实验十 循环伏安法分析
10循环伏安法测定亚铁氰化钾

10循环伏安法测定亚铁氰化钾循环伏安法是一种重要的电化学分析方法,能够对材料的电子结构和化学反应进行表征。
本文将以亚铁氰化钾为例,介绍如何通过循环伏安法来测定其电化学性质。
一、原理循环伏安法通过在两个电极上施加一定电压,并记录电流随时间的变化,从而探测被测试物质的电化学性质。
具体来说,该方法的基本原理如下:当两个电极处于化学反应体系中时,它们之间的电压将导致一些电荷在电解质中移动。
这些移动的电荷会引发电流的变化,在循环伏安曲线中呈现为一系列的红氧电位对(根据溶液pH值,实验时可能使用氢氧化钠和硝酸钾来调节电位)。
此外,伏安法还可以利用氧化还原反应来对化合物进行定量分析。
对于亚铁氰化钾,在伏安曲线上它的还原峰是特别明显的,因此继续对这种化合物进行分析的话,可以对还原峰的参数进行计算。
根据法拉第第一定律,还原峰的面积可以表示还原物质的数量。
进一步地,还原峰的峰高和它的半宽则可以用来推断电极和电解质之间的电荷转移速率和均匀性。
而还原和氧化峰之间的电压差则可以用来计算化学反应的电动势。
二、实验步骤1、制备溶液亚铁氰化钾一般用0.1M的KCl溶液来进行循环伏安实验。
制备KCl溶液时,首先要称取出一定量的KCl,将其加入去离子水中并搅拌,使其充分溶解。
然后,用清水或HCl进行中和,使其pH值达到7左右。
根据需要进行调整,确保连接质心穿过pH中性点。
2.电极的准备在进行实验前,需要先准备电极。
普通的三电极系统通常由工作电极、参比电极和对电极组成,其中工作电极通常是超薄玻碳电极或铂电极。
参比电极一般是Ag/AgCl电极,对电极为铂网电极。
首先,要将工作电极和参比电极分别清洁。
将它们浸入去离子水或酒精中去除表面的沉积物。
如果它们仍然有膜残留,可以使用氨水清洗。
接下来,把工作电极和参比电极放置在酒精和水混合物中,让它们干燥。
然后,在工作电极上沾上一层磨粒,这将帮助均匀分布电极的磨损。
最后,将电极官网在HF溶液中刷洗,这将清除电极的铅,切确地确定表面积。
实验十 循环伏安法分析

实验十循环伏安法分析一、实验目的1.仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理。
2.熟练使用循环伏安法分析的实验技术。
二、实验原理循环伏安法(Cyclic Voltammetry, 简称CV)往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。
现代电化学仪器均使用计算机控制仪器和处理数据。
CV测试比较简便,所获信息量大。
采用三电极系统的常规CV实验中,工作电极(The Working Electrode, 简称WE)相对于参比电极(the Reference Electrode,简称RE)的电位在设定的电位区间内随时间进行循环的线表1. 图1的实验条件和一些重要解释零,所以RE的电位在CV实验中几乎不变,因此RE是实验中WE电位测控过程中的稳定参比。
若忽略流过RE上的微弱电流,则实验体系的电解电流全部流过由WE和对电极(The Counter Electrode,简称CE)组成的串联回路。
WE和CE间的电位差可能很大,以保证能成功地施加上所设定的WE电位(相对于RE)。
CE也常称为辅助电极(The Auxiliary Electrode, 简称AE)。
分析CV实验所得到的电流-电位曲线(伏安曲线)可以获得溶液中或固定在电极表面的组分的氧化和还原信息,电极|溶液界面上电子转移(电极反应)的热力学和动力学信息,和电极反应所伴随的溶液中或电极表面组分的化学反应的热力学和动力学信息。
与只进行电位单向扫描(电位正扫或负扫)的线性扫描伏安法(Linear Scan Voltammetry,简称LSV)相比,循环伏安法是一种控制电位的电位反向扫描技术,所以,只需要做1个循环伏安实验,就可既对溶液中或电极表面组分电对的氧化反应进行测试和研究,又可测试和研究其还原反应。
循环伏安法也可以进行多达100圈以上的反复多圈电位扫描。
循环伏安法原理及结果分析

循环伏安法原理及结果分析循环伏安法(cyclic voltammetry)是电化学分析技术中常用的手段之一,它通过对电极表面施加一定的电位范围,并观察电流随时间的变化,来研究电极的电化学反应动力学过程及物质的电化学性质。
本文将介绍循环伏安法的原理和结果分析。
一、循环伏安法原理循环伏安法是利用三电极体系或两电极体系,在电解液中施加一系列连续的电位变化,从而观察被测物质的电极过程和电分析过程。
其原理可以概括如下:1. 电位扫描循环伏安法通过对电极施加一定电位的扫描,看电流随着电位变化的趋势,了解电极上电化学反应的特性。
该扫描通常为正弦形状的波形,可以从一个起始电位逐渐扫描到反向电位,然后再返回起始电位。
2. 反应过程在电位扫描过程中,当电极达到某一特定电位时,电极上的溶液中的物质会发生氧化还原反应。
在电位的正向扫描中,电极吸附或生成物质发生氧化反应;在电位的反向扫描中,电极吸附或生成物质发生还原反应。
3. 极化曲线根据电流与电位之间的关系绘制出的曲线被称为循环伏安曲线(cyclic voltammogram)。
循环伏安曲线可以提供丰富的电化学信息,如峰电位、峰电流、反应速率等,通过分析这些参数可以了解被测物质的电化学性质。
二、循环伏安法结果分析循环伏安法作为一种定量分析技术,可以提供丰富的信息用于研究和分析。
下面是对循环伏安法结果的常见分析方法:1. 峰电位循环伏安曲线中的峰电位是指氧化还原反应发生的特定电位,它可以提供物质的氧化还原能力和反应速率信息。
通过比较不同物质的峰电位可以实现物质的定性分析。
2. 峰电流峰电流是循环伏安曲线中峰值对应的电流值,它可以反映物质的浓度和反应速率。
通过比较不同物质的峰电流可以实现物质的定量分析。
3. 氧化还原峰循环伏安曲线中的氧化峰和还原峰是氧化还原反应的关键指标。
通过对氧化峰和还原峰的面积进行定量分析,可以得到物质的电化学反应速率以及反应机理。
4. 电化学反应动力学循环伏安法还可通过对不同扫描速率下的曲线进行分析,得到电化学反应的动力学参数,比如转移系数、速率常数等。
循环伏安法原理及结果分析

循环伏安法原理及结果分析循环伏安法(Cyclic Voltammetry,CV)是一种常用的电化学分析技术,广泛应用于化学、生物、材料科学等领域。
它通过在电极上施加线性变化的电位扫描,测量电流随电位的变化,从而获取有关电化学反应的信息。
一、循环伏安法的原理循环伏安法的基本原理基于电化学中的氧化还原反应。
在实验中,工作电极、参比电极和对电极组成三电极体系。
工作电极是研究的对象,参比电极用于提供稳定的电位参考,对电极则用于完成电流回路。
电位扫描通常从起始电位开始,以一定的扫描速率向一个方向线性增加或减少,到达终止电位后,再反向扫描回到起始电位,从而形成一个循环。
在电位扫描过程中,电活性物质在电极表面发生氧化或还原反应,产生电流。
当电位逐渐增加时,电活性物质被氧化,电流逐渐增大;当电位达到物质的氧化峰电位时,电流达到最大值,随后随着电位的继续增加,电流逐渐减小。
反向扫描时,氧化产物被还原,产生还原电流,出现还原峰。
循环伏安曲线的形状和特征参数(如峰电位、峰电流等)与电活性物质的性质、浓度、电极反应的可逆性等因素密切相关。
二、循环伏安法的实验装置循环伏安法的实验装置主要包括电化学工作站、三电极体系、电解池和电解质溶液。
电化学工作站用于控制电位扫描和测量电流。
三电极体系中的工作电极通常根据研究对象选择,如铂电极、金电极、玻碳电极等;参比电极常见的有饱和甘汞电极、银/氯化银电极等;对电极一般为铂丝或铂片。
电解池用于容纳电解质溶液和电极,通常由玻璃或塑料制成。
电解质溶液的选择要根据研究的体系和目的确定,其浓度和组成会影响实验结果。
三、循环伏安曲线的特征典型的循环伏安曲线包括氧化峰和还原峰。
氧化峰电位和还原峰电位之间的差值(ΔEp)可以反映电极反应的可逆性。
对于可逆反应,ΔEp 较小,一般在 59/n mV(n 为电子转移数)左右;而不可逆反应的ΔEp 较大。
峰电流(Ip)与电活性物质的浓度成正比,通过测量峰电流可以定量分析物质的浓度。
循环伏安法实验报告

循环伏安法实验报告一、实验目的1、学习并理解可逆电极反应的发生条件。
2、学习循环伏安法测定电极反应参数的基本原理和方法。
3、熟悉仪器的使用并根据所测数据验证并判断电极反应是否是可逆反应。
二、实验原理1、溶液中的电解质会离解出阴、阳离子,在外电场作用下发生定向移动产生电流使整个回路导通。
在电场的作用下,阴、阳离子分别向阳极、阴极移动,并在电极表面发生氧化或还原反应。
如果电极反应的速度足够快以致使得当离子刚移动到电极表面的反应区便立刻被反应掉,即电极表面总是处于缺少反应物的状态,这时电极表面的反应是可逆的,能量损失较小。
2、凡是能够测出电流电压关系获得I-U曲线的方法都可成为伏安法。
循环伏安法便是让电压做循环变化同时测出电流的改变的方法。
因此对于可逆的电极反应,所获得的曲线具有某种对称性,曲线会出现两个峰,电位差为:其中,Epa和Epc分别对应阴极和阳极峰电势。
对应的正向峰电流满足Randles-Savcik方程:其中ip为峰电流(A),n为电子转移数,A为电极面积(cm2),D为扩散系数(cm2/s),v1/2为扫描速度(V/s),c为浓度(mol/L)。
3、对本实验:该电极反应时可逆的。
用循环伏安法测量时,所得曲线会出现最大值和最小值,比较两个峰值所对应的电势之间的差值,若大小为0.056则说明该反应是可逆的;同时根据Randles-Savcik方程,ip 和v1/2 和浓度c都成直线关系,若两个峰电流比值接近于1,也可说明该电极反应是可逆的。
因此,本实验中,用循环伏安法测出峰电流、峰电位是关键。
三、实验试剂和仪器1、伏安仪,工作电极、辅助电极、参比电极,0.5ml移液管,50ml容量瓶,烧杯2、0.50mol/L氯化钾溶液,0.10mol/L铁氰化钾空白溶液,0.10mol/LH3PO4-KH2PO4溶液,0.10mol/L抗坏血酸溶液.四、实验步骤1、a)移取0.50mol/L氯化钾溶液20mL于50mL烧杯中,插入工作电极、对电极和参比电极,将对应的电极夹夹在电极接线上,设置好如下仪器参数:初始电位:0.60V; 开关电位1:0.60V; 开关点位2:0.0V电位增量:0.001V;扫描次数:1;等待时间:2电流灵敏度:10μA 滤波参数:50Hz; 放大倍率:1;b) 以50mV/s的扫描速度记录氯化钾空白溶液的循环伏安曲线并保存。
循环伏安法原理及结果分析

循环伏安法原理及结果分析一、循环伏安法的原理循环伏安法是通过控制工作电极的电位,在一个特定的电位范围内以一定的扫描速率进行循环扫描,同时测量电流随电位的变化。
在典型的循环伏安实验中,工作电极(如铂、金、玻碳等)、参比电极(如饱和甘汞电极、Ag/AgCl 电极等)和辅助电极(通常为铂丝)组成三电极体系,置于含有研究对象的电解质溶液中。
电位扫描通常从起始电位开始,向一个方向扫描到终止电位,然后反向扫描回到起始电位,形成一个完整的循环。
在扫描过程中,电极表面发生氧化还原反应,产生电流。
电流的大小与电极表面发生的电化学反应速率以及反应物和产物的浓度有关。
当电位逐渐增加时,若达到某种物质的氧化电位,该物质就会在电极表面发生氧化反应,产生氧化电流。
反之,当电位逐渐降低时,若达到某种物质的还原电位,该物质就会在电极表面发生还原反应,产生还原电流。
通过测量不同电位下的电流值,可以得到循环伏安曲线。
二、循环伏安曲线的特征循环伏安曲线通常呈现出峰形,包括氧化峰和还原峰。
氧化峰对应于物质的氧化过程,还原峰对应于物质的还原过程。
峰电流(ip)是循环伏安曲线中最重要的参数之一。
峰电流的大小与电活性物质的浓度、扫描速率、电极面积以及电化学反应的速率常数等因素有关。
一般来说,电活性物质的浓度越高,峰电流越大;扫描速率越快,峰电流也越大,但峰形可能会变得更尖锐;电极面积越大,峰电流也越大。
峰电位(Ep)是指峰电流对应的电位值。
氧化峰电位(Epa)和还原峰电位(Epc)之间的差值(ΔEp = Epa Epc)可以反映电化学反应的可逆性。
对于可逆的电化学反应,ΔEp 约为 59/n mV(n 为电子转移数);对于不可逆的电化学反应,ΔEp 通常较大。
此外,还可以通过循环伏安曲线计算出其他参数,如半峰电位(E1/2)、峰宽(W)等,这些参数对于分析电化学反应的性质也具有重要意义。
三、结果分析1、定性分析通过循环伏安曲线的峰电位,可以初步判断发生的电化学反应类型以及参与反应的物质。
循环伏安 实验报告

循环伏安实验报告循环伏安实验报告引言:循环伏安(Cyclic Voltammetry,简称CV)是一种广泛应用于电化学研究的实验技术。
通过在电极上施加一定的电位扫描,测量电流与电位之间的关系,可以获得电极反应动力学和电化学行为的信息。
本实验旨在通过CV技术,研究某种化合物在不同电位下的氧化还原行为,并分析其电化学特性。
实验方法:1. 实验仪器:使用一台循环伏安仪进行实验。
2. 实验电极:选用玻碳电极作为工作电极,银/银氯化银电极作为参比电极,不锈钢电极作为对比电极。
3. 实验溶液:制备待测化合物溶液,并添加适量的电解质以提高电导性。
4. 实验条件:设置扫描速度、起始电位、终止电位等参数,保持实验条件一致。
实验结果与讨论:在实验过程中,我们对待测化合物进行了CV测试,并记录了电流-电位曲线。
通过对曲线的分析,我们得到了以下结论:1. 氧化还原峰的观察:在CV曲线中,我们可以观察到氧化还原峰的出现。
氧化峰对应着化合物从还原态转变为氧化态的过程,而还原峰则表示还原态到氧化态的反应。
通过测量氧化还原峰的位置、峰电流和峰电位差等参数,可以获得化合物的氧化还原反应动力学信息。
2. 电极反应机理的推测:通过分析氧化还原峰的形状和位置,我们可以初步推测化合物的电极反应机理。
例如,如果氧化还原峰对称且位置固定,可能说明电极反应是可逆的;而不对称的峰则可能暗示着化合物的电极反应是不可逆的。
进一步的实验和数据处理可以帮助我们验证这些推测。
3. 电化学活性的评估:CV实验还可以用来评估化合物的电化学活性。
电化学活性是指化合物在电极上发生氧化还原反应的能力。
通过比较不同化合物的峰电流大小,我们可以初步判断它们的电化学活性。
峰电流越大,表示化合物的电化学活性越高。
4. 影响实验结果的因素:CV实验的结果受到多种因素的影响,如扫描速度、电解质浓度、电极材料等。
这些因素会改变氧化还原峰的形状、位置和峰电流大小。
因此,在进行CV实验时,需要注意控制这些因素,以保证实验结果的准确性和可重复性。
循环伏安法原理及结果分析

循环伏安法原理及结果分析在电化学研究领域,循环伏安法是一种极其重要的研究手段。
它不仅能提供有关电极反应的丰富信息,还在材料科学、生物化学、环境监测等众多领域发挥着关键作用。
接下来,让我们深入了解一下循环伏安法的原理以及如何对其结果进行分析。
循环伏安法的基本原理基于控制电极电位的线性扫描。
在实验中,工作电极的电位以一定的速率在一个特定的电位范围内进行周期性的线性扫描。
通常,电位从起始电位开始,向一个方向扫描到终止电位,然后反向扫描回到起始电位,如此反复,形成一个循环。
在这个过程中,电极表面会发生氧化还原反应。
当电极电位达到某种物质的氧化电位时,该物质会在电极表面被氧化,产生氧化电流;当电极电位反向扫描到该物质的还原电位时,之前被氧化的物质会被还原,产生还原电流。
通过测量这些电流随电位的变化关系,我们就能够获得有关电极反应的信息。
为了更好地理解循环伏安法的原理,我们可以以一个简单的氧化还原反应为例。
假设在溶液中存在一种可氧化还原的物质 A,其氧化态为 A+,还原态为 A。
当工作电极的电位逐渐升高时,当达到 A 的氧化电位时,A 会被氧化为A+,同时产生氧化电流。
随着电位的继续升高,氧化电流可能会先增大,然后由于扩散控制等因素逐渐减小。
当电位反向扫描时,A+会在电极表面被还原为 A,产生还原电流。
那么,循环伏安法得到的结果通常以电流电位曲线的形式呈现。
在分析这些曲线时,有几个关键的参数和特征需要关注。
首先是峰电位。
氧化峰电位和还原峰电位分别对应着物质的氧化和还原过程中电流达到最大值时的电位。
峰电位的位置可以提供有关反应的难易程度和可逆性的信息。
一般来说,对于可逆反应,氧化峰电位和还原峰电位之间的差值较小;而对于不可逆反应,这个差值较大。
其次是峰电流。
峰电流的大小与参与反应的物质的浓度、扩散系数以及扫描速率等因素有关。
根据 RandlesSevcik 方程,在一定条件下,峰电流与扫描速率的平方根成正比,与物质的浓度成正比。
实验10循环伏安法测定电极反应参数

实验10 循环伏安法测定电极反应参数一、实验目的(1)了解循环伏安法的基本原理、特点和应用。
(2)掌握循环伏安法的实验技术和有关参数的测定方法。
二、实验原理(1)循环伏安法是电化学分析中重要的一种分析方法。
在电化学分析中,凡是以测量电解过程的电流-电位(电压)曲线为目的,都称为伏安分析法。
按施加激励信号的方式、波形及种类的不同,伏安法又分为多种技术,其中线性扫描伏安法,是在工作电极和对电极上施加一随时间线性变化的直流电压(图1),并记录相应的电流-电势曲线(图2)。
线性电位扫描法分小幅度运用和大幅度运用两类。
小幅度运用一般用于测定双电层电容和反应电阻。
大幅度运用的电位扫描范围宽,可在感兴趣的整个范围进行,所以使用的范围较广,如测定电极参数,判断电极过程的可逆性/控制步骤/反应机理,研究电极的吸(脱)附现象等。
图1 图2循环伏安法就是将线性扫描电位扫到某电位E m后,再回扫至原来的起始电位值E i,电位与时间的关系如图3所示。
电压扫描速度可从每秒毫伏到伏量级。
所用的指示电极有悬汞电极、铂电极或玻璃碳电极等。
主要用于研究电极反应的性质、机理和电极过程动力学参数等。
图3 图4当溶液中存在氧化态物质O 时,它在电极上可逆地还原生成还原态物质R ,O + ne → R当电位方向逆转时,在电极表面生成的R 则被可逆地氧化为O,R → O + ne一个三角波扫描,可以完成还原与氧化两个过程,记录出如图4所示的循环伏安曲线。
在循环伏安法中,阳极峰电流i P a 、阴极峰电流i P c 、阳极峰电位E pa 、阴极峰电位E P c 是最重要的参数,对可逆电极过程来说, 峰电位不随扫描速度变化,且 5763E E E mV n∆=pa pc -= (1) 即阳极峰电势(E pa )与阴极峰电势(E pc )之差为57/n 至63/n mV 之间,确切的值与扫描过阴极峰电势之后多少毫伏再回扫有关。
一般在过阴极峰电势之后有足够的毫伏数再回扫,△E P 值为58/n mV 。
循环伏安法原理及结果分析

循环伏安法原理及结果分析循环伏安法(Cyclic Voltammetry,简称CV)是一种常用的电化学测试技术,广泛应用于材料科学、电化学、生物分析等领域。
本文将介绍循环伏安法的原理和结果分析。
一、循环伏安法原理循环伏安法通过在电化学系统中施加恒定电压,测量电流随时间的变化,从而获得电化学反应的动力学信息。
其原理基于伏安定律和法拉第定律。
伏安定律(Ohm's Law)描述了电压、电流和电阻之间的关系,即U = I * R。
根据伏安定律,当施加在电化学系统上的电势变化时,电化学反应导致的电流也会发生变化。
法拉第定律则是描述了电化学反应电流与反应物浓度之间的关系。
根据法拉第定律,当电化学反应进行时,电流的大小与反应物浓度成正比。
循环伏安法通过循环扫描电位来实现对电化学反应的观测。
其步骤包括:首先,以一定速率从初始电位变化至最大电位;然后,以相同的速率从最大电位回到初始电位;最后,以相同速率在这两个电位间进行循环。
在不同电位下测量的电流值可以描绘出循环伏安曲线。
二、循环伏安法结果分析1. 循环伏安曲线形状分析根据循环伏安曲线的形状,可以判断电化学反应的类型和反应程度。
典型的循环伏安曲线形状包括正向扫描、逆向扫描和氧化还原峰。
正向扫描对应于电化学氧化反应,逆向扫描对应于电化学还原反应。
氧化还原峰则是反应物被氧化和还原的过程。
2. 峰电位和峰电流分析峰电位是循环伏安曲线中峰值所对应的电位值,峰电流则是在峰电位处发生的电流峰值。
通过分析峰电位和峰电流的数值可以获得反应的动力学参数,如扩散系数、转变速率等。
峰电位的大小可以反映反应的可逆性,大于理论值时表明反应不可逆。
3. 转变速率常数和电荷转移系数分析转变速率常数(k0)与电极表面反应物的扩散速率和电荷传输速率密切相关,体现了反应过程的快慢。
电荷转移系数(α)则表示电化学反应中电荷转移的效率。
通过计算这两个参数,可以了解反应的速率控制步骤以及反应机理。
循环伏安法实验报告

循环伏安法实验报告在电化学研究中,循环伏安法是一种简单而又强大的研究方法。
通过循环伏安法,可以对电极可逆性进行判断:反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称;判断电极反应机理的判断:如电极吸附现象、电化学反应过程中产物等;更重要的是,循环伏安法能够用于实验中的定量分析。
接下来,运用实验数据来答疑解惑。
通常我们选择铁氰化钾体系(Fe(CN)63-/4-)对电化学行为中的可逆过程进行研究,它的氧化与还原峰对称,两峰的电流值相等,两峰电位差理论值为0.059V 0 通常电极表面的处理对该理论值有很大的影响,一般选择玻碳电极为工作电极、铂电极为对电极、饱和甘汞电极为参比电极。
选择AI2O3抛光粉将电极表面磨光,然后在抛光机上抛成镜面,最后分别在1:1乙醇、1:1HNO3和蒸馏水中超声波清洗15秒。
另外,溶液是否除氧,这个也是必须考虑的,我们选择通高纯N2除O2 o在电解池中放入 5.00 x l0-4mol/LK3(内含0.20mol/L KNO3 ,作为支持电解质。
支持电解质的浓度实际上也对实验有影响,此处暂不考虑)。
插入工作电极、铂丝辅助电极和饱和甘汞电极。
设置电化学工作站中的参数,参数的设定需要不断的尝试,根据电化学工作站窗口显示的图形调节出合适的参数图一的i-E曲线即为循环伏安图。
从循环伏安图中可以看出有两个峰电流和两个峰电位,阴极峰电流ipc,峰电位以Epc(jpc)表示;阳极峰电流ipa,峰电位以Epa 表示。
ipc 或ipa 的下标的 a 代表 anode, c 代表 cathode。
我们可知道,A Ep=Epa-Epc=56/n (单位:mV)( n为反应过程中的得失电子数),ipc与ipa的比值越接近于1,则该体系的可逆程度就越高。
这是判断可逆体系的最直接的方法。
OOOOOOOOODOOAUOOOO 987<05从321 12 3 4-^5-7- 从电化学工作站的工作界面,可以得出氧化峰电位为 Epa=227mV,峰电流为ipa=-1.91 '10-6A ;还原峰电位是 Epc=170mV ,峰电流是 ipc=1.9 '10-6A 。
循环伏安法实验报告

循环伏安法实验报告实验目的1. 了解电化学分析的工作原理、发展过程,掌握用循环伏安法判断电极是否可逆。
2. 学会测定循环伏安曲线3. 掌握循环伏安法的一般操作过程,学会测量峰电流和峰电位。
实验原理循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。
该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。
根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。
对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。
循环伏安法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。
若溶液中存在氧化态,电极上将发生还原反应;反扫时,电极上生成的还原态将发生氧化反应。
峰电流可表示为ip Kv1/2c即峰电流与被测物质浓度,扫描速率等有关。
如何判断表面电化学反应的可逆性1. 对于可逆体系,氧化峰电流与还原峰电流之比:ipa2. 氧化峰峰电位与还原峰电位差:ipc 1 0.058 pa pc (V) Z3. 当扫速较慢时,峰电位不随扫速的变化而变化判断一个电极是扩散过程还是表面过程:ip V为直线,则为表面过程ip V1/2为直线,则为扩散过程实验仪器:仪器:CHI电化学工作站440;玻碳工作电极,铂丝对电极和Ag-AgCl 电极。
试剂:1.00×10-3mol/L K3Fe(CN)6+0.50mol/LKNO3实验步骤:1.玻碳电极的预处理玻碳电极用Al2O3粉将电极表面抛光,然后用蒸馏水清洗,用超声处理,待用。
2.K3Fe(CN)6溶液的循环伏安图1)在电解池中放入配制好的K3Fe(CN)6溶液,插入三电极池,玻碳工作电极、大表面的铂丝辅助电极和Ag/AgCl参比电极。
循环伏安法原理及结果分析

实验操作步骤
配置电解质溶 液
组装循环伏安 法实验装置
设定实验参数
开始实验并记 录数据
分析实验结果
实验过程中的注意事项
确保电极的清洁度,避免污染 和干扰
控制好扫描速率,避免过快或 过慢影响实验结果
选择合适的电解质和参比电极, 保证实验的准确性和可靠性
注意实验环境的温度和湿度, 避免影响实验结果
实验数据的记录与处理
循环伏安法的应用范围
电化学反应:可用于研究电化学反应的动力学过程和机理
氧化还原反应:可用于研究氧化还原反应的机理和动力学参数
电池性能测试:可用于评估电池的电化学性能和反应机理 电镀和金属表面处理:可用于研究电镀和金属表面处理的电化学过程和机 理
循环伏安法的优缺点
优点:能够同时研究电 极的氧化还原过程,可 以用于电化学反应的动 力学研究
循环伏安法的原理
循环伏安法是一种电化学分析方法,通过循环扫描电极电位来研究电极反 应的可逆性和反应机理。
在循环伏安法中,电极电位在一定范围内循环变化,从而得到电流随电位 变化的曲线,即循环伏安曲线。
通过循环伏安曲线的形状和变化规律,可以判断电极反应的可逆性、反应 机理以及反应速率常数等参数。
循环伏安法在电化学、电分析化学、环境科学等领域具有广泛的应用价值。
记录实验过程中的电压、电流数据 对数据进行处理,绘制电压电流曲线 分析曲线特征,确定电极反应过程 根据数据处理结果,得出结论并解释原因
Part Four
循环伏安法结果分 析
结果分析的方法
峰电流和峰电 位的计算
峰电流和峰电 位的变化规律
峰电流和峰电 位的影响因素
结果分析的注 意事项
结果分析的步骤
Part Six
循环伏安法原理及结果分析

循环伏安法原理及应用小结1 电化学原理1.1 电解池电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。
阴极:与电源负极相连的电极(得电子,发生还原反应)阳极:与电源正极相连的电极(失电子,发生氧化反应)电解池中,电流由阳极流向阴极。
1.2 循环伏安法1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。
图0 CV扫描电流响应曲线2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。
由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。
当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。
当电势达到(φr)后,又改为反向扫描。
3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。
于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显著消耗而引起电流衰降。
整个曲线称为“循环伏安曲线”1.3 经典三电极体系经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。
在电化学测试过程中,始终以工作电极为研究电极。
其电路原理如图1,附CV图(图2):扫描范围-0.25-1V,扫描速度50mV/S,起始电位0V。
图1 原理图 图2 CBZ 的循环伏安扫描原理图RE WECE测量极化回路大R 电解池经典恒流法测量电路图图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。
1)横坐标Potential applied(电位)为图1中电压表所测,即Potential applied=P(WE)-P(RE)所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。
循环伏安法原理及结果分析

循环伏安法原理及结果分析循环伏安法,听起来挺高大上的,其实说白了就是一种电化学分析的好工具。
它能帮我们研究材料的电化学特性,还能分析反应机理,真是科学界的小金库。
咱们一步一步来聊聊它的原理和结果分析。
首先,咱们得明白什么是循环伏安法。
它是利用电流与电压的关系来研究反应过程的。
简单来说,电流就像是水流,而电压就像是水龙头的开关。
我们通过调节电压,让电流在样品中流动,然后记录下来。
这就像给实验室里的小“鱼”施加不同的“水流”,看它们怎么游动,太有趣了!循环伏安法的基本原理就是这个。
电压从一个点变到另一个点,再反向变回去,形成一个完整的“循环”。
在这个过程中,电流会随着电压的变化而变化。
科学家们把这个过程叫做“电流-电压曲线”,它就像一幅精美的画,展现了反应的所有秘密。
接下来,咱们看看结果分析。
首先,咱们会得到一个电流-电压的曲线图,这就像一张地图,指引我们探索反应的深度。
图中有两个很重要的峰值,分别叫做氧化峰和还原峰。
氧化峰代表着物质失去电子的过程,而还原峰则是物质获取电子的过程。
就像一场电子的“争夺战”,谁先出手,谁先获得胜利,这一切都在曲线图上展现无遗。
接下来,咱们分析一下这些峰值的高度和位置。
峰高代表反应的速率,峰位则跟材料的性质有很大关系。
比如,如果氧化峰位移得很远,那可能说明反应动力学比较复杂,反应不是那么简单。
反之,如果峰位很接近,那反应就可能比较简单,效率也高。
不仅如此,循环伏安法还可以帮助我们了解材料的稳定性。
通过反复扫描电压,我们可以观察到峰值是否有变化。
如果峰值变高或变宽,说明材料可能发生了某些变化,这可能是因为材料的降解或者反应机制的改变。
再说说“转速”。
在循环伏安法中,转速就是扫描速率。
扫描速率越快,电流变化也越快。
这就像你骑自行车,骑得越快,风吹得也越猛。
不过,扫描速率太快也可能导致一些问题,比如电流信号可能变得不稳定,反而会影响实验结果的准确性。
因此,选择合适的扫描速率是非常关键的。
循环伏安法实验报告_3

直流循环伏安法一、实验目的1. 掌握用循环伏安法判断电极过程的可逆性。
2. 学会使用电化学工作站测定循环伏安曲线。
3. 学会测量峰电流和峰电位。
二、实验原理循环伏安法是在工作电极上施加一个线性变化的循环电压来记录电流随电位的变化曲线, 施加的电压为等边三角波或等边阶梯波, 电位可向阳极方向扫描, 也可向阴极方向扫描。
它能在很宽的电位范围内迅速观察研究对象的氧化还原行为。
图为电化学实验装置图RE﹑WE﹑CE分别为参比电极、工作电极和对电极采用三电极体系, 分别为参比电极、工作电极和对电极。
仪器输出的电信号加到工作电极和对电极上,被研究的物质在工作电极上发生电化学反应。
辅助电极与工作电极连成通路, 反应的电流通过工作电极和对电极。
参比电极用于稳定工作电极的电位并确定电流-电势曲线中的峰电位、半波电位等。
若溶液中存在氧化态O, 电极上将发生还原反应:反向回扫时, 电极上生成的还原态R将发生氧化反应:峰电流表示为:其峰电流与被测物质的浓度c、扫描速度v等因素有关。
从循环伏安图可以确定氧化峰电流和还原峰峰电流, 氧化峰电位φpa和还原峰电位φpc的值。
对于可逆体系, 氧化峰峰电流与还原峰峰电流比:氧化峰峰电位与还原峰峰电位差: (V)条件电位: 由此可判断电极过程的可逆性。
三、仪器与试剂仪器: CHI电化学工作站440;玻碳工作电极, 铂丝对电极和饱和甘汞电极。
试剂:四、实验步骤1. 玻碳电极(金圆盘电极或铂圆盘电极)的预处理用Al2O3粉将电极表面抛光, 然后用蒸馏水清洗, 用超声处理, 待用。
2. K3Fe(CN)6溶液的循环伏安图在电解池中放入配制好的K3Fe(CN)6溶液, 插入玻碳工作电极、铂丝辅助电极和Ag/AgCl参比电极;以扫描速率20 mV/s, 从+0.80~-0.20 V扫描, 记录循环伏安图;以不同扫描速率:40、60、80、100和150 mV/s, 分别记录从+0.80~-0.20 V 扫描的循环伏安图。
循环伏安法原理及结果分析

循环伏安法原理及结果分析嘿,亲爱的小伙伴们,今天我们来聊聊一个超级有趣的实验——循环伏安法原理及结果分析!这个实验可是让我们大开眼界,让我们一起来探索一下吧!我们要明白什么是循环伏安法。
简单来说,循环伏安法就是一种用来测量电池内阻的方法。
我们知道,电池有正极和负极,正极负责提供电子,负极负责吸收电子。
当我们把一个电流表接在正极上,另一个电流表接在负极上,然后通过改变电压来看看电流表上的读数有什么变化,就可以得到电池的内阻了。
那么,循环伏安法是怎么实现的呢?其实很简单,我们只需要把电压表接在电池的两个电极之间,然后不断地改变电压,观察电流表上的读数有什么变化就可以了。
这样一来,我们就可以得到一个关于电池内阻与电压之间的关系式,从而推算出电池的实际内阻。
接下来,我们来看一下循环伏安法的结果分析。
我们需要做的就是画出一个V-I图。
V-I图是用来表示电池内阻与电压之间关系的图形。
在V-I图上,横坐标表示电压,纵坐标表示电流。
通过观察V-I图,我们可以发现:当电压增大时,电流也会随之增大;当电压减小时,电流也会随之减小。
这就是因为电池内部的化学反应产生了电势差,从而导致了电流的变化。
我们还可以通过循环伏安法来计算电池的容量。
电池的容量是指电池在一定的时间内所能提供的电能。
我们知道,电池的内阻越小,它的容量就越大。
因此,通过循环伏安法得到的电池内阻数据可以帮助我们判断电池的实际容量。
要想得到准确的容量数据,我们还需要进行一些额外的计算和分析。
循环伏安法是一种非常实用的实验方法,它可以帮助我们了解电池的内阻、容量等重要参数。
通过这个实验,我们可以更好地理解电池的工作原理,为我们今后的研究和应用奠定坚实的基础。
所以,亲爱的小伙伴们,赶快去试试看吧!相信你们一定会爱上这个有趣的实验的!。
循环伏安法实验报告(有测定电极有效面积)

循环伏安法实验【实验目的】学习和掌握循环伏安法的原理和实验技术。
了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。
【实验原理】循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压(如图1),记录工作电极上得到的电流与施加电位的关系曲线(如图2),即循环伏安图。
从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。
与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。
一般对这类问题要根据固体电极材料不同而采取适当的方法。
对于碳电极,一般以Fe(CN)63-/4-的氧化还原行为作电化学探针。
首先,固体电极表面的第一步处理是进行机械研磨、抛光至镜面程度。
通常用于抛光电极的材料有金钢砂、CeO2、ZrO2、MgO和α-Al2O3粉及其抛光液。
抛光时总是按抛光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨后,再用一定粒度的α-Al2O3粉在抛光布上进行抛光。
抛光后先洗去表面污物,再移入超声水浴中清洗,每次2∼3分钟,重复三次,直至清洗干净。
最后用乙醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。
将处理好的碳图2:循环伏安曲线(i—E曲线)电极放入含一定浓度的K 3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。
如得到如图2所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc / i pa =1),峰峰电位差ΔE p 约为70 mV (理论值约59/n mV ),即说明电极表面已处理好,否则需重新抛光,直到达到要求。
有关电极有效表面积的计算,可根据Randles-Sevcik 公式: 在25°C 时,i p =(2.69×105)n 3/2AD o 1/2ν1/2C o其中A 为电极的有效面积(cm 2),D o 为反应物的扩散系数(cm 2/s),n 为电极反应的电子转移数,ν为扫速(V/s ),C o 为反应物的浓度(mol/cm 3),i p 为峰电流(A )。
循环伏安法原理及结果分析

循环伏安法原理及结果分析循环伏安法(Cyclic voltammetry,CV)是一种电化学分析方法,常用于研究电极上的化学和电化学反应以及物质的电化学行为。
它通过改变电极电位并测量所引起的电流变化,得到一个电流-电压(I-V)曲线,从而分析电化学反应的特性和机理。
CV实验通常使用一个工作电极、一个参比电极和一个辅助电极的电化学电池。
工作电极是用来进行电化学反应的电极,参比电极用来测量工作电极与参比电极之间的电位差,辅助电极用来提供能量以促进电化学反应的进行。
实验中,通过改变工作电极的电位,可以在电化学电池中引起氧化还原反应。
结果是电流的变化,这个变化被记录下来以产生I-V曲线。
CV实验中的结果分析包括几个方面:1.反应的电位范围:通过改变工作电极的电位扫描范围,可以确定反应的电位范围。
通常将电位从一个初始电位线性地扫描到另一个终止电位,然后再返回到初始电位。
扫描速率和电位范围的选择取决于所研究的电化学反应和物质的性质。
2.峰电位和峰电流:CV曲线通常包含多个峰,每个峰对应于一个电化学反应。
峰电位是峰的中心电位,表示氧化和还原反应的临界电位。
峰电流是峰的最大电流值,表示反应速率和物质浓度的关系。
通过测量峰电位和峰电流,可以确定反应的动力学和热力学参数。
3.峰形:CV曲线的峰形可以提供有关反应机理的信息。
对于可逆反应,峰电流正比于扫描速率;对于不可逆反应,峰电流与扫描速率无关。
峰形也可以显示反应的控制步骤,如扩散控制、电极控制或混合控制。
4.电化学反应的类型:通过分析CV曲线的形状和特征,可以确定电化学反应的类型。
例如,CV曲线中的一个峰表示一个氧化还原反应,而CV曲线中的两个峰表示一个两步反应。
5.物质的电化学行为:CV实验也可以用来研究物质在电极上的电化学行为。
通过改变溶液pH、阳离子或阴离子的浓度,可以观察到电化学反应的变化。
此外,还可以测量不同溶液中的CV曲线并进行比较,以了解物质在不同环境中的电化学性质。
循环伏安法原理及结果分析

循环伏安法原理及结果分析在化学和材料科学领域,循环伏安法是一种极为重要的电化学分析技术。
它能够提供有关电化学反应的丰富信息,对于研究物质的氧化还原性质、电极过程动力学以及检测分析物等方面都具有重要意义。
循环伏安法的基本原理并不复杂。
简单来说,它是通过控制工作电极的电位,使其在一个特定的电位范围内以一定的扫描速率进行线性扫描,同时测量电流随电位的变化。
在实验中,通常会设置一个三电极体系,包括工作电极、对电极(辅助电极)和参比电极。
工作电极是发生电化学反应的场所,对电极用于传导电流,而参比电极则提供一个稳定的电位参考。
当电位从起始电位向一个方向扫描时,溶液中的电活性物质会在工作电极表面发生氧化反应,产生氧化电流。
随着电位的继续扫描,当达到一定电位时,氧化反应停止,还原反应开始,此时电流方向反转,产生还原电流。
然后电位反向扫描,电活性物质在工作电极表面发生还原反应,产生还原电流。
当电位再次回到起始电位时,完成一个循环。
循环伏安法的结果通常以电流电位曲线(即循环伏安曲线)的形式呈现。
在这个曲线中,包含了许多重要的信息。
首先,峰电位是一个关键的参数。
氧化峰电位和还原峰电位分别对应着电活性物质的氧化和还原过程所发生的电位。
它们可以反映电活性物质的氧化还原能力。
一般来说,峰电位越正,表明该物质越难被氧化;峰电位越负,表明该物质越难被还原。
其次,峰电流也是非常重要的指标。
峰电流的大小与电活性物质的浓度、扩散系数以及电极反应的速率常数等因素有关。
根据RandlesSevcik方程,在一定条件下,峰电流与电活性物质的浓度成正比。
因此,可以通过测量峰电流来定量分析电活性物质的浓度。
此外,峰形也能提供有关电极反应过程的信息。
理想情况下,对称的峰形表明电极反应是可逆的,即氧化和还原过程都非常迅速,电子转移过程没有明显的阻力。
而如果峰形不对称,可能意味着电极反应是不可逆的,存在较大的能垒或者反应动力学较为复杂。
通过对循环伏安曲线的分析,还可以计算一些重要的电化学参数,如电子转移数、扩散系数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十循环伏安法分析
一、实验目的
1.仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理。
2.熟练使用循环伏安法分析的实验技术。
二、实验原理
循环伏安法(Cyclic Voltammetry, 简称CV)往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。
现代电化学仪器均使用计算机控制仪器和处理数据。
CV测试比较简便,所获信息量大。
采用三电极系统的常规CV实验中,工作电极(The Working Electrode, 简称WE)相对于参比电极(the Reference Electrode,简称RE)的电位在设定的电位区间内随时间进行循环的线
表1. 图1的实验条件和一些重要解释
零,所以RE的电位在CV实验中几乎不变,因此RE是实验中WE电位测控过程中的稳定参比。
若忽略流过RE上的微弱电流,则实验体系的电解电流全部流过由WE和对电极(The Counter Electrode,简称CE)组成的串联回路。
WE和CE间的电位差可能很大,以保证能成功地施加上所设定的WE电位(相对于RE)。
CE也常称为辅助电极(The Auxiliary Electrode, 简称AE)。
分析CV实验所得到的电流-电位曲线(伏安曲线)可以获得溶液中或固定在电极表面的组分的氧化和还原信息,电极|溶液界面上电子转移(电极反应)的热力学和动力学信息,和电极反应所伴随的溶液中或电极表面组分的化学反应的热力学和动力学信息。
与只进行电位单向扫描(电位正扫或负扫)的线性扫描伏安法(Linear Scan Voltammetry,简称LSV)相比,循环伏安法是一种控制电位的电位反向扫描技术,所以,只需要做1个循环伏安实验,就可既对溶液中或电极表面组分电对的氧化反应进行测试和研究,又可测试和研究其还原反应。
循环伏安法也可以进行多达100圈以上的反复多圈电位扫描。
多圈电位扫描的循环伏安实验常可用于电化学合成导电高分子。
图1为3 mmol L-1 K4Fe(CN)6 + 0.5 mol L-1 Na2SO4水溶液中金电极上的CV实验结果。
实验条件和一些重要的解释列于表1中。
三、仪器和试剂
仪器:CHI400电化学工作站
磁力搅拌器
铂片工作电极
铅笔芯对电极
KCl饱和甘汞电极
试剂:K3Fe(CN)6(分析纯或优级纯)
KNO3(分析纯或优级纯)
溶液及其浓度:1.0 mol L-1 KNO3水溶液。
实验中每组学员使用30.0 mL。
0.100 mol L-1 K3Fe(CN)6水溶液储备液。
实验中每组学员使用100 L微量注射
器依次注射适量体积的0.100 mol L-1 K3Fe(CN)6水溶液到30 mL的1.0 mol L-1
KNO3水溶液中,详见如下4.3.节。
四、实验步骤
4.1.电极的预处理
4.1.1.将铂片工作电极在#6金相砂纸上轻轻擦拭光亮,充分水洗,吹干备用。
4.1.2.铅笔芯对电极用滤纸擦拭光亮备用。
4.1.3.检查KCl饱和甘汞电极的内参比溶液(饱和KCl水溶液)的液面高度,要求内参比溶液
与内参比电极连通。
4.2.仪器开机、硬件测试和CV参数设定
4.2.1.打开计算机,在指定文件夹“CV实验”中,建立两级子文件夹。
建议以日期、姓名或
学号来命名,如“D:\CV实验\20060323\爱因斯坦\”。
4.2.2.打开CHI400电化学工作站。
4.2.3.打开CHI400软件,鼠标点击运行Setup中的Hardware Test(如图2),检查仪器状
态是否正常。
约1分钟内弹出硬件测试结果。
仪器正常时,所有的数值均接近于零但不全等于零,并显示OK。
如显示failed,说明仪器有问题。
4.2.4.运行Setup/Techniques,选择Cyclic Voltammetry。
运行Setup/Parameters,弹出
Cyclic Voltammetry Parameters窗口,参考如下窗口输入有关参数(图3):
4.3变浓度实验
图2. CHI电化学工作站硬件测试.
图3. CV参数输入.
4.3.1. 取1.0 mol L -1 KNO 3水溶液30.0 mL 加入到50 mL 的干净干燥烧杯中,套上大口径烧杯
以防止实验中50 mL 烧杯的倾覆。
插入WE 、CE 、RE 到该KNO 3水溶液中(RE 接近WE ,CE 与WE 面对面,电极间不能短路),按图1将电极连接到电化学工作站。
4.3.2. 运行Control 中的Open Circuit Potential (图4),检测仪器不施加电压到电极上时(开
路)WE 相对与RE 的开路电位,并记录。
4.3.3. 点击Control 中的Run Experiment ,运行CV 测试,以合适文件名保存CV 测试结果,
建议为CV0.bin 。
4.3.4. 使用100 μL 微量注射器依次注射适量体积的0.100 mol L -1 K 3Fe(CN)6水溶液到30 mL 的
1.0 mol L -1 KNO 3水溶液中,使得混合溶液中K 3Fe(CN)6的浓度点(至少5个点)落到2⨯10-4到5⨯10-2 mol L -1浓度区间,如
2.00⨯10-4、5.00⨯10-4、8.00⨯10-4、2.00⨯10-3、5.00⨯10-3 mol L -1,学员自己计算需要加入的K 3Fe(CN)6溶液精确体积。
每注射一次溶液后,搅拌溶液使混合均匀,然后进行4.
3.2和
4.3.3,以合适文件名保存CV 测试结果,建议为CV0.2mM.bin 、CV0.5mM.bin 、CV2mM.bin 等。
列表记录各浓度下的开路电位、峰电流、峰电位和峰电位间距。
4.3. 变扫速实验
在4.3.实验结束后的溶液中,改变扫描速度(建议依次取5000, 2000, 1000, 500, 200, 100, 50, 20, 10 mV s -1),运行CV 测试,以合适文件名保存CV 测试结果,建议为CV5000.bin 、CV2000.bin 、CV1000.bin 等。
列表记录各扫速下的峰电流、峰电位、峰电位间距。
图4.开路电位测试。
五、结果与讨论
鼓励采用计算机处理数据。
建议使用SigmaPlot科技绘图软件v2.0。
5.1.列表记录前述开路电位、峰电流、峰电位和峰电位间距,注意尽量采用三线表。
有
K3Fe(CN)6的溶液中,开路电位反映了什么(提示:利用能斯特方程)
5.2.以某一个循环伏安图为例,指出在什么电位区间内明显发生阴极(还原)反应,什么电位
区间明显发生阳极(氧化)反应,并写出有关半反应方程式。
5.3.以阴极峰电流为纵坐标,浓度为横坐标,作图求出线性回归方程和线性相关系数。
将所得
斜率值与表1中的Randle-Sevcik方程(可取文献值D=6.5 10-6cm2s-1;自行测量电极投影面积A)的i p-c斜率值比较,并讨论偏差原因。
5.4.以阴极峰电流为纵坐标,扫速平方根为横坐标,作图求出线性回归方程和线性相关系数,
并计算Randle-Sevcik方程的i p- v1/2斜率值比较,并讨论偏差原因。
5.5.在变扫速实验中,选择一个CV图,粗略估算阴极反应中有多少摩尔的K3Fe(CN)6在电极
上被还原。
提示:还原电流对时间积分(即估算还原电流区间相对于时间的面积)求出还原电量,再按照法拿第电解定律计算被还原的K3Fe(CN)6),并计算被还原的K3Fe(CN)6占整个溶液中K3Fe(CN)6总量的百分数。
是否扫速越慢,被还原的K3Fe(CN)6量越多?
六、注意事项
6.1.电化学实验中电极预处理非常重要。
电极一定要处理干净,使得实验中K3Fe(CN)6体系的
峰峰电位差接近其理论值(56.5 mV),否则误差较大。
6.2.电极千万不能接错,本实验中也不能短路,否则会导致错误结果,甚至烧坏仪器。
七、参考文献
1.(a) 朱明华, 仪器分析, 高等教育出版社,北京,2000; (b) 赵藻藩等,仪器分析, 高等教育出
版社,北京,1990; (c) 赵文宽等,仪器分析实验, 高等教育出版社,北京,1997.
2.Google中(/)输入关键词“循环伏安实验”或“cyclic
voltammetry”查阅相关资料。
注意:Google、Yahoo、百度等门户网站可以成为初步了解几乎一切新知识的“网上百科全书”,只需要输入有关关键词查阅即可。