈现美感是非常特殊的。
综上所述,数学的美在于其简洁性、规律性和创造性。
数学家们在追求数学真理的同时,也追求着数学之美,这种美既具有个体内在的美感,又具有社会共识的美感,是一种文化和知识的共通性。
探析数学中的美
探析数学中的美【摘要】数学是一门充满美感的学科,它与艺术有着密切联系。
在数学中,几何美展现了形状和空间的和谐与美感,对称美体现了对称性的完美和平衡,数列美则体现了规律和序列的美感。
公式美则是数学中的精华所在,表达了数学规律的简洁和优美。
而图形美则是数学中的视觉享受,呈现出各种优美的形状和结构。
数学美的丰富性体现在它包含了多种形式的美感和表达方式,不仅仅是数字和符号的组合,更是一种深刻的思维方式和抽象的表达。
数学美的启发性在于它激发人们对于规律和美感的追求,引导我们探索未知和发现新的奇妙之处。
数学美的普遍性则在于它超越文化和语言的界限,是世界上共通的理性和美感的表达。
数学美既是一种观念,也是一种体验,它在我们生活中无处不在,给我们带来无限的思考和创造的可能。
【关键词】数学的美、数学与艺术的联系、数学中的几何美、数学中的对称美、数学中的数列美、数学中的公式美、数学中的图形美、数学美的丰富性、数学美的启发性、数学美的普遍性1. 引言1.1 数学的美在数学这门学科中,人们往往习惯将其视为一种抽象而又枯燥的学问,但其实数学中蕴含着许多美的元素。
数学的美不仅体现在它那优美的定理和精妙的证明过程中,更体现在数学与艺术之间的紧密联系中。
数学和艺术都追求着一种“美”的境界,二者相辅相成,相互交融,共同构建出了一幅丰富多彩的美丽画卷。
数学的美源自于它那严密的逻辑和优美的结构。
数学家们通过逻辑严密的推理和精确的符号表达,揭示了世界的奥秘,揭示了自然界中那些隐藏的规律和模式。
而这种逻辑的美、结构的美,正是数学所独有的。
数学中的美还可以在其抽象的概念和形式化的表达中找到,这种抽象美和形式美,使人们领略到数学之美与众不同的一面。
数学与艺术之间的联系也体现了数学的美。
数学的几何学、代数学等分支在艺术中有着广泛的应用,比如黄金分割比例在建筑、绘画中的运用,菲波那契数列在音乐、绘画中的表现等。
数学的美不仅体现在其抽象的定理和结论中,更表现在它与艺术的结合中。
浅谈数学中的美
毕业论文(函授)浅谈数学中得美年级:13届学号:姓名:专业:指导教师:二零一三年四月院系数学系专业数学教育年级 xx级数学(xx)班姓名 xx题目浅谈数学中得美指导教师评语指导教师 (签章)评阅人评语评阅人 (签章)成绩答辩委员会主任 (签章)年月日浅谈数学中得美【摘要】:自然得终极秘密就是用一种我们还不能阅读得语言书写得,数学为这种原文提供了注释。
其中数学美感与审美能力就是进行一切数学研究与创造得基础。
数学追求得目标就是:从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。
数学得无穷无尽得诱人之处还在于,它里面最棘手得悖论也能盛开出魅力得理论之花。
数学美得魅力就是诱人得,数学美得力量就是巨大得,数学美得思想就是神奇得。
数学具有简洁美、与谐美、奇异美等特征,但数学美却蕴藏于它所有得抽象符号、严格语言、演绎体系中。
英国著名数学家B-A-W-罗素(1872—1970)曾说过:“数学,如果正确得瞧它,不但拥有真理,而且也具有至高得美。
正像雕刻得美,就是一种冷而严肃得美,这种美不就是投合我们天性得微弱得方面。
这种美虽然没有音乐或绘画得那些华丽得装饰,但就是它可以纯净到崇高得地步,能够达到严格得只有最伟大得艺术才能显示得那种完美得境地”。
数学就就是这样一门“既美而真”得学科。
【关键词】:美; 空间; 二进制; 黄金分割; 杨辉三角;【正文】:一、简洁美简洁美就是数学得重要标志。
数学得语言就是最简洁得语言,用最简洁得方式揭示自然得客观规律,这正就是数学最迷人得所在。
爱因斯坦说过:“美,本质上终究就是简单性”。
她还认为,只有借助数学,才能达到简单性得美学准则。
物理学家爱因斯坦得这种美学理论,在数学界也被多数人认同。
朴素、简单,就是其外在形式。
只有既朴实清秀,又底蕴深厚,才称得上至美。
世事再纷繁,加减乘除算尽,宇宙虽广大,点线面体包完。
正就是数学得这种简洁性,使人们更快更准确得把握理论得精髓,促进自身学科得发展,也使数学学科具有了很强得通用性。
浅谈数学之美
浅谈数学之美【摘要】数学在现代社会中扮演着重要的角色,其美妙的特质也让人们感受到无限魅力。
从数学的基本原理到应用领域,数学之美的表现形式多种多样。
数学的发展历程和人类文明的关系密不可分,彰显了数学的永恒价值。
数学之美的无限魅力激发着人们对知识的渴望,反映着人类对美的追求。
数学之美不仅是一种自然规律的展示,更是一种灵感的来源。
数学之美的启示深远而且珍贵,值得我们去深入探索和思考。
通过对数学之美的欣赏和理解,我们能够更好地领悟世界的奥秘,感受到数学所带来的无限力量和智慧。
数学之美的涵盖范围广阔,其在各个领域中的应用也展现出了其不可替代的重要性。
【关键词】数学,美,重要性,现代社会,基本原理,应用领域,表现形式,发展历程,人类文明,无限魅力,永恒价值,启示。
1. 引言1.1 数学在现代社会中的重要性数学在现代社会中的重要性不可忽视。
在当今社会,数学几乎无所不在,它渗透着各个领域,发挥着重要的作用。
数学在科学领域的应用是不可替代的。
无论是物理学、化学、生物学还是工程学,都离不开数学的支持和推动。
数学为科学研究提供了必要的工具和方法,帮助科学家们探索未知的领域,推动科学的发展。
数学在经济和金融领域的应用也是至关重要的。
金融数学帮助我们理解金融市场的运作规律,进行风险管理和投资决策;经济学家利用数学模型来分析经济现象,预测经济走势,制定政策。
数学在信息技术领域的应用也是不可或缺的。
密码学、数据压缩、图像处理等领域都需要数学知识的支持,数学为信息技术的发展提供了坚实的基础。
数学在现代社会中扮演着重要的角色,没有数学就无法想象现代社会的发展和进步。
1.2 数学之美的由来数学之美的由来可以追溯到古代,当时人们开始系统地思考数学问题,并发现了数学中的一些美妙而深刻的规律。
数学之美的由来主要有以下几个方面。
数学之美的由来可以追溯到人类对自然界规律的探索。
古人通过观察自然界的现象,发现了许多规律性的现象,比如日月运行、植物生长等。
数学中的美_论文
数学中的美摘要:通过认识发现数学中的美,如:黄金数、勾股定理、美妙的对称等,让学生感悟到数学中有很多美的东西,使学生变“苦学”为“乐学”。
这样不仅陶冶了情操,又让学生发现感受到数学的美,从而激发了学生的学习兴趣。
关键词:和谐;黄金数;勾股定理;对称美随着数学的深入发展,人们逐渐地认识到:数学的发展与人类文化休戚相关,数学一直也是人类文明的文化力量。
在数学教材中,蕴涵着丰富的数学美,认识数学的美,有利于提高学生学习的兴趣,能增强学生的数学解题能力和数学思维。
一、黄金数两千多年前,古希腊数学家欧多克斯发现:如果将一条线段(AB)分割成大小两段(AP、PB),若小段与大段的长度比恰好等于大段长度与全长之比的话,那么这一比值等于…,用式子表示就是PB:AP=AP:AB=…建筑师们对数字…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都是与…有关的数据。
人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的…处。
艺术家们认为弦乐器的琴马放在琴弦的…处,能使琴声更加柔和甜美。
因此大画家达•芬奇把…称为黄金数。
黄金分割在几何作图中有很多应用,如五角星的各边就是按照黄金分割划分的,圆的内接正十边形也能归结为黄金分割。
关于黄金分割还有很多应用,如摄影、建筑设计、音乐、艺术等。
二、古老的勾股定理勾股定理是初等几何中的一个基本定理,是人类最伟大的十个科学发现之王,西方国家称之为“毕达哥拉斯定理”,但远在毕达哥拉斯(公元前580或568—公元前501或500)出生之前,这一定理早已为人们利用,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。
希腊著名数学家毕达哥拉斯曾对本定理有所研究,故西方国家均称此定理为毕达哥拉斯定理。
我国又前也叫“毕达哥拉斯定理”,上世纪50年代曾开展关于这个定理命名问题的讨论,最后确定叫“勾股定理”。
3500年以前,巴比伦人就知道三边长为下列各数的一些三角形为直角三角形:120,119,169;3456,3367,4825;4800,4601,6649;13500,12709,18541;72,65,97;360,319,481;2700,2291,3541;960,799,1249;然而,当时为什么列出这些三角形,至今还是个谜。
浅谈数学之美
浅谈数学之美第一篇:浅谈数学之美浅谈数学之美姓名:学院:专业:学号:摘要:通过重新了解认识数学是什么或不是什么即对数学概念多方位的分析讨论与认识,发现数学之美,感受数学不同的美。
数学之美主要概括为:形式美、奇异美和方法美。
数学美是自然美的客观反映。
数学史自然科学的语言,具有一般语言文学与艺术所共有的美得特点,即数学在其内容结构上,方法上也都具有自身的某种美。
所谓数学之美,即数学中所蕴涵着的无穷魅力。
关键词:认识;形式美;奇异美;方法美引言:美是人类创造性实践活动的产物,是人类本质力量的感性显现。
通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。
数学美是自然美的客观反映,是科学美的核心。
简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。
数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。
一、重新认识数学关于数学最大的误区就是把数学看成自然科学。
对于一般人说这种分法似乎已经习惯成自然,主要表现在粗糙的学科分类中。
但二者还是存在明显的差异,例如,自然科学的本质是发现而数学的本质则是发明;自然科学目标为寻求对客观事实的解释而数学则是寻求概念之间的逻辑关系,其结果形成定理或算法等。
数学还与艺术存在共性与差异。
虽然表面上数学与其并无直接明显干系,但都具有创造性,强调原创性。
以显示为参照物却都突破了现实的局限。
二者的差异性也很明显,数学求真而艺术求美。
数学理解有程序性而艺术带有直观性。
由此我们看到了数学虽然与自然科学,艺术有共同特征。
但也存在相当的差别,数学不是自然科学,也不是艺术。
数学是一个具有内在统一性的科学技术群。
数学是一类知识,一种科学语言,一个工具,各门学科的基础,一门科学、艺术、技术,甚至为一种文化。
数学是研究现实世界中数与形之间的各种形式模型结构的一门科学。
二、数学之美(一)形式美数学美要求以最合理、最恰当的形式及最佳形式表现美的内容;在表现同一内容的众多形式中,力求选择一种最理想的表现形式;力求形式上的创新,不断地改造就形式,创造新的形势。
数学的美发现数学中的美妙之处
数学的美发现数学中的美妙之处数学的美——发现数学中的美妙之处数学是一门美妙的学科,它不仅仅是一种工具或者方法,更是一种思维方式和一门艺术。
本文将从几个方面探讨数学中的美妙之处。
第一,数学中的对称美。
对称是数学中常见的一个概念,它可以存在于各个领域中,如几何学、代数学等。
在几何学中,正多边形以及各种对称图形都是对称美的体现。
比如,六边形、八边形等正多边形都有旋转对称性和镜像对称性,这些对称性让人感受到几何图形的美感。
在代数学中,对称群是一个重要的概念,它描述了一种对象在某种变换下保持不变的性质,并在数学中扮演着重要的角色。
对称性的存在让数学与艺术相结合,形成了独特的美。
第二,数学中的规律美。
数学中存在着丰富多样的规律,这些规律对于数学家来说是一种美的追求和发现。
比如,斐波那契数列是一个具有美妙规律的数列,它的每一项都是前两项的和。
这个数列在自然界中也有广泛的应用,如植物的分枝结构、螺旋线等,这些都展示了数学规律的美感。
再比如,黄金分割是一个充满魅力的数学比例,它被广泛运用在艺术和建筑中,给人一种和谐、美妙的感觉。
数学的规律美让人们对世界的运行方式有了更深入的理解,也让人们对数学的美感有了更深层次的认知。
第三,数学中的证明美。
数学是一门具有严密逻辑的学科,证明是数学中的核心内容之一。
通过证明,数学家们能够揭示数学的真理,发现数学中的美。
一次成功的证明不仅仅是一个结论的证实,更是一种思维上的享受。
证明的过程需要逻辑推理、创造性思维和坚持不懈的努力,正是这些因素让证明具有了美感。
数学家们通过精妙而巧妙的推理,将一个个数学难题一一攻克,向我们展示了数学中的美妙之处。
第四,数学中的数学公式之美。
数学公式是数学中重要的表达方式,它们被广泛应用于各个领域。
数学公式的美在于它们简洁、精确、富有表达力。
比如,欧拉公式是一个闪耀着美光的数学公式,它将五个基本数学常数以一种简洁而优雅的方式融合在一起,这个公式被认为是数学中最美的公式之一。
数学之美论文
数学之美论文数学的美感在于它的简单、和谐、统一。
在数学的世界里,在无穷的问题赏析之下,会觉得情趣盎然,在美的熏陶下,会得到情感的共鸣和思启迪。
接下来店铺为你整理了数学之美论文,一起来看看吧。
数学之美论文篇一人类对数学的认识最早是从自然数开始的。
这看似极普通的自然数里面,其实就埋藏着数不尽的奇珍异宝。
古希腊的毕达哥拉斯学派对自然数很有研究,当他们将这数不尽的奇珍异宝的一部分挖掘出来并呈现于人类面前时,人们就为这数的美震撼了。
其实,“哪里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价。
一、简洁美数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。
如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条?然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。
欧拉给出的公式:V-E+F=2堪称“简单美”的典范。
世间的多面体有多少?没有人能说清楚。
但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
二、和谐美和谐是数学美的最高境界。
如果把数学比作一座殿堂,那么和谐性是其主要建筑特色,无论从局部或整体来看,都让人体会到平衡协调、相互呼应、浑然一体的美感。
欧拉公式:V-E+F=2 曾获得“最美的数学定理”称号欧拉建立了在他那个时代,数学中最重要的几个常数之间的绝妙的有趣的联系。
和谐美,在数学中多得不可胜数。
如著名的黄金分割比。
即0.61803398…。
“黄金分割”问题,为什么它被誉为“黄金”呢?黄金分割比在许多艺术作品中、在建筑设计中都有广泛的应用。
对于数学之美的理解和感悟
对于数学之美的理解和感悟数学之美是一门纯粹的科学,也是一门充满艺术性的学科。
数学的美不仅体现在其严密的逻辑和精确的计算中,更体现在数学所具有的一些独特特性和优雅的结构上。
数学之美深深地吸引着我,让我对数学充满了兴趣和热爱。
首先,数学之美体现在它的抽象性和普适性上。
与其他科学相比,数学更加虚幻、抽象,但正是这种抽象性让数学具有普适性。
数学不受时间和空间的限制,可以应用于各个领域和行业。
无论是物理学、化学、经济学还是计算机科学,数学都扮演着不可或缺的角色。
数学的抽象性使得它能够从具体的问题中提取本质,并用一种通用的语言来描述和解决问题。
这种抽象性和普适性使得数学成为了一种思维工具,提供了一种独特的解决问题的思路和方法。
其次,数学之美体现在它的逻辑性和精确性上。
数学世界中的每一个定理和推理都经过精确的证明和演绎,几何中的定理、代数中的公式、概率中的计算,每一个数学概念背后都有严谨而精确的逻辑。
这种逻辑性和精确性让数学变得纯粹而美丽,它不受主观意识的干扰,只凭借逻辑的推导和证明来构建自己的体系。
正是这种严密的逻辑和精确性,使得数学在自然科学中具有决定性的作用,也使得数学成为了一种受人尊崇的学科。
此外,数学之美还体现在它的对称性和美学上。
数学中的很多结构和关系都具有独特的对称性,这种对称性给人一种美的感觉。
例如,数学中的对称图形,如正方形、圆形等,具有无限延伸的美感,给人一种和谐、平衡的感觉。
还有数学中的各种关系,如等比数列中的比值、三角函数中的周期性等,都体现了数学的对称性。
这种对称性让数学变得优雅而美丽,也让人感受到了数学中的秩序和和谐。
对于我个人而言,学习数学给我带来了无尽的乐趣和满足感。
数学是一种思维方式,它训练了我的逻辑思维和分析能力。
在解决数学问题的过程中,我需要观察、分析、推理和总结,这些过程锻炼了我的思维能力和创造力。
数学问题的解法多样而独特,它不仅需要正确的思路和方法,还需要创造性地运用这种思路和方法来解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
84118 数学论文
浅谈数学中的美
马克思说过人类对美的追求的结晶就是社会的进步,换句话说就是,由于人类对美的渴望、对美的追求才促使了社会的发展。
的确如此,文明发展源于对美的向往,文明进步源于对美的追求。
数学是真理与美并存的一门科学。
但是数学美不像绘画美有华丽的装饰,也不像音乐美有婀娜的音符。
数学美是一种纯净的、高贵的、冷而严肃的美。
数学美是世界之美的原型,一切事物生存发展的本质特征就是对美的追求,拥有数学美感以及数学审美能力是进行数学研究和数学创造的前提基础。
简洁美。
先来看一个公式E=mc2,看似简单无奇实则寓意深远,它深刻揭示了从微观到宏观再到宇观的质能变化规律。
爱因斯坦对人类的贡献不用多说也是众所周知的,恰恰这个如此简单的式子就代表了相对论的精髓。
再来看我们都熟悉的数学数字1,1可以说是数学里面最为简单的数了,但是1却被视为万物的开端,世界的本源,整个世界都是由它派生而来,何其妙哉。
对称美。
圆,太阳的象征,“一切平面图形中最美的图形”;美不胜收的埃及金字塔;铜钱式的圆中方;美丽的“雪花”图案;无不表现出对称美以及和谐美。
我们知道这世间最美的立体图形和平面图形分别是球形与圆形。
大家会发现一个有趣的事,圆形不仅是中心对称图形还是轴对称图形,球形则是点对称、线对称、面对称图形。
当然不是只有几何中才有对称美,下列是对称的杨辉三角。
美吗?答案是明确的。
美,往往是无意间发现的,很多时候我们并不知道我们想要的美是怎样得来的,是想出来的还是算出来的,其实都不是,更多的是无意间发现的。
通过公式定理以及方程等的证明、绘图等,很容易得出以前未曾定义过的美。
如与与与的图像,对称是显然的,除此之外,中心处还有一朵小花,美吗?当然!
奇异美。
生活充满惊喜,数学充满奇异。
奇异,就是指新颖奇特,意想不到。
数学中的奇异存在于数学的每一个角落,利用简单的数学线条能够拼凑出简单的数学图形,也能够拼凑出姿态万千的图案,还可以勾勒出美不胜收的艺术珍品。
我们都知道,古希腊欧多克斯发现了
0.618,也就是所谓的黄金数,也就是人们常说的黄金分割比。
至此以后,有趣的事情发生了,0.618与人类结下了不
解之缘。
希腊女神体态轻柔优美,引人入胜,人们对其产生了浓烈兴趣,为什么她会如此之美呢?于是人们开始对她的身体进行研究,最后得出结论,结论表明她肚脐以下的高度与她整个身体的高度的比值刚好就是0.618。
画家、艺术家将0.618引入到自己作品当中,发现自己的作品变得更加和谐、美丽;当主持人站在舞台0.618处时,音响效果最好;人在气温为23℃左右,感觉最舒服,生理功能发挥最好。
惊奇吧,确实,不过这就是数学的奇异之美。
前面已经讲了几个奇异美的事例。
接下来再例举几种典型的奇异美。
就拿分形来说,数学分形艺术应用在生活中越来越普遍,其艺术美感不言而喻,其基础来源就是数学美拓展而来。
分形问题直观可操作,渗透了极限的思想和认识事物的方法,能够有效的刺激思维,带来惊喜,利用分形问题思想,制作美轮美奂的分形图像,美不胜收。
抽象美。
人们认识世界都是由具体事物到抽象概念,由感性认识到理性思考。
抽象美就是借助简单的数学符号把繁杂的数学内容明朗地简明扼要地体现出来。
如,引入极坐标公式,其中p表示焦点到准线的距离,e表示离心率。
如果,曲线为椭圆,如果,曲线为抛物线,如果,则表示双曲线。
极坐标将ρ,e,p,θ和谐的统一在同一个公式中,随e的变化而表示不同的曲线。
又如,欧拉公式:,当时,得欧拉等式:,数学家把视为最美公式,为
什么美,美在哪里呢?我们知道在数学中1、0代表算术,i代表代数,π代表几何,e代表分析。
欧拉等式用两个简单的数学符号将数学中五个最突出、最具有代表性的数结合在了一起,你说难道不美吗?它就像一座桥,沟通着三角函数与指数函数。
和谐美。
数学美中最为重要的特性便是和谐,和谐即雅致。
万物和谐万物生,万事和谐万事兴,和谐是世间一切事物的共同特点。
数学是一门严谨的科学学科,自然而然的处处展露出它的和谐。
点、线、面、体构成了所有的数学空间图形,这正是数学和谐美的特性所在。
和谐美感既是精细的,又是深邃的。
最著名的和谐美要数黄金分割,黄金分割一经提出就成为了人们喜爱的美的比例,被广泛应用于各个方面。
精妙绝伦的艺术珍品,硕果累累的科技成果,都与它存在着割舍不清关系。
上面说到希腊女神就遵循着这个黄金分割比;令人赞不绝口的美丽的花儿凭借的也是这个美的密码;就连跳芭蕾舞也依靠着它。
真的就是,哪里存在黄金数,哪里就有黄金美。
北京鸟巢可以说是和谐美的代表,相比鸟巢,还有一种比其更为奇异也更为和谐的美,那就是黄金分割美。
不仅如此,数学的和谐美还体现在数学的各种美之中。
各种美中都体现着和谐美,和谐美中也蕴含着其他美,它们的关系是辩证统一的,既互有交集又各有特别。
总之,数学中的美不胜枚举,远不止以上几种,有待于数学爱好者挖掘整理,这将对数学学科的发展起到重要的推动作用。