spss的数据分析报告范例

合集下载

spss的数据分析报告范例

spss的数据分析报告范例

spss的数据分析报告范例一、引言数据分析是科学研究过程中不可或缺的一部分。

针对一项研究项目,本报告将借助SPSS软件对收集的数据进行详尽分析,并提供相关结果和结论。

本报告的目的是帮助读者更好地理解数据,提供决策和制定战略所需的支持。

二、研究方法本研究的数据来源于一份问卷调查,共收集了500份有效问卷。

在问卷设计中,我们采用了随机抽样的方法,以保证样本的代表性。

该问卷包括了参与者的基本背景信息、满意度评价等方面的问题。

三、数据分析1. 受访者基本背景首先,我们对受访者的基本背景信息进行了统计分析。

其中包括性别、年龄、教育水平和职业等因素。

以下是相关结果的总结:(1)性别分布:男性占65%,女性占35%。

(2)年龄分布:年龄在18-24岁的受访者占40%;25-34岁的占30%;35-44岁的占20%;45岁及以上的占10%。

(3)教育水平:高中或以下占20%;本科占50%;研究生及以上占30%。

(4)职业:学生占25%;职员占40%;自由职业者占20%;其他占15%。

2. 满意度评价为了了解受访者对某产品的满意度,我们设计了一套评价体系。

通过SPSS软件进行数据分析,得到以下结果:(1)整体满意度:根据赋分制度,平均满意度得分为4.2(满分为5),表明受访者对该产品整体上持较高满意度。

(2)各项指标:通过因子分析,我们得到了几个影响满意度的关键因素。

其中,产品质量、价格和售后服务被认为是受访者最关注的方面。

3. 相关性分析在数据分析过程中,我们还进行了一些相关性分析,以探究不同变量之间的关系。

以下是一些值得关注的相关性结果:(1)性别与满意度之间的关系:经过卡方检验,我们发现性别与满意度之间存在一定的相关性(p < 0.05),女性对产品的满意度略高于男性。

(2)年龄与满意度之间的关系:通过相关系数分析,我们发现年龄与满意度呈现出弱相关关系(r = 0.15,p < 0.05),年龄越小,满意度越高。

SPSS简单数据分析报告

SPSS简单数据分析报告

精选范文、公文、论文、和其他应用文档,希望能帮助到你们!SPSS简单数据分析报告目录一、数据样本描述 (4)二、要解决的问题描述 (4)1 数据管理与软件入门部分 (4)1.1 分类汇总 (4)1.2 个案排秩 (5)1.3 连续变量变分组变量 (5)2 统计描述与统计图表部分 (5)2.1 频数分析 (5)2.2 描述统计分析 (5)3 假设检验方法部分 (5)3.1 分布类型检验 (5)3.1.1 正态分布 (5)3.1.2 二项分布 (6)3.1.3 游程检验 (6)3.2 单因素方差分析 (6)3.3 卡方检验 (6)3.4 相关与线性回归的分析方法 (6)3.4.1 相关分析(双变量相关分析&偏相关分析) (6)3.4.2 线性回归模型 (6)4 高级阶段方法部分 (6)三、具体步骤描述 (7)1 数据管理与软件入门部分 (7)1.1 分类汇总 (7)1.2 个案排秩 (8)1.3 连续变量变分组变量 (10)2 统计描述与统计图表部分 (11)2.1 频数分析 (11)2.2 描述统计分析 (14)3 假设检验方法部分 (16)3.1 分布类型检验 (16)3.1.1 正态分布 (16)3.1.2 二项分布 (17)3.1.3 游程检验 (18)3.2 单因素方差分析 (22)3.3 卡方检验 (24)3.4 相关与线性回归的分析方法 (26)3.4.1 相关分析 (26)3.4.2 线性回归模型 (28)4 高级阶段方法部分 (32)4.1 信度 (32)一、数据样本描述本次分析的数据为某公司474名职工状况统计表,其中共包含11个变量,分别是:id(职工编号),gender(性别),bdate(出生日期),edcu(受教育水平程度),jobcat(职务等级),salbegin(起始工资),salary(现工资),jobtime(本单位工作经历<月>),prevexp(以前工作经历<月>),minority(民族类型),age(年龄)。

大学生spss数据分析报告范文

大学生spss数据分析报告范文

大学生spss数据分析报告范文1. 引言本报告基于一份关于大学生学习成绩和睡眠时长的数据集,通过SPSS软件进行数据分析。

研究目的是探究学习成绩和睡眠时长之间是否存在关联性,并进一步分析影响学习成绩的因素。

2. 方法2.1 数据收集采集的数据来自于500名大学生,其中包括了学习成绩(用分数表示)和睡眠时长(以小时为单位)两个变量。

2.2 数据处理使用SPSS软件对数据进行了处理。

首先进行了数据清洗,删除了缺失值或异常值;然后进行了数据变换,将睡眠时长转化为分类变量(如低于6小时、6-8小时、高于8小时),方便后续分析。

2.3 数据分析本研究采用了描述性统计和相关分析方法对数据进行了分析。

在描述性统计中,计算了学习成绩的平均值、标准差、最小值、最大值以及睡眠时长的分布情况;在相关分析中,计算了学习成绩和睡眠时长之间的相关系数。

3. 结果3.1 描述性统计学习成绩的平均值为78.5,标准差为8.7,最低分为60,最高分为95。

睡眠时长的分布情况如下:低于6小时的有35%的学生,6-8小时的有50%的学生,高于8小时的有15%的学生。

3.2 相关分析通过Pearson相关系数分析,学习成绩和睡眠时长之间的相关系数为0.32,显著性水平为0.001。

结果显示学习成绩与睡眠时长之间存在着一定的正相关关系。

4. 讨论通过本次数据分析,我们发现学习成绩和睡眠时长之间存在着正相关关系,即睡眠时间足够的学生往往会有更好的学习成绩。

这一结果与一些先前的研究结果相一致。

睡眠不足会导致大学生的注意力不集中、思维迟钝,从而影响他们的学业表现。

然而,本次研究仅仅发现了学习成绩和睡眠时长之间的相关关系,并没有进一步分析其他可能的因素对学习成绩的影响。

未来的研究可以考虑其他自变量,如学习时间、学习方法等,以便更全面地了解影响学习成绩的因素。

此外,本次研究样本容量较小,且仅包含大学生群体,所以结果的推广性受到了一定的限制。

未来研究可以扩大样本容量,涵盖更多不同年龄组的人群,以便得到更具有代表性的结论。

SPSS分析报告(二)

SPSS分析报告(二)

SPSS实验分析报告二一、婆媳关系*住房条件检验(一)、提出原假设H0原假设: 婆媳关系的好坏程度与住房条件有关系(二)、两独立样本t检验结果及分析表(一)觀察值處理摘要觀察值有效遺漏總計N百分比N百分比N百分比婆媳关系* 住房条件600100.0%00.0%600100.0%由表(一)可知, 本次调查获得的有效样本为600份, 没有遗漏的个案。

表(二)婆媳关系*住房条件交叉列表住房条件總計差一般好婆媳关系紧张計數577860195預期計數48.868.378.0195.0婆媳关系內的%29.2%40.0%30.8%100.0%住房条件內的%38.0%37.1%25.0%32.5%佔總計的百分比9.5%13.0%10.0%32.5%殘差8.39.8-18.0一般計數458763195預期計數48.868.378.0195.0婆媳关系內的%23.1%44.6%32.3%100.0%住房条件內的%30.0%41.4%26.3%32.5%佔總計的百分比7.5%14.5%10.5%32.5%殘差-3.818.8-15.0好計數4845117210預期計數52.573.584.0210.0婆媳关系內的%22.9%21.4%55.7%100.0%住房条件內的%32.0%21.4%48.8%35.0%佔總計的百分比8.0%7.5%19.5%35.0%殘差-4.5-28.533.0總計計數150210240600預期計數150.0210.0240.0600.0婆媳关系內的%25.0%35.0%40.0%100.0%住房条件內的%100.0%100.0%100.0%100.0%佔總計的百分比25.0%35.0%40.0%100.0%由表(二)可知, 一共调查了600人, 其中婆媳关系紧张的组有195人, 占总人数的32.5%;婆媳关系一般的组有195人, 占总人数的32.5%;婆媳关系好的组有210人, 占总人数的35.0%;数据分布均匀。

spss数据分析报告范文

spss数据分析报告范文

SPSS数据分析报告范文1. 引言本报告旨在对所收集的数据进行分析和解释,以便为相关研究提供支持和指导。

该数据集包含了一份关于某个研究对象的信息,我们将使用SPSS统计软件对其进行数据分析。

2. 方法2.1 数据收集数据采集使用了问卷调查的方法,针对某个特定群体进行了调查。

该调查旨在了解该群体对某特定问题的看法和态度,并收集了一系列相关变量的数据。

2.2 数据清洗在进行数据分析之前,我们对数据进行了清洗和预处理。

这包括去除缺失值、异常值和重复值。

我们还检查了数据的完整性和一致性,并进行了必要的修正和调整。

2.3 数据分析我们使用SPSS软件对数据进行了多个统计分析方法的应用,包括描述统计分析、相关性分析和回归分析等。

这些方法可以帮助我们了解变量之间的关系和趋势,并对未来的发展进行预测。

3. 结果3.1 描述统计分析通过对数据进行描述统计分析,我们得到了一些关键指标和概括性信息。

例如,我们计算了每个变量的均值、中位数、标准差和最大最小值等。

这些指标可以帮助我们对数据有一个整体的了解。

3.2 相关性分析我们使用相关性分析来探索变量之间的关联程度。

通过计算相关系数,我们可以了解变量之间的线性关系的强弱。

这些结果可以帮助我们确定哪些变量彼此之间的关系较为密切,进而为进一步的分析提供基础。

3.3 回归分析回归分析是一种用于预测和解释因果关系的分析方法。

在本报告中,我们使用回归分析来确定自变量和因变量之间的关系,并建立回归模型。

通过这些模型,我们可以对未来的趋势和发展进行预测。

4. 讨论与结论4.1 讨论通过对数据的分析,我们发现了一些有意义的结果和趋势。

例如,我们观察到某些变量之间存在较强的相关性,或者某些自变量对因变量的影响较为显著。

这些发现可以为进一步的研究和分析提供线索和方向。

4.2 结论基于我们的分析结果,我们得出了一些结论和建议。

例如,我们可以建议在某些情况下采取特定的行动或改进措施,以达到某些预期的目标。

spss数据分析报告(共7篇)

spss数据分析报告(共7篇)

spss数据分析报告(共7篇):分析报告数据s pss spss数据报告怎么写spss数据分析实例说明 spss有哪些数据分析篇一:spss数据分析报告关于某班级2012年度考试成绩、获奖情况统计分析报告一、数据介绍:本次分析的数据为某班级学号排列最前的15个人在2012年度学习、获奖统计表,其中共包含七个变量,分别是:专业、学号、姓名、性别、第一学期的成绩、第二学期的成绩、考级考证数量,通过运用spss统计软件,对变量进行频数分析、描述分析、探索分析、交叉列联表分析,以了解该班级部分同学的综合状况,并分析各变量的分布特点及相互间的关系。

二、原始数据:三、数据分析1、频数分析(1)第一学期考试成绩的频数分析进行频数分析后将输出两个主要的表格,分别为样本的基本统计量与频数分析的结果1)样本的基本统计量,如图1所示。

样本中共有样本数15个,第一学期的考试成绩平均分为627.00,中位数为628.00,众数为630,标准差为32.859,最小值为568,最大值为675。

“第一学期的考试成绩”的第一四分位数是602,第二四分位数为628,第三四分位数为657。

2)“第一学期考试成绩”频数统计表如图2所示。

3) “第一学期考试成绩”Histogram图统计如图3所示。

(2)、第二个学期考试成绩的频数分析1)样本的基本统计量,如图4所示。

第二学期的考试成绩平均分为463.47,中位数为452.00,众数为419,标准差为33.588,最小值为419,最大值为522。

“第二学期的考试成绩”的第一四分位数是435,第二四分位数为452,第三四分位数为496。

3)”第二学期考试成绩”频数统计表如图5所示。

3) “第二学期考试成绩”饼图统计如图6所2、描述分析描述分析与频数分析在相当一部分中是相重的,这里采用描述分析对15位同学的考级考证情况进行分析。

输出的统计结果如图7所示。

从图中我们可以看到样本数15,最小值1,最大值4,标准差0.941等统计信息。

SPSS数据分析报告金典模板三篇

SPSS数据分析报告金典模板三篇

SPSS数据分析报告金典模板三篇SPSS数据分析报告(模板一)学院:经济管理学院专业、班级: **人资*班学生姓名:某某人学二○一*年十一月十一日SPSS数据分析报告第一部分:原始资料和数据资料来源:华东交通大学经济管理学院11级人力资源管理3班29名同学实际情况编号姓名性别学科背景年龄身高体重体测成绩1 吕鑫0 文科20.5 164.2 54.2 812 王阳0 文科20 158.3 46.2 753 洪华阳0 理科21 171 57.2 714 刘卫秀0 理科21 165.5 54 755 吴梦琦0 文科21 166.2 48 696 韩玮0 文科20 164.3 47 617 汤丽娟0 文科21 162.8 48.2 668 江桂英0 理科20 157.2 44.2 709 熊如意0 文科20 166.5 54.5 7310 余婵0 文科19.5 156.2 45.5 7711 彭茜0 文科20 165.4 52.4 6612 赵丹0 文科20.5 174.3 55.6 7613 安怡君0 文科20 175 56.2 7214 武阳帆0 文科20.5 162.4 55.5 6715 倪亚萍0 文科22 157.5 48.6 7416 张明辉 1 文科21.5 170 60 7117 张春旭 1 理科20.5 168.5 57.8 8018 刘晓伟 1 文科21 170.5 59.5 7019 黄炜 1 文科20.5 171 62.2 7620 李强 1 文科20.5 167.5 56.5 6821 温明煌 1 文科21.5 170 60 7522 雷翀翀 1 理科21 168.5 60 7923 陈志强 1 文科22 180 70.4 7924 尹传萍 1 文科21.5 165.2 55.6 7825 郑南 1 理科21.5 168.5 55.9 6426 幸恒恒 1 文科21.5 168.5 58 7927 李拓 1 理科21.5 172 68.1 6628 张发宝 1 理科21 160.5 52.5 7329 杨涛 1 理科21.5 176 70.5 72原始资料和数据(SPSS软件截图):图1 变量视图图2 数据视图第二部分:数据分析一、描述性分析打开文件“11人资3班29名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择年龄、体重和身高,求最大值、最小值、方差、偏度、峰度和均值,得到如下结果:表1-2年龄分布表年龄频率百分比有效百分比累积百分比有效19.50 1 3.4 3.4 3.420.00 6 20.7 20.7 24.120.50 6 20.7 20.7 44.821.00 7 24.1 24.1 69.021.50 7 24.1 24.1 93.122.00 2 6.9 6.9 100.0合计29 100.0 100.0图1-3身高分布直方图图1-4体重分布条形图文字描述:从SPSS 分析结果中可以得出,有效数据共有29个。

spss地大数据分析资料报告案例

spss地大数据分析资料报告案例

spss地大数据分析资料报告案例spss 的大数据分析资料报告案例在当今数字化时代,数据已成为企业和组织决策的重要依据。

SPSS (Statistical Product and Service Solutions)作为一款功能强大的统计分析软件,在处理和分析大数据方面发挥着重要作用。

本文将通过一个实际的案例,展示如何运用 SPSS 进行大数据分析,并从中得出有价值的结论。

一、案例背景假设我们是一家电商公司,拥有大量的用户交易数据。

我们希望通过对这些数据的分析,了解用户的购买行为、偏好以及市场趋势,以便优化产品推荐、营销策略和供应链管理。

二、数据收集与整理首先,我们从数据库中提取了相关的数据,包括用户的基本信息(如年龄、性别、地域等)、购买记录(产品类别、购买时间、购买金额等)以及浏览行为等。

这些数据量庞大,可能达到数百万甚至数千万条记录。

在将数据导入 SPSS 之前,我们需要对数据进行预处理,包括数据清洗、缺失值处理和异常值检测。

例如,删除重复的记录、填充缺失的关键信息,并剔除明显不符合常理的异常值。

三、数据分析方法1、描述性统计分析通过计算均值、中位数、标准差等统计量,对用户的年龄、购买金额等变量进行概括性描述,了解数据的集中趋势和离散程度。

2、相关性分析分析不同变量之间的相关性,例如用户年龄与购买金额之间、购买频率与产品类别之间的关系。

3、分类分析使用聚类分析将用户分为不同的群体,以便针对不同群体制定个性化的营销策略。

4、时间序列分析对于购买时间等变量,运用时间序列分析方法预测未来的销售趋势。

四、SPSS 操作与结果解读1、描述性统计分析结果例如,我们发现用户的平均年龄为 30 岁,购买金额的中位数为 500 元,标准差为 200 元。

这表明大部分用户年龄较为年轻,购买金额分布相对较为集中。

2、相关性分析结果发现用户年龄与购买金额之间存在较弱的正相关关系,即年龄较大的用户可能购买金额相对较高。

spss数据分析报告案例

spss数据分析报告案例

SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。

通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。

2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。

下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。

•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。

•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。

最小值为5小时,最大值为10小时。

•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。

最早就寝时间为22:00,最晚就寝时间为01:00。

•健康问题:共有45%的大学生存在健康问题。

3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。

利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。

T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。

3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。

使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。

F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。

3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。

利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。

spss的数据分析报告范文

spss的数据分析报告范文

spss的数据分析报告范文SPSS 的数据分析报告范文一、引言在当今的信息时代,数据成为了决策的重要依据。

通过对数据的深入分析,我们可以发现隐藏在其中的规律和趋势,为企业的发展、学术研究以及社会问题的解决提供有力的支持。

本报告将以具体数据集名称为例,运用 SPSS 软件进行数据分析,旨在揭示数据背后的有价值信息。

二、数据来源与背景(一)数据来源本次分析所使用的数据来源于具体的收集途径,如问卷调查、数据库等。

共收集了具体数量个样本,涵盖了相关的变量或指标。

(二)背景介绍这些数据是为了研究研究的主题或问题而收集的。

例如,可能是为了了解消费者的购买行为、员工的工作满意度,或者是某种疾病的发病因素等。

三、数据预处理(一)数据清理首先,对数据进行了初步的清理工作。

检查并处理了缺失值,对于少量的缺失值,采用了具体的处理方法,如均值填充、删除等;对于存在异常值的数据,通过具体的判断方法和处理方式进行了处理。

(二)数据编码对分类变量进行了编码,将其转换为数字形式,以便于后续的分析。

例如,将性别变量编码为 0 和 1,分别代表男性和女性。

(三)数据标准化为了消除不同变量量纲的影响,对部分数据进行了标准化处理,使得各个变量在相同的尺度上进行比较和分析。

四、描述性统计分析(一)集中趋势计算了各个变量的均值、中位数和众数。

例如,年龄变量的均值为具体数值,中位数为具体数值,众数为具体数值,从而了解数据的中心位置。

(二)离散程度通过计算标准差、方差和极差,来描述数据的离散程度。

例如,收入变量的标准差为具体数值,方差为具体数值,极差为具体数值,反映了收入的分布范围。

(三)分布形态绘制了直方图和箱线图,观察数据的分布形态。

例如,成绩变量呈现出近似正态分布,而工作时间变量则呈现出偏态分布。

五、相关性分析(一)变量之间的相关性计算了各个变量之间的皮尔逊相关系数,以判断变量之间的线性关系。

结果发现,变量 A 与变量 B 之间存在显著的正相关关系(r =具体数值,p < 005),而变量 C 与变量 D 之间则不存在显著的相关性(p > 005)。

spss案例大数据分析报告

spss案例大数据分析报告

spss案例大数据分析报告SPSS 案例大数据分析报告在当今数字化时代,数据已成为企业和组织决策的重要依据。

通过对大量数据的分析,可以揭示隐藏在其中的规律和趋势,为决策提供有力支持。

本报告将以一个具体的案例为例,展示如何使用 SPSS 进行大数据分析。

一、案例背景本次分析的对象是一家电商企业的销售数据。

该企业在过去一年中积累了大量的销售记录,包括商品信息、客户信息、订单金额、购买时间等。

企业希望通过对这些数据的分析,了解客户的购买行为和偏好,优化商品推荐和营销策略,提高销售业绩。

二、数据收集与整理首先,从企业的数据库中提取了相关数据,并进行了初步的清理和整理。

删除了重复记录和缺失值较多的字段,对数据进行了标准化处理,使其具有统一的格式和单位。

在整理数据的过程中,发现了一些问题。

例如,部分客户的地址信息不完整,部分商品的分类存在错误。

通过与相关部门沟通和核实,对这些问题进行了修正和补充。

三、数据分析方法本次分析主要采用了以下几种方法:1、描述性统计分析计算了数据的均值、中位数、标准差、最大值、最小值等统计指标,以了解数据的集中趋势和离散程度。

2、相关性分析分析了不同变量之间的相关性,例如商品价格与销量之间的关系,客户年龄与购买金额之间的关系。

3、聚类分析将客户按照购买行为和偏好进行聚类,以便更好地了解客户群体的特征。

4、因子分析提取了影响客户购买行为的主要因素,为进一步的分析和建模提供基础。

四、数据分析结果1、描述性统计分析结果商品的平均价格为_____元,中位数为_____元,标准差为_____元。

销量的最大值为_____件,最小值为_____件,均值为_____件。

客户的平均年龄为_____岁,中位数为_____岁,标准差为_____岁。

购买金额的最大值为_____元,最小值为_____元,均值为_____元。

2、相关性分析结果商品价格与销量之间呈现负相关关系,相关系数为_____。

这表明价格越高,销量越低。

大学生spss数据分析报告模板

大学生spss数据分析报告模板

大学生SPSS数据分析报告模板1. 引言本报告旨在通过使用SPSS软件对大学生群体的某一特定问题进行数据分析,旨在展示分析过程和结果。

本文将依次介绍研究目的、研究方法、数据处理和分析结果。

2. 研究目的本研究旨在探索大学生在某一重要问题上的态度和行为,并分析不同因素对其态度和行为的影响。

通过这一分析,我们可以了解到大学生群体中在该问题上的普遍看法,为进一步的研究提供参考依据。

3. 研究方法本研究采用问卷调查的方式收集数据。

共发放500份问卷,最终回收有效问卷432份,有效回收率为86.4%。

问卷设计包括以下几个方面:•基本信息:包括被调查者的性别、年龄、专业、学历等基本信息。

•问题相关信息:包括问题的描述和回答选项。

4. 数据处理在SPSS软件中,我们首先将所有收集到的数据进行录入和整理,建立一个数据集。

然后对数据集进行清洗和检查,包括检查数据是否有缺失值、异常值等。

接下来,我们进行数据的描述性统计分析,如计算均值、标准差、频数等,以便更好地了解大学生群体在该问题上的整体情况。

此外,我们还需要进行数据的相关性分析,以了解不同因素之间的相关关系。

在进行相关性分析之前,我们需要对数据进行变量类型转换,并对缺失值进行处理。

相关性分析可以通过计算皮尔逊相关系数、斯皮尔曼相关系数等来实现。

5. 数据分析结果经过数据处理和分析,得到以下几点结果:1.大学生群体在该问题上的整体态度向正面倾斜,占比达到60%。

2.不同年龄段的大学生在该问题上的态度存在显著差异,年龄越小,态度越积极。

3.不同专业的大学生在该问题上的态度存在显著差异,人文科学类专业的学生态度更偏向于肯定。

4.不同学历的大学生在该问题上的态度存在显著差异,研究生群体的态度更为积极。

6. 结论与建议通过本次数据分析,可以得出以下结论:1.大学生群体在该问题上普遍持积极态度,但仍存在部分学生持否定态度。

2.年龄、专业和学历等因素对大学生的态度产生显著影响。

spss的数据分析报告范文

spss的数据分析报告范文

spss的数据分析报告范文1. 引言本报告旨在通过使用SPSS软件对特定数据集进行分析,探讨数据分布、相关系数、回归分析等统计指标,旨在为决策者提供有关数据的深入洞察和建议。

本报告将按照如下顺序进行数据分析并给出相应结论:数据描述、相关性分析、回归分析和结论。

2. 数据描述本节将对所分析的数据进行描述性统计。

数据集包含了学生的年龄、性别、成绩等多个变量。

以下是给定数据集的一些核心统计指标:- 年龄(Age):样本人数:100平均年龄:20.5岁最小年龄:18岁最大年龄:25岁- 性别(Gender):男性:50人女性:50人- 成绩(Score):样本人数:100平均成绩:85最低成绩:60最高成绩:993. 相关性分析本节将探讨不同变量之间的相关性。

我们将使用Pearson相关系数来测量变量之间的线性相关性。

以下是所分析变量之间的相关系数:- 年龄与成绩:r = -0.25,p < 0.05结论:年龄与成绩之间存在轻微的负相关。

年龄增长时,学生成绩略有下降。

- 性别与成绩:无显著相关性结论:性别和成绩之间没有明显的相关性。

- 年龄与性别:无显著相关性结论:年龄和性别之间没有明显的相关性。

4. 回归分析本节将进行线性回归分析,以探讨年龄对成绩的预测能力。

我们将使用成绩作为因变量,年龄作为自变量。

以下是回归分析的结果:- 回归方程:成绩 = 87.5 - 1.2 * 年龄- 表达式解读:年龄每增加1岁,成绩平均下降1.2分。

5. 结论通过对数据的分析,我们得出以下结论:- 年龄与成绩呈现轻微的负相关,随着年龄增长,学生成绩略有下降。

- 性别与成绩之间没有明显的相关性。

- 年龄和性别之间没有明显的相关性。

- 我们建立了一个回归方程,成绩= 87.5 - 1.2 * 年龄,该方程可以用于预测学生的成绩。

本报告的分析结果仅限于给定的数据集,并不能推广到整个人群。

希望本报告的分析结果对您的决策和研究有所帮助。

spss数据分析报告1500字(5篇)

spss数据分析报告1500字(5篇)

关于spss数据分析报告,精选6篇范文,字数为1500字。

随着科技的发展与进步,我们对现代化生产力的要求也更高,这对我们的工作提出了严峻的挑战。

我们要在工作中不断的学习,要进一步的完善我们的工作,这样才能为工作创造更好的条件,才能为我们的科技事业做出更大的贡献。

关于spss数据分析报告,精选6篇范文,字数为1500字。

随着科技的发展与进步,我们对现代化生产力的要求也更高,这对我们的工作提出了严峻的挑战。

我们要在工作中不断的学习,要进一步的完善我们的工作,这样才能为工作创造更好的条件,才能为我们的科技事业做出更大的贡献。

随着科技的发展与进步,我们对现代化生产力的要求也更高,这对我们的工作提出了严峻的挑战。

我们要在工作中不断的学习,要进一步的完善我们的工作,这样才能为工作创造更好的条件,才能为我们的科技事业做出更大的贡献。

在我们工作中,每个人都应该有一个健康的体魄,才会有更高的目标,才会不断努力,不断学习,才能有进步。

所谓健康并不指的人有健全的体魄,而是指的人有健康的心理才有更高的目标!这次的培训,使我对自己的工作有了更深刻的理解和认识,在今后的工作中我应该以更加负责的态度,更加热情的工作为,努力做到让客户满意!为期半年的实习结束了,这次实习对于我来说有着不一样的收获。

这是一家大型的数据分析厂。

它是在广东省内连续xx年开立的一家专门从事数据分析的专业公司。

在这里,我看到了公司的强大与优美,以及同事的热情和谦逊。

而这里的工人和管理人员,都是我学习的对象,他们的工作都在这里,都是那么的耐心、认真和对工作的负责。

这次实习让我们对这个行业有了更加全面的认识。

我们这次实习的工厂主要从事数据收集、整理、分析工作。

我们所参观的工厂主要是公司的数据库及分析。

我们实习的地点是广州市海星数据产业集团,在公司的大家庭里,我们一起度过了一个愉快的日子。

虽然只有短短的一个月,但是这一个月却给我最深刻的体会是:工作和学习对于每个人来讲都是非常重要的,它会关系到你是否能够把自己所学的知识运用到实际工作中,是否能够做好工作。

SPSS数据分析报告金典模板三篇

SPSS数据分析报告金典模板三篇

SPSS数据分析报告金典模板三篇SPSS数据分析报告(模板一)学院:经济管理学院专业、班级: **人资*班学生姓名:某某人学二○一*年十一月十一日SPSS数据分析报告第一部分:原始资料和数据资料来源:华东交通大学经济管理学院11级人力资源管理3班29名同学实际情况编号姓名性别学科背景年龄身高体重体测成绩1 吕鑫0 文科20.5 164.2 54.2 812 王阳0 文科20 158.3 46.2 753 洪华阳0 理科21 171 57.2 714 刘卫秀0 理科21 165.5 54 755 吴梦琦0 文科21 166.2 48 696 韩玮0 文科20 164.3 47 617 汤丽娟0 文科21 162.8 48.2 668 江桂英0 理科20 157.2 44.2 709 熊如意0 文科20 166.5 54.5 7310 余婵0 文科19.5 156.2 45.5 7711 彭茜0 文科20 165.4 52.4 6612 赵丹0 文科20.5 174.3 55.6 7613 安怡君0 文科20 175 56.2 7214 武阳帆0 文科20.5 162.4 55.5 6715 倪亚萍0 文科22 157.5 48.6 7416 张明辉 1 文科21.5 170 60 7117 张春旭 1 理科20.5 168.5 57.8 8018 刘晓伟 1 文科21 170.5 59.5 7019 黄炜 1 文科20.5 171 62.2 7620 李强 1 文科20.5 167.5 56.5 6821 温明煌 1 文科21.5 170 60 7522 雷翀翀 1 理科21 168.5 60 7923 陈志强 1 文科22 180 70.4 7924 尹传萍 1 文科21.5 165.2 55.6 7825 郑南 1 理科21.5 168.5 55.9 6426 幸恒恒 1 文科21.5 168.5 58 7927 李拓 1 理科21.5 172 68.1 6628 张发宝 1 理科21 160.5 52.5 7329 杨涛 1 理科21.5 176 70.5 72原始资料和数据(SPSS软件截图):图1 变量视图图2 数据视图第二部分:数据分析一、描述性分析打开文件“11人资3班29名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择年龄、体重和身高,求最大值、最小值、方差、偏度、峰度和均值,得到如下结果:表1-2年龄分布表年龄频率百分比有效百分比累积百分比有效19.50 1 3.4 3.4 3.420.00 6 20.7 20.7 24.120.50 6 20.7 20.7 44.821.00 7 24.1 24.1 69.021.50 7 24.1 24.1 93.122.00 2 6.9 6.9 100.0合计29 100.0 100.0图1-3身高分布直方图图1-4体重分布条形图文字描述:从SPSS 分析结果中可以得出,有效数据共有29个。

spss的数据分析报告范例

spss的数据分析报告范例

spss的数据分析报告范例SPSS数据分析报告范例一、引言数据分析是现代科学研究的重要环节,在统计学中,SPSS作为一种广泛应用的数据分析软件,为研究人员提供了丰富的功能和工具。

本报告旨在使用SPSS对某项研究的数据进行分析,并整理并呈现结果,以帮助读者深入了解数据的含义,并得出有关数据的结论。

二、研究背景与目的在这一部分,我们将简要介绍研究的背景和目的。

本次研究旨在调查大学生的学习焦虑水平与其学业成绩之间的关系。

通过收集相关数据并使用SPSS进行分析,我们希望能够揭示大学生学习焦虑对学业成绩的影响程度,并为教育管理者和辅导员提供数据支持。

三、研究设计与方法在这一部分,我们将介绍研究的设计和采用的方法。

本研究采用问卷调查的形式,使用了由专家设计的学习焦虑量表和学业成绩评估表。

我们在某大学的三个院系中选取了500名大学生作为样本,并通过邮件方式发送问卷,并以匿名方式收集数据。

四、数据分析与结果本节将展示SPSS分析后的数据结果。

首先,我们将进行数据清洗和描述性统计分析。

然后,我们将使用相关性分析和回归分析来探究学习焦虑与学业成绩之间的关系。

1.数据清洗和描述性统计针对收集到的数据,我们进行了数据清洗,包括去除不完整或无效数据。

然后,我们进行了描述性统计分析,包括计算样本量、均值、标准差和分布情况。

2.相关性分析为了探究学习焦虑与学业成绩之间的关系,我们进行了相关性分析。

根据SPSS的输出结果,我们发现学习焦虑与学业成绩之间存在显著的负相关关系(r=-0.35, p<0.05),表明学习焦虑水平越高,学业成绩越低。

3.回归分析为了更深入地了解学习焦虑对学业成绩的影响程度,我们进行了回归分析。

回归分析结果显示,学习焦虑是预测学业成绩的显著因素(β=-0.25, p<0.05)。

这表明学习焦虑对学业成绩有着一定的负向影响。

五、讨论与结论根据数据分析的结果,我们得出以下结论:1.学习焦虑与学业成绩之间存在显著的负相关关系,即学习焦虑水平越高,学业成绩越低。

spss案例大数据分析报告

spss案例大数据分析报告

spss案例大数据分析报告目录1. 内容概要 (2)1.1 案例背景 (2)1.2 研究目的和重要性 (4)1.3 报告结构 (5)2. 数据分析方法 (5)2.1 数据收集与处理 (7)2.2 分析工具介绍 (8)2.3 变量定义和描述性统计分析 (9)3. 数据集概述 (11)3.1 数据来源 (11)3.2 数据特征描述 (12)3.3 数据清洗与处理 (13)4. 数据分析结果 (15)4.1 描述性统计分析结果 (16)4.2 推断性统计分析结果 (18)4.3 回归分析结果 (19)4.4 多变量分析结果 (20)5. 案例分析 (21)5.1 问题识别 (22)5.2 数据揭示的趋势和模式 (23)5.3 具体案例分析 (24)5.3.1 案例一 (26)5.3.2 案例二 (28)5.3.3 案例三 (29)6. 结论和建议 (30)6.1 数据分析总结 (31)6.2 战略和操作建议 (33)6.3 研究的局限性 (33)1. 内容概要本次SPSS案例大数据分析报告旨在通过对某一特定领域的大规模数据集进行深入分析和挖掘,揭示数据背后的规律、趋势以及潜在价值。

报告首先介绍了研究背景和研究目的,阐述了在当前时代背景下大数据的重要性和价值。

概述了数据来源、数据规模以及数据预处理过程,包括数据清洗、数据整合和数据转换等步骤。

报告重点介绍了运用SPSS软件进行数据分析的方法和过程,包括数据描述性分析、相关性分析、回归分析、聚类分析等多种统计分析方法的运用。

通过一系列严谨的统计分析,报告揭示了数据中的模式、关联以及预测趋势。

报告总结了分析结果,并指出了分析结果对于决策制定、业务发展以及学术研究等方面的重要性和意义。

报告内容全面深入,具有针对性和实用性,为企业决策者、研究人员和学者提供了重要参考依据。

1.1 案例背景本报告旨在通过对大数据技术的应用,为特定行业中的决策者提供深入的分析见解。

在当前数据驱动的时代,企业可以参考这一解析来优化其战略方向、业务流程及终极客户体验。

spss作业数据分析报告模板

spss作业数据分析报告模板

SPSS作业数据分析报告模板1. 简介本报告旨在分析某公司最近一年来数据表现和趋势,采用SPSS软件进行数据分析。

本次分析的数据包括销售额、利润、产品类别和地区等。

通过这些数据,我们将探讨公司在销售和利润方面的表现,并提出建议以改善公司的业务和效益。

2. 数据总览2.1 数据源本次分析的数据来源于某公司的销售数据库,包含了最近一年内的销售和利润数据。

数据以Excel表格的形式提供。

2.2 数据字段说明本数据集包含以下字段:•销售额(Sales):表示某产品的销售额,单位为美元。

•利润(Profit):表示某产品的利润额,单位为美元。

•产品类别(Category):表示产品所属的类别,例如电子产品、家居用品等。

•地区(Region):表示销售该产品的地区,例如北美、欧洲等。

2.3 数据预处理在进行数据分析之前,我们对数据进行了一些预处理操作。

首先,我们检查了是否有重复的数据,并删除了重复项。

然后,我们检查了缺失值,并对缺失值进行了处理,填充了缺失值或删除了缺失值较多的数据。

此外,我们还对异常值进行了检测和处理,以确保数据的准确性和可靠性。

3. 数据分析3.1 销售额分析首先,我们对销售额进行分析,以了解公司的销售情况,并找出销售额的变化趋势。

3.1.1 总体销售额变化趋势我们首先绘制了销售额随时间的变化图表,如下所示:code根据图表分析,可以观察到销售额整体呈上升趋势,尤其是在第三季度达到了峰值。

这可能是由于某些促销活动和市场需求的增加所致。

3.1.2 不同产品类别的销售额对比我们进一步对不同产品类别的销售额进行对比分析,如下所示:code根据图表分析,可以发现电子产品类别销售额最高,而办公用品类别销售额最低。

这提示我们可以进一步增加电子产品的生产和销售,以提高公司的销售额。

3.2 利润分析接下来,我们将对利润进行分析,以了解公司的盈利情况,并找出利润的变化趋势。

3.2.1 总体利润变化趋势我们首先绘制了利润随时间的变化图表,如下所示:code根据图表分析,可以观察到利润整体呈上升趋势,与销售额的趋势相一致。

spss数据分析报告

spss数据分析报告

spss数据分析报告SPSS数据分析报告。

一、引言。

本报告旨在对某公司员工满意度调查数据进行分析,以便了解员工对公司的整体满意度情况,并为公司提供改进管理的建议。

本次调查共收集了200份有效问卷,通过SPSS软件对数据进行了详细的分析和解释。

二、数据描述。

1. 样本特征。

样本中男性占60%,女性占40%;受教育程度以本科学历为主,占比70%;工作年限在1-5年和6-10年的员工占比较高,分别为35%和30%。

2. 变量描述。

本次调查涉及到的主要变量包括员工满意度、工作环境、薪酬福利、晋升机会、工作压力等,其中员工满意度作为因变量,其他变量作为自变量。

三、数据分析。

1. 描述统计。

通过SPSS软件对各变量进行了描述统计分析,发现员工满意度的平均分为78分,工作环境得分最高,薪酬福利得分最低。

此外,晋升机会和工作压力的得分也较为接近。

2. 相关性分析。

进行了各变量之间的相关性分析,结果显示员工满意度与工作环境、薪酬福利、晋升机会呈正相关,与工作压力呈负相关。

3. 方差分析。

对不同工作年限、不同受教育程度和不同性别的员工进行了方差分析,结果显示在工作年限和受教育程度上存在显著差异,而性别对员工满意度的影响不显著。

4. 回归分析。

通过回归分析,发现工作环境、薪酬福利和晋升机会对员工满意度的影响较大,而工作压力对员工满意度影响较小。

四、结论与建议。

根据数据分析的结果,可以得出以下结论:1. 公司的工作环境和薪酬福利需要进一步改善,以提高员工的整体满意度;2. 公司应该加强对晋升机会的管理和分配,以激励员工的积极性;3. 对于工作压力过大的员工,公司应该提供相应的心理健康支持。

综上所述,本报告通过SPSS数据分析,对员工满意度调查数据进行了全面的分析和解释,为公司提供了改进管理的建议,希望能对公司的人力资源管理和企业发展起到一定的指导作用。

五、参考文献。

[1] 张三, 李四. SPSS统计分析实战[M]. 北京,人民邮电出版社, 2018.[2] 王五, 赵六. 数据分析与决策[M]. 上海,上海人民出版社, 2019.六、附录。

spss数据分析报告带原始数据

spss数据分析报告带原始数据

SPSS数据分析报告1. 引言本报告旨在对于一组原始数据进行SPSS数据分析,以得出相关结论和解释数据背后的意义。

数据收集自某公司的销售记录,包含销售额、销售人员、客户类型等信息,总计100个样本。

本报告将分析不同变量之间的关系,探究可能的影响因素,并提供相应的解释和建议。

2. 方法在进行数据分析之前,我们首先进行了数据的导入和清洗。

清洗过程包括去除缺失值、异常值和重复值等,以确保数据的准确性和一致性。

首先,我们对数据进行了描述性统计,包括计算各个变量的均值、标准差、最小值、最大值等指标,以了解数据的整体概况。

接下来,我们进行了相关性分析,通过计算不同变量之间的相关系数来衡量它们之间的相关性。

相关系数的范围在-1到1之间,接近1表示两个变量呈正相关,接近-1表示两个变量呈负相关,接近0表示无相关性。

这将有助于我们确定哪些变量可能对销售额有重要影响。

然后,我们进行了多元线性回归分析,以确定哪些变量对销售额的影响最显著。

线性回归可以帮助我们建立一个可靠的模型,用于预测销售额并解释其背后的影响因素。

最后,我们根据线性回归模型的结果,提出了一些结论和建议,并对模型的稳定性和准确性进行了评估。

3. 数据分析结果3.1 描述性统计在进行描述性统计之前,我们首先对数据进行了数据类型的确认和必要的格式转换。

下表给出了销售额、销售人员数和客户类型的描述性统计结果。

变量名称均值标准差最小值最大值销售额18000 5000 10000 30000销售人员数 3 1 2 5客户类型 1.5 0.5 1 23.2 相关性分析通过计算不同变量之间的相关系数,我们得出了以下结果:•销售额和销售人员数的相关系数为0.75,呈正相关;•销售额和客户类型的相关系数为0.45,呈正相关;•销售人员数和客户类型的相关系数为0.55,呈正相关。

根据相关系数的结果,我们可以初步推断销售人员数和客户类型对销售额的影响较为显著,而销售人员数和客户类型之间也存在一定的相关性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s p s s的数据分析报告
范例
Document number【980KGB-6898YT-769T8CB-246UT-18GG08】
关于某地区361个人旅游情况统计分析报告
一、数据介绍:
本次分析的数据为某地区361个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0代表没走通道,1代表走通道);旅游的积极性,为三类变量(0代表积极性差,1代表积极性一般,2代表积极性比较好,3代表积极性好 4代表积极性非常好);额外收入,一类变量。

通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析,以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系。

二、数据分析
1、频数分析。

基本的统计分析往往从频数分析开始。

通过频数分地区359个人旅
游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性情况的基本分布。

统计量
积极性性别
N有效359359
缺失00
首先,对该地区的男女性别分布进行频数分析,结果如下
性别
频率百分比有效百分

累积百分

有效女198
男161
合计359
表说明,在该地区被调查的359个人中,有198名女性,161名男性,男女比例分别为%和%,该公司职工男女数量差距不大,女性略多于男性。

其次对原有数据中的旅游的积极性进行频数分析,结果如下表:
有效差171
一般79
比较好79
好24
非常好6
合计359
其次对原有数据中的积极性进行频数分析,结果如下表:
这说明,在该地区被调查的359个人中,有没走通道的占%,占绝大多数。

上表及其直方图说明,被调查的359个人中,对与旅游积极性差的组频数最高的,为171 人数的%,其次为积极性一般和比较好的,占比例都为%,积性为好的和非常好的比例比较低,分别为24人和6人,占总体的比例为%和%。

2、描述统计分析。

再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算基本描述统计的方法来实现。

下面就对各个变量进行描述统计分析,得到它们的均值、标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。

¥,平均¥,标准差为¥
偏度系数和峰度系数分别为和。

其他数据依此读取,则该表表明该地区旅游花费的详细分布状况。

3、探索性数据分析
(1)交叉分析。

通过频数分析能够掌握单个变量的数据分布情况,但是在实际分析中,不仅要了解单个变量的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分析变量之间的相互影响和关系。

就本数据而言,需要了解现工资与性别、年龄、受教育水平、起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。

现以现工资与职务等级的列联表分析为例,读取数据(下面数据分析表为截取的一部分):
别对于旅游积极性分布情况。

上表中,性别成为行向量,积极性列向量。

(2)性别与收入的探索性分析
Stem-and-Leaf Plots
收入 Stem-and-Leaf Plot for
性别= 女
Frequency Stem & Leaf
1 . 0000000001111
1 . 7777
1 . 88888
.00 2 .
2 . 5555
2 . 6
2 . 88
Extremes (>=3000)
Stem width:
Each leaf: 1 case(s)
收入 Stem-and-Leaf Plot for
性别= 男
Frequency Stem & Leaf
1 . 0000000000011
1 . 77
1 . 888889
2 . 000111
Extremes (>=2351)
Stem width:
Each leaf: 1 case(s)
结果分析如下
收入
女男平均数
均数的95%可信区间(,)(,)
5%的调整均数
中位数
标准差
标准差
最小值
最大值
极差
四分位数间距
偏度系数
峰度系数 .310 (3)p-p图分析
结果分析
年龄在正态p-p图的散点近似成一条直线,无趋势正态p-p图的散点均匀分布在直线y=0的上下,故可认为本资料服从正态分布
4、相关分析。

相关分析是分析客观事物之间关系的数量分析法,明确客观事
之间有怎样的关系对理解和运用相关分析是极其重要的。

函数关系是指两事物之间的一种一一对应的关系,即当一个变量X取一定值时,另一个变量函数Y可以根据确定的函数取一定的值。

另一种普遍存在的关系是统计关系。

统计关系是指两事物之间的一种非一一对应的关系,即当一个变量X取一定值时,另一个变量Y无法根据确定的函数取一定的值。

统计关系可分为线性关系和非线性关系。

事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数关系那样直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。

如何测
度事物之间的统计关系的强弱是人们关注的问题。

相关分析正是一种简单易行的测度
上表是对本次分析数据中,旅游花费、收入、、额外收入的相关分析,表中相关系数旁边有两个星号(**)的,表示显着性水平为时,仍拒绝原假设。

一个星号(*)表示显着性水平为是仍拒绝原假设。

先以现旅游花费这一变量与其他变量的相关性为例分析,由上表可知,旅游花费与额外收入的相关性最大,
5.回归分析
有相关性分析可得收入,旅游花费呈线性相关,因此作回归分析
Charts
由上图可知回归方程:
y=+ (x1) , (P(Sig=<
即旅游花费=+*收入 ( p<
6单样本T检验
首先对现工资的分布做正态性检验,结果如下:
图可知,现工资的分布可近似看作符合正态分布,现推断现工资变量的平均值是否为$3,000,0,因此可采取单样本t检验来进行分析。

分析如下:
由One-Sample Statistics可知,359个被调查的人中收入平均值
,标准差为,均值标准误差为。

图表One-Sample Test中,第二列是t统计量的观测值为;第三列是自由度为358(n-1);第四列是t统计量观测值的双尾概率值;第五列是样本均值和检验值的差;第六列和第七列是总体均值与原假设值差的95%的置信区间为( , )。

该问题的t值等于对应的临界置信水平为0,远远小于设置的,因此拒绝原假设,表明该地区被调查的359名人中收入与
存在显着差异。

7,独立样本t检验
T-Test
结果分析
得到两组的均数(mean)分别为198 和 161
独立样本t检验,取的t值与Sig为 p>0..05
旅游花费不成显着性差异,由图中可知旅行的旅游花费较高。

学号: 姓名 : 班级 :。

相关文档
最新文档