数学高考压轴题大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(本小题满分14分)
已知函数.
(1)当时,如果函数仅有一个零点,求实数的取值范围;
(2)当时,试比较与的大小;
(3)求证:().
2、设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数的有极值点,求的取值范围及的极值点;
(Ⅲ)当且时,求证:.
3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若∙,(i)求证:直线过定点;
(ii)试问点,能否关于轴对称?若能,求出
此时的外接圆方程;若不能,请说明理由.
二、计算题
评卷人得分
(每空?分,共?分)4、设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.
(Ⅰ)求函数的表达式;
(Ⅱ)求证:.
5、已知函数:
(1)讨论函数的单调性;
(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?
(3)求证:.
6、已知函数=,.
(Ⅰ)求函数在区间上的值域;
(Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;
(Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得
成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.
7、已知函数
(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;
(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,请说明理由.
8、已知函数:
⑴讨论函数的单调性;
⑵若函数的图象在点处的切线的倾斜角为45o,对于任意的,函数
在区间上总不是单调函数,求m的取值范围;
⑶求证:.
9、已知正方形的中心在原点,四个顶点都在函数图象上.(1)若正方形的一个顶点为,求,的值,并求出此时函数的单调增区间;
(2)若正方形唯一确定,试求出的值.
10、已知函数,曲线在点处的切线方程为.(I)求a,b的值;
(II)如果当x>0,且时,,求k的取值范围.
11、设函数f(x)=x2+b ln(x+1),其中b≠0.
(Ⅰ)当b>时,判断函数f(x)在定义域上的单调性;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)证明对任意的正整数n,不等式ln)都成立.
12、如图7,椭圆的离心率为,x轴被曲线截得的线段长等于的长半轴长。
(Ⅰ)求,的方程;
(Ⅱ)设与y轴的焦点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是,.问:是否存在直线l,使得=?
请说明理由。
13、已知点是直角坐标平面内的动点,点到
直线的距离为,到点的
距离为,且.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、
B(点A或B不在x轴上),分别过A、B点作直线的垂线,对应的垂足分别为,
试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记,,(A、B、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线、点、曲线C:
,则使等式成立的的值仍保持不变.请给出
你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
14、如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.
(1)求曲线弧的方程;
(2)求的最小值(用表示);
(3)曲线上是否存点,使为正三角形?若存在,求的取值范围;若不存在,说明理由.
15、设、是函数的两个极值点.
(1)若,求函数的解析式;
(2)若,求的最大值.
(3)若,且,,求证:.
16、已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式
恒成立,求实数的取值范围.
17、已知函数
(1)若曲线处的切线平行,求a的值;
(2)求的单调区间;
(3)设是否存在实数a,对
均成立;若存在,求a的取值范围;若不存在,请说明理由。
18、已知函数图象的对称中心为,且的极小值为. (1)求的解析式;
(2)设,若有三个零点,求实数的取值范围;
(3)是否存在实数,当时,使函数
在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.
19、已知函数.
(1)若方程在区间内有两个不相等的实根,求实数的取值范围;(2)如果函数的图像与x轴交于两点,且,求证:(其中,是的导函数,正常数满足).20、已知函数f(x)=a x+x2-x ln a(a>0,a≠1).
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
21、已知函数处取得极小值,其图象过点A(0,1),且在点A 处切线的斜率为—1。
(Ⅰ)求的解析式;
(Ⅱ)设函数上的值域也是
,则称区间为函数的“保值区间”。证明:当不存在“保值区间”;
22、已知函数
(1)求证函数上的单调递增;
(2)函数有三个零点,求t的值;
(3)对恒成立,求a的取值范围。
23、已知函数,其中