spss的数据分析报告范例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s p s s的数据分析报告
范例
Document number【980KGB-6898YT-769T8CB-246UT-18GG08】
关于某地区361个人旅游情况统计分析报告
一、数据介绍:
本次分析的数据为某地区361个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0代表没走通道,1代表走通道);旅游的积极性,为三类变量(0代表积极性差,1代表积极性一般,2代表积极性比较好,3代表积极性好 4代表积极性非常好);额外收入,一类变量。通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析,以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系。
二、数据分析
1、频数分析。基本的统计分析往往从频数分析开始。通过频数分地区359个人旅
游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性情况的基本分布。
统计量
积极性性别
N有效359359
缺失00
首先,对该地区的男女性别分布进行频数分析,结果如下
性别
频率百分比有效百分
比
累积百分
比
有效女198
男161
合计359
表说明,在该地区被调查的359个人中,有198名女性,161名男性,男女比例分别为%和%,该公司职工男女数量差距不大,女性略多于男性。
其次对原有数据中的旅游的积极性进行频数分析,结果如下表:
有效差171
一般79
比较好79
好24
非常好6
合计359
其次对原有数据中的积极性进行频数分析,结果如下表:
这说明,在该地区被调查的359个人中,有没走通道的占%,占绝大多数。
上表及其直方图说明,被调查的359个人中,对与旅游积极性差的组频数最高的,为171 人数的%,其次为积极性一般和比较好的,占比例都为%,积性为好的和非常好的比例比较低,分别为24人和6人,占总体的比例为%和%。
2、描述统计分析。
再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算基本描述统计的方法来实现。下面就对各个变量进行描述统计分析,得到它们的均值、标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。
¥,平均¥,标准差为¥
偏度系数和峰度系数分别为和。
其他数据依此读取,则该表表明该地区旅游花费的详细分布状况。
3、探索性数据分析
(1)交叉分析。
通过频数分析能够掌握单个变量的数据分布情况,但是在实际分析中,不仅要了解单个变量的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分析变量之间的相互影响和关系。就本数据而言,需要了解现工资与性别、年龄、受教育水平、起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。现以现工资与职务等级的列联表分析为例,读取数据(下面数据分析表为截取的一部分):
别对于旅游积极性分布情况。上表中,性别成为行向量,积极性列向量。
(2)性别与收入的探索性分析
Stem-and-Leaf Plots
收入 Stem-and-Leaf Plot for
性别= 女
Frequency Stem & Leaf
1 . 0000000001111
1 . 7777
1 . 88888
.00 2 .
2 . 5555
2 . 6
2 . 88
Extremes (>=3000)
Stem width:
Each leaf: 1 case(s)
收入 Stem-and-Leaf Plot for
性别= 男
Frequency Stem & Leaf
1 . 0000000000011
1 . 77
1 . 888889
2 . 000111
Extremes (>=2351)
Stem width:
Each leaf: 1 case(s)
结果分析如下
收入
女男平均数
均数的95%可信区间(,)(,)
5%的调整均数
中位数
标准差
标准差
最小值
最大值
极差
四分位数间距
偏度系数
峰度系数 .310 (3)p-p图分析
结果分析
年龄在正态p-p图的散点近似成一条直线,无趋势正态p-p图的散点均匀分布在直线y=0的上下,故可认为本资料服从正态分布
4、相关分析。相关分析是分析客观事物之间关系的数量分析法,明确客观事
之间有怎样的关系对理解和运用相关分析是极其重要的。
函数关系是指两事物之间的一种一一对应的关系,即当一个变量X取一定值时,另一个变量函数Y可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计关系是指两事物之间的一种非一一对应的关系,即当一个变量X取一定值时,另一个变量Y无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。
事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数关系那样直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测