2020年中考数学押题试卷(含答案)

合集下载

2020年中考数学押题卷及答案(二十)

2020年中考数学押题卷及答案(二十)

2020年中考数学押题卷及答案(二十)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10 D.﹣a102.(4分)下列方程中,有实数根的是()A.B. C.2x4+3=0 D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a 的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C. D.36.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为厘米.9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a0.(填“<”或“>”)12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y 轴,那么m的值是.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是米.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=.16.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M落在边BC 上的点D处,那么BD=.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC 上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.20.(10分)解方程组:.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y 轴的交点是C点,求△ABC的面积.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB 长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10 D.﹣a10【解答】解:(﹣a2)•a5=﹣a7,故选B2.(4分)下列方程中,有实数根的是()A.B. C.2x4+3=0 D.【解答】解:A、由题意=﹣1<0,方程没有实数根;B、去分母得到:x2﹣x+1=0,△<0,没有实数根;C、由题意x4=﹣<0,没有实数根,D、去分母得到:x=﹣1,有实数根,故选D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a 的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选B.4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,【解答】解:A、如果k=0或,那么,正确;B、设m为实数,则,正确;C、如果,那么或,错误;D、在平行四边形ABCD中,,正确;5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C. D.3【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选:A.6.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0【解答】解:y1=x2﹣2x﹣3=(x﹣1)2﹣4,则它的顶点坐标为(1,﹣4),所以抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组得或,所以当﹣1≤x≤3.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.【解答】解:由等比性质,得==,故答案为:.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为(﹣1)厘米.【解答】解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.【解答】解:设第三边为x,∵:=1:,∵与1是对应边,与是对应边,∵△ABC与△DEF相似,∴==,解得x=,即△DEF的第三边应该是.故答案为:.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是y=.【解答】解:将x=1代入y=2x,得y=2,∴点A(1,2),设反比例函数解析式为y=,∵一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,2),∴2=.解得,k=2,即反比例函数解析式为y=,故答案为:y=.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a<0.(填“<”或“>”)【解答】解:∵抛物线y=ax2+bx+c在对称轴左侧的部分是上升的,∴抛物线开口向下,∴a<0.故答案为:<.12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y 轴,那么m的值是2.【解答】解:将抛物线y=(x+m)2向右平移2个单位后,得到抛物线解析式为y=(x+m﹣2)2.其对称轴为:x=2﹣m=0,解得m=2.故答案是:2.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是6米.【解答】解:∵斜坡AB的坡度i=1:4,∴=,∵从点B测得离地面的铅垂线高度BC是6米,∴=,解得:AC=24,则斜坡AB的长为:==6(米).故答案为6.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.【解答】解::∵AB=AC=5,BC=8,点G为重心,∴AD⊥BC,CD=BC=×8=4,∴AD===3,∴GA=2,∴DG=1,∴BG=,∴∠CBG的余切值=,故答案为:15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=12.【解答】解:∵∠ABD=∠C、∠BAD=∠CAB,∴△ABD∽△ACB,∴,即AB2=AC•AD,∵AD=9,DC=7∴AC=16,∴AB=12,故答案为:1216.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)【解答】解:∵EF是梯形的中位线,∴EF=(A D+BC),∵AD:BC=3:4,=,∴BC=AD,∴=(+)=(+)=.故答案为17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M落在边BC 上的点D处,那么BD=3.【解答】解:∵△ABC中,AB=AC,∠A=90°,BC=6,∴AB=cos45°×BC=3,∵直线MN∥BC,∴△AMN∽△ABC,∵直线MN将△ABC分为面积相等的两部分,∴S△AMN:S△ABC=1:2,∴==,即=,解得AM=3,如图,过A作AD⊥BC于D,则AD=BC=3,∴将线段AM绕着点A逆时针旋转45°,可以使点M落在边BC上的点D处,此时,BD=BC=3.故答案为:3.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC 上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为 1.5或3.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.【解答】解:原式=+﹣×=2+﹣=1.20.(10分)解方程组:.【解答】解:由②得:(x﹣y﹣3)(x﹣y+1)=0∴x﹣y=3或x﹣y=﹣1∴或∴或.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y 轴的交点是C点,求△ABC的面积.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)2+5,将A(1,3)代入上式得3=a(1﹣3)2+5,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+5,(2)∵A(1,3)抛物线对称轴为:直线x=3∴B(5,3),令x=0,y=﹣(x﹣3)2+5=,则C(0,),△ABC的面积=×(5﹣1)×(3﹣)=5.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)【解答】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴,∵AB=600m,∴AD+BD=600m,∴,∴,∴,∴点M到AB的距离.(2)过点N作NE⊥AB于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN为平行四边形,∴,MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴,∴.23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.【解答】证:(1)∵∠ADB=90°,AD=BD,∴∠A=∠DBA=45°,又∵DC∥AB,∴∠CDB=∠DBA=45°=∠A,又∵∠CBE=∠DBA=45°,∴∠EBA=∠CBD,∴△CBD∽△EBA;(2)∵△CBD∽△EBA,∴,∵∠CBE=∠DBA,,∴.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.【解答】解:(1)把A(﹣1,0)、B(5,0)代入抛物线解析式,得:,解得:,∴抛物线的解析式为:,∴顶点C(2,﹣3)(2)方法一:设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(﹣1,0)和C(2,﹣3)代入得:解得:则直线AC:y=﹣x﹣1,∴D(0,﹣1),同理可得直线BD:y=x﹣1,∴∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴∴△HPG∽△CPB,∴,∴,∴;方法二:如图2,过点H作HM⊥CG于M,∵,,,∴BD2=CD2+BC2,∴∠BCD=90°,∵S△BCD=BD•CH=BC•CD,∴,∵∠ABD=∠HCG,∴△OBD∽△MCH,∴,∴,,∴,由勾股定理得:GH=∴, 方法三:直线AC :y=﹣x ﹣1,∴D (0,﹣1),直线BD :y=x ﹣1,∵CH ⊥BD ,∴k BD •k CH =﹣1,∴直线CH :y=﹣5x +7,联立解析式:,解得:,∴∴.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB 长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)【解答】(1)证明:∵AD=DC,AB=BC∴∠DAC=∠DCA,∠BAC=∠BCA又AC平分∠BAD∴∠DAC=∠BAC∴∠DCA=∠BAC,∠DAC=∠BCA,∴AB∥DC,AD∥BC∴四边形ABCD为平行四边形又AD=DC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,∴AF∥BC,AB=BC∴∠AFB=∠CBF,∠FAC=∠ACB,∠ACB=∠BAC ∴∠EBC=∠BAC=∠AFB=∠FAC=∠ACB∴△AEF∽△ABC,△ABC∽△BEC∴∴BC2=EC•AC∴a2=EC•x∴,∴AE=AC﹣EC=x﹣,∵△AEF∽△ABC∴,即∴();(3)解:∵△CEG是等腰三角形,①当CG=EG时,∴∠CGE=∠ECG,∵∠ECG=∠CBF,∴∠CGE=∠CBF,∵∠CGB=∠ABF,∴∠ABF=∠CBF,此时,点F,G和点D重合,∴AF=AB,∴y=a,即∴,②当CG=CE时,∴∠CEG=∠CGB,∵∠CEG=∠AC B+∠CBF=2∠ACB=∠BCD,∴∠CGB=∠BCD,∵∠FDG=∠BAD=∠BCD,∴∠FDG=∠FGD,∴FG=FD,∴AF=BF,∵∠EBCC=∠ECB,∴BE=CE,∵∠EAF=∠EFA,∴AE=EF,∴FB=AC∴y=x即∴(负值已舍),③当EG=CE时,∴∠CEG=∠ACD,∵∠ACD=∠CBF,∴∠CEG=∠CBF,∵∠CEG=∠CBF+∠ACB,∴此种情况不存在.综上所述:或时,△CEG为等腰三角形.。

2020年中考数学押题试卷(附答案)-2020中考圧题

2020年中考数学押题试卷(附答案)-2020中考圧题

2020年中考数学押题试卷(附答案)一、单选题(共11题;共22分)1.下列运算正确的是()A. a3•a3=2a3B. a0÷a3=a﹣3C. (ab2)3=ab6D. (a3)2=a52.2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为()A. 362×102B. 3.62×104C. 3.62×105D. 0.362×1053.将一枚硬币抛掷两次,则这枚硬币两次反面都朝上的概率为()A. B. C. D.4.有理数a,b,c在数轴上的位置如图所示,下面结论正确的是( ).A. c>aB. c>0C. |a|<|b|D. a-c<05.如图,直线y=﹣x与反比例函数y= 的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y= 的图象于另一点C,则的值为()A. 1:3B. 1:2C. 2:7D. 3:106.已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,平移后C点的坐标是()A. (5,-2)B. (1,-2)C. (2,-1)D. (2,-2)7.如图,无法保证△ADE与△ABC相似的条件是()A. ∠1=∠CB. ∠A=∠CC. ∠2=∠BD.8.已知点E在半径为5的⊙O上运动,AB是⊙O的弦且AB=8,则使△ABE的面积为8 的点E共有()个A. 1B. 2C. 3D. 49.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()A. B. C. D.10.计算:=()A. B. C. D. 011.如图,在矩形ABCD中,DE⊥AC于E,∠EDC∶∠EDA=1∶3,且AC=10,则DE的长度是()A. 3B. 5C.D.二、填空题(共4题;共4分)12.多项式9x2+1加上单项式________后,能成为一个含x的三项式的完全平方式.13.如图,设∠1=x°,∠2=y°,且∠1的度数比∠2的度数的2倍多10°,则可列方程组为________ .14.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”当双曲线的眸径为6时,的值为________. 15.如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D 为OB的中点,△AOD的面积为6,则k的值为________.三、解答题(共6题;共69分)16.解下列方程:(1)解:,x(x-3)=0,x=0,x-3=0,∴x=0,x=3(1).17.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为________,中位数在第________组;②频数分布直方图补充完整________;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.18.将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为.(1)根据上图,将表格补充完整:(2)设张白纸黏合后的总长度为,则与之间的关系式是________;(3)你认为白纸黏合起来总长度可能为吗?为什么?19.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.20.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E.(1)求证:DE是⊙O的切线;(2)若AC=10,BC=16,求DE的长.21.如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.答案一、单选题1. B2. B3. D4. C5.A6. B7. B8.C9. D 10. C 11. D二、填空题12.±6x或x413.14.15.16三、解答题16. (1)解:.∵a=5,b=-4,c=-1,∴b2-4ac=(-4)2-4×5×(-1)=36>0,∴x= ,∴.17.(1)12;3;(2)解:×100%=44%,答:本次测试的优秀率是44%;(3)解:设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)所以小明和小强分在一起的概率为:.18. (1)(2)y=35x+5(3)当y=2018时,2018=35x+5,解得x=57.5,不满足要求,∴不存在19.(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y= x,可设直线C1C2的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2的解析式为y= x+ ,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得=﹣,∴直线AC3的解析式为y= x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).20.(1)证明:连接OD、AD,∵AC为⊙O的直径,∴∠ADC=90°,∵AB=AC,∴点D是BC的中点,∵O是AC的中点,∴OD是△ABC的中位线,∴OD∥AB,∴∠ODE=∠BED,∵DE⊥AB,∴∠ODE=90°,∴DE是⊙O的切线;∴CD= BC=8,(2)解:∵AB=AC,且∠ADC=90°,∠B=∠C,∴AD= =6,∵∠BED=∠CDA,∴△BED∽△CDA,∴= ,即= ,∴AC=4.8.21. (1)解:∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式为.∵,∴顶点D的坐标为(2)解:△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形(3)解:作出点C关于x轴的对称点C′,则C'(0,2).连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM 的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.。

2020年河南省中考原创押题数学试卷(一)含答案解析

2020年河南省中考原创押题数学试卷(一)含答案解析

2020 年河南省中考原创押题数学试卷(一)一、选择题:本大题共 8小题,每小题 3 分,共 24分 1.下面的数中,与﹣ 2 的和为 0 的是( )A .B .﹣C .2D .﹣ 22.下列计算正确的是( )A .2 +4 =6B .=4 C . ÷ =3 D .=﹣33.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )4.股票每天的涨、 跌幅均不能超过 10%,即当涨了原价的 10%后,便不能再涨, 叫做涨停;当跌了原价的 10% 后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又6.小明是我校手工社团的一员, 他在做折纸手工, 如图所示在矩形 ABCD 中,AB=6 ,BC=8 ,点 E 是 BC 的中点,点 F 是边 CD 上的任意一点, △ AEF 的周长最小时, 则 DF 的长为( )7.如果一组数据 a 1,a 2,⋯,a n 的方差是 2,那么一组新数据 2a 1+1,2a 2+1,⋯,2a n +1 的方差是( )8.如图,矩形 ABCD 中, AB=3 ,BC=4,动点 P 从 A 点出发,按 A →B →C 的方向在 AB 和 BC 上移动,记PA=x ,点D 到直线 PA 的距离为 y ,则 y 关于 x 的函数图象大致是 ( )则 x 满足的方程是(2B .(1+x )2=C . 1+2x=D1+2x=5.正比例函数 y=6x 的图象与反比例函数 A .第一象限 B .第二象限 C .第三象限 D .第一、三象限A . 2B . 3C . 4D .8C .涨回到原价.若这两天此股票股价的平均增长率为 x , y= 的图象的交点位于(2 A .(1+x )2二、填空题:每小题 3 分,共 21 分9.若实数 a 、b 满足| 3a ﹣1|+ b 2=0,则 a b 的值为 _____11.不等式组 的非负整数解是 ______12.点动成线,线动成面,面动成体,在 Rt △ABC 中,∠ C=90°,AC=3 ,BC=4 ,将△ ABC 饶边 AC 所在的直线旋转一周得到圆锥,则该圆锥的表面积是 _______ .213.反比例函数 的图象经过点 P ( a ,b ),其中 a 、b 是一元二次方程 x 2+kx +4=0 的两根,那么点 P 的坐标是 _____ .214.如图,把抛物线 y= x 2平移得到抛物线 m ,抛物线 m 经过点 A (﹣ 6,0)和原点 O (0, 20),它的顶点为 P ,它的对称轴与抛物线 y= x 2交于点 Q ,则图中阴影部分的面积为 _____ .15.如图 1,两个等边△ ABD ,△ CBD 的边长均为 1,将△ ABD 沿AC 方向向右平移到△ 的位置,得到图 2,则阴影部分的周长为 .三、解答题:本大题共 8 小题,共 75分17.如图,在正方形 ABCD 内有一点 P 满足 AP=AB , PB=PC ,连接 AC 、 PD . 求证:(1)△APB ≌△DPC ;(2)∠ BAP=2 ∠ PAC .10.请写出一个二元一次方程组A ′B ′D 16.化简求值:A.,其中 a=18.如图所示,小明在自家楼顶上的点 A 处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部 B 处的仰角为 45 °,底部 C 处的俯角为 26°,已知小明家楼房的 高度 AD=15 米,求电梯楼的高度 BC (结果精确到 0.1 米)(参考数据: sin26°≈0.44,cos26°≈0.90, tan26°≈ 0.49)19.最近两年雾霾对我国北方大部分地区影响较严重, 其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市 PM2.5 的源解析已经通过专家论证,各 种调查显示,机动车为PM2.5的最大来源,一辆车每行驶 20 千米平均向大气里排放 0.035 千克污染物, 校环保志愿小分队从环保局了解到我市 100 天的空气质量等级情况, 并制成统 计图和表:空气质量等级 优 良轻度污染中度污染重度污染 严重污染天数(天) 10 a12825 b(1)表中 a=______ ,b=_,图中严重污染部分对应的圆心角n= _____ ;(2)请你根据 “2020 年我市 100天空气质量等级天数统计表 ”计算 100 天内重度污染和严重 污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每 天平均出行 25 千米,已知我市 2020 年机动车保有量已突破 200 万辆,请你通过计算, 估计 2020 年我市一天中出行的机动车至少要向大气里排放多少千克污染物?20.如图,已知, A (0,4),B (﹣ 3,0), C (2,0),D 为 B 点关于 AC 的对称点,反比 例函数 y= 的图象经过 D 点. (1)证明四边形 ABCD 为菱形; (2)求此反比例函数的解析式;3)已知在y= 的图象(x>0)上一点N,y 轴正半轴上一点M ,且四边形ABMN 是平克)是销售单价x(元)的一次函数,且当x=60 时,y=80;x=50 时,y=100 .在销售过程中,每天还要支付其他费用450 元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.2)求该公司销售该原料日获利w(元)与销售单价x (元)之间的函数关系式.3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图 1 所示,在四边形延长线于点F,求ABCD 中,AD∥BC,E为CD 边的中点,连接AE 并延长交BC的S四边形ABCD= S△ADE ;变式猜想】如图 2 所示,在已知锐角∠ AOB 内有一定点P,过点P 任意作一条直线MN ,分别交射线OA,OB 于点M,N,小明在将直线MN 绕着点P 旋转的过程中发现,△ MON 的面积存在最小值,试问当MN 在什么位置时,△ MON 的面积最小【拓展应用】如图3所示,一块四边形土地OABC ,其中OA 边长60米,AB 边长30 米,C点到OA 边的距离为45 米,使用测角器测得∠ AOC=45 °,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC )的一组对边相交),则其中以点O 为顶点的四边形地块的最大面积为_________ .23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B 两点,与y轴交于C点,已知 B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△ MBC 的面积的最大值,并求出此时M 点的坐标.30 元.物价部门规定其销售单价不高于每千克60元,不低于每千克30 元.经市场调查发现:日销售量y (千2020 年河南省中考原创押题数学试卷(一)参考答案与试题解析一、选择题:本大题共8小题,每小题 3 分,共24分1.下面的数中,与﹣ 2 的和为0 的是()A.B.﹣C.2 D.﹣2..﹣..﹣【考点】相反数.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x ,由题意得:x+(﹣2)=0 ,x﹣2=0,x=2,故选:C.2.下列计算正确的是()A.2 +4 =6 B.=4 C.÷ =3 D .=﹣3【考点】实数的运算.【分析】 A 、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、2 +4 不是同类项不能合并,故 A 选项错误;B、=2 ,故 B 选项错误;C、÷ =3,故 C 选项正确;D、=3,故 D 选项错误.故选:C.3.发展工业是强国之梦的重要举措,如图所示零件的左视图是(【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形平均分成 2 个,故选:C.4.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10% 后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x 满足的方程是()22A .(1+x )=B.(1+x)2=C.1+2x=D1+2x=【考点】由实际问题抽象出一元二次方程.【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【解答】解:设平均每天涨x .则90%(1+x)2=1,即(1+x)2= ,,故选 B .5.正比例函数y=6x 的图象与反比例函数y= 的图象的交点位于()A .第一象限B .第二象限C .第三象限D .第一、三象限考点】反比例函数与一次函数的交点问题.分析】根据反比例函数与一次函数的交点问题解方程组标,然后根据交点坐标进行判断.所以正比例函数y=6x 的图象与反比例函数y= 的图象的交点坐标为(故选: D .6.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD 中,AB=6 ,BC=8 ,点 E 是BC 的中点,点F 是边CD 上的任意一点,△ AEF 的周长最小时,则DF的长为()3 D. 4轴对称-最短路线问题.如图作点E关于直线CD的对称点E′,连接AE ′与直线CD交于点F.此时△AEF 的周长最小.由CF∥ AB ,推出CF:AB=CE ′:BE′=1:3,求出CF即可解决问题.【解答】解:如图作点E关于直线CD的对称点E′,连接AE ′与直线CD交于点F.此时△解答】解:考点】分析】1,6),(﹣1,﹣6).即可得到两函数的交点坐解方程组AEF 的周长最小.∴CF :AB=CE ′:BE ′=1: 3, ∴CF=2,∴DF=CD ﹣ CF=4. 故选 D .7.如果一组数据 a 1,a 2,⋯,a n 的方差是 2,那么一组新数据 2a 1+1,2a 2+1,⋯,2a n +1 的方差是( )A .2B .3C .4D . 8【考点】 方差.【分析】 设已知数据的平均数为 ,根据数据的方差列出关系式, 进而求出新数据的平均数, 得出方差即可.【解答】 解:∵一组数据 a 1,a 2,⋯,a n 的方差是 2,平均数为 , ∴S 2= [ ( a 1﹣ ) 2+(a 2﹣ )2+⋯+(a n ﹣ )2]=2, ∵2a 1+1,2a 2+1,⋯,2a n +1 的平均数为 2 +1,∴S ′2= [ ( 2a 1+1﹣ 2 ﹣1)2+(2a 2+1﹣2 ﹣1)2+⋯+(2a n +1﹣2 ﹣1)2]=2×22=8, 故选: D8.如图,矩形 ABCD 中, AB=3 ,BC=4,动点 P 从 A 点出发,按 A →B →C 的方向在 AB 和 BC 上移动,记PA=x ,点D 到直线 PA 的距离为 y ,则 y 关于 x 的函数图象大致是 ( )【考点】 动点问题的函数图象.【分析】 ① 点 P 在 AB 上时,点 D 到AP 的距离为 AD 的长度, ② 点 P 在 BC 上时,根据 同角的余角相等求出∠ APB= ∠PAD ,再利用相似三角形的列出比例式整理得到 y 与 x 的关 系式,从而得解.【解答】 解:① 点 P 在 AB 上时, 0≤ x ≤ 3,点 D 到 AP 的距离为 AD 的长度,是定值4; ② 点P 在 BC 上时, 3<x ≤5,∵∠ APB +∠BAP=90 °, ∠PAD+∠BAP=90 °,CF ∥ AB ,∴∠ APB= ∠PAD,又∵∠ B=∠ DEA=90 °,∴△ ABP ∽△ DEA ,=,纵观各选项,只有 B 选项图形符合.故选:B.二、填空题:每小题 3 分,共21 分9.若实数a、b 满足| 3a﹣1|+ b2=0,则a b的值为 1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式,根据任何非0 数的0次幂等于 1 进行计算即可得解.【解答】解:根据题意得,3a﹣1=0,b=0,解得a= ,b=0,b0a = ()=1.故答案为:1.10.请写出一个二元一次方程组此题答案不唯一,如:,使它的解是【考点】二元一次方程组的解.【分析】根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y= ﹣ 1 列一组算式,然后用x,y 代换即可列不同的方程组.答案不唯一,符合题意即可.【解答】解:此题答案不唯一,如:,① +② 得:2x=4 ,解得:x=2 ,将x=2 代入① 得:y=﹣1,∴一个二元一次方程组的解为:故答案为:此题答案不唯一,如:11.不等式组的非负整数解是0【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.【解答】解:由不等式1﹣x>0得x<1,由不等式3x>2x﹣4得x>﹣4,所以其解集为﹣4< x< 1,则不等式组的非负整数解是0.故答案为:0.12.点动成线,线动成面,面动成体,在Rt△ABC 中,∠ C=90°,AC=3 ,BC=4 ,将△ ABC 饶边AC 所在的直线旋转一周得到圆锥,则该圆锥的表面积是36πcm2.【考点】圆锥的计算.【分析】先利用勾股定理计算出AB=5 ,由于以AC 所在直线为轴,把△ ABC 旋转 1 周所得的圆锥的底面圆的半径为4,母线长为5,则可利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算圆锥的侧面积,然后加上底面积即可得到圆锥面积.【解答】解:∵∠ C=90°,AC=3 ,BC=4 ,∴AB==5,以AC 所在直线为轴,把△ ABC 旋转 1 周所得的圆锥的底面圆的半径为 4 ,母线长为5,所以圆锥的全面积=π?42+ ?2π?4?5=36π(cm2).故答案为36πcm2.213.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0 的两根,那么点P的坐标是(﹣2,﹣2).【考点】待定系数法求反比例函数解析式;根与系数的关系.【分析】先根据点P(a,b)是反比例函数的图象上的点,把点P 的坐标代入解析式,得到关于a、b、k 的等式ab=k;又因为a、b 是一元二次方程x2 +kx+4=0 的两根,得到a+b= ﹣k,ab=4,根据以上关系式求出a、 b 的值即可.【解答】 解:把点 P ( a , b )代入 y= 得, ab=k , 因为 a 、 b 是一元二次方程 x 2+kx+4=0 的两根,根据根与系数的关系得:14.如图,把抛物线 y= x 2平移得到抛物线 m ,抛物线 m 经过点 A (﹣ 6,0)和原点 O (0,故答案为:|=| =∴S=| ﹣3| ×| a+b= ﹣k , ab=4 ,,解得2,﹣ 2).0),它的顶点为 P ,它的对称轴与抛物线 y= x 2 交于点 Q ,则图中阴影部分的面积为【考点】 二次函数图象与几何变换.【分析】 根据点 O 与点 A 的坐标求出平移后的抛物线的对称轴,然后求出点 点 P 作 PM ⊥ y 轴于点 M ,根据抛物线的对称性可知阴影部分的面积等于矩形 然后求解即可.【解答】 解:过点 P 作 PM ⊥y 轴于点 M ,∵抛物线平移后经过原点 O 和点 A (﹣ 6, 0), ∴平移后的抛物线对称轴为 x= ﹣ 3,得出二次函数解析式为: y= ( x+3)2+h , 将(﹣ 6, 0)代入得出:0= (﹣ 6+3)2+h ,解得: h= ﹣ ,P 的坐标,过 NPMO 的面积,∴点 P 的坐标是(﹣ 3,﹣ ),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,于是有:点 P 的坐标是(﹣15.如图 1,两个等边△ ABD ,△CBD 的边长均为 1,将△ ABD 沿 AC 方向向右平移到△ A ′B ′D 的位置,得到图 2,则阴影部分的周长为 2 .分析】 根据两个等边△ ABD ,△ CBD 的边长均为 1,将△ ABD 沿 AC 方向向右平移到△A 'B 'D '的位置,得出线段之间的相等关系,进而得出OM+MN +NR +GR+EG+OE=A ′D ′+CD=1 +1=2,即可得出答案.【解答】 解:∵两个等边△ ABD ,△ CBD 的边长均为 1,将△ ABD 沿 AC 方向向右平移到 △A ′B ′D ′的位置,∴A ′M=A ′N=MN ,MO=DM=DO ,OD ′=D ′E=OE ,EG=EC=GC ,B ′G=RG=RB ′, ∴OM+MN +NR +GR+EG+OE=A ′D ′+CD=1+1=2;故答案为: 2.三、解答题:本大题共 8 小题,共 75分【考点】 分式的化简求值.【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形, 约分得到最简结果,将 a 与 b 的值代入计算即可求出值.16.化简求值:17.如图,在正方形 ABCD 内有一点 P 满足 AP=AB , PB=PC ,连接 AC 、PD . 求证:(1)△APB ≌△DPC ;(2)∠ BAP=2 ∠ PAC .【考点】 正方形的性质;全等三角形的判定与性质.【分析】(1)AP=AB ,PB=PC ,∴∠ ABC ﹣∠ PBC=∠ DCB ﹣∠ PCB ,即∠ ABP= ∠DCP , 因此可证得两三角形全等.(2)有( 1)∠ CAD=45 °,△ PAD 为等边三角形,可求得∠ BAP=30 °∠PAC=∠PAD ﹣∠CAD=15 °,因此可证的结论.【解答】( 1)解:∵四边形 ABCD 是正方形,∴∠ ABC= ∠DCB=90 °. ∵PB=PC ,∴∠ PBC= ∠PCB .∴∠ ABC ﹣∠ PBC= ∠DCB ﹣∠ PCB ,即∠ ABP= ∠ DCP . 又∵ AB=DC , PB=PC , ∴△ APB ≌△ DPC .(2)证明:∵四边形 ABCD 是正方形, ∴∠ BAC= ∠ DAC=45 °. ∵△ APB ≌△ DPC ,∴ AP=DP . 又∵ AP=AB=AD ,∴ DP=AP=AD . ∴△ APD 是等边三角形. ∴∠ DAP=60 °.∴∠ PAC=∠ DAP ﹣∠ DAC=15 °. ∴∠ BAP= ∠ BAC ﹣∠ PAC=30 °. ∴∠ BAP=2 ∠PAC .18.如图所示,小明在自家楼顶上的点 A 处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部 B 处的仰角为 45 °,底部 C 处的俯角为 26°,已知小明家楼房的 高度 AD=15 米,求电梯楼的高度 BC (结果精确到 0.1 米)(参考数据: sin26°≈0.44,cos26°≈0.90, tan26°≈ 0.49)考点】 解直角三角形的应用 - 仰角俯角问题.a=时,原式 =b==﹣6.【分析】首先过点 A 作AE ⊥BC 于E,可得四边形ADCE 是矩形,即可得CE=AD=15 米,然后分别在Rt△ ACE 中,AE= 与在Rt△ABE 中,BE=AE ?tan45°,即可求得BE 的长,继而求得电梯楼的高度.【解答】解:过点 A 作AE ⊥BC 于E,∵AD ⊥CD ,BC⊥CD,∴四边形ADCE 是矩形,∴CE=AD=15 米,在Rt△ACE 中,AE= = ≈30.6(米),在Rt△ABE 中,BE=AE ?tan45°=30.6(米),∴BC=CE+BE=15+30.6=45.6(米).答:电梯楼的高度BC 为45.6 米.19.最近两年雾霾对我国北方大部分地区影响较严重,其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市PM2.5 的源解析已经通过专家论证,各种调查显示,机动车为PM2.5 的最大来源,一辆车每行驶20 千米平均向大气里排放0.035千克污染物,校环保志愿小分队从环保局了解到我市100 天的空气质量等级情况,并制成统计图和表:空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)10a12825b(1)表中a=25 ,b=20,图中严重污染部分对应的圆心角n= 72° ;(2)请你根据“2020 年我市100天空气质量等级天数统计表”计算100 天内重度污染和严重污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25 千米,已知我市2020 年机动车保有量已突破200 万辆,请你通过计算,估计2020 年我市一天中出行的机动车至少要向大气里排放多少千克污染物?【考点】扇形统计图;用样本估计总体;概率公式.【分析】(1)根据优的天数和所占的百分比求出总天数,再乘以良和严重污染所占的百分比,求出a,b,再用360°乘以严重污染所占的百分比求出严重污染部分对应的圆心角的度数;(2)用重度污染和严重污染所占的百分比相加即可得出答案; (3)根据题意和用样本估计总体的方法,列出算式,求解即可.【解答】 解:( 1)根据题意,得: a=100× 25%=25(天), 严重污染所占的百分比是: 1﹣10%﹣25%﹣12%﹣8%﹣25%=20% , b=100×20%=20(天),n=360°× 20%=72 °,故答案为: 25, 20,72°;(2)100 天内重度污染和严重污染出现的频率为 × 100%=45% ;(3)根据题意,得: 200×10000× 0.035× =87500(千克),答:估计 2020 年我市一天中出行的机动车至少要向大气里排放 87500 千克污染物.20.如图,已知, A (0,4),B (﹣ 3,0), C (2,0),D 为 B 点关于 AC 的对称点,反比 例函数 y= 的图象经过 D 点. (1)证明四边形 ABCD 为菱形; (2)求此反比例函数的解析式;(3)已知在 y= 的图象( x >0)上一点 N ,y 轴正半轴上一点 M ,且四边形 ABMN 是平由 D 为 B 点关于 AC 的对称点,可得 AB=AD , BC=DC ,即可证得 AB=AD=CD=CB ,继而 证得四边形 ABCD 为菱形;(2)由四边形 ABCD 为菱形,可求得点 D 的坐标, 然后利用待定系数法,即可求得此反比 例函数的解析式;(3)由四边形 ABMN 是平行四边形,根据平移的性质,可求得点 N 的横坐标,代入反比 例函数解析式,即可求得点 N 的坐标,继而求得 M 点的坐标. 【解答】 解:(1)∵A (0,4),B (﹣ 3,0),C (2,0), ∴OA=4 ,OB=3 ,OC=2 , ∴AB==5,BC=5 , ∴AB=BC ,0), C ( 2, 0),利用勾股定理可求得 AB=5=BC ,又∵D 为 B 点关于 AC 的对称点, ∴AB=AD , CB=CD , ∴AB=AD=CD=CB , ∴四边形ABCD 为菱形;2)∵四边形 ABCD 为菱形,(3)∵四边形 ABMN 是平行四边形, ∴AN ∥BM ,AN=BM , ∴AN 是 BM 经过平移得到的,∴首先 BM 向右平移了 3 个单位长度, ∴N 点的横坐标为 3, 代入 y= 得 y=21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克 30 元.物价部门规定其销售单价不高于每千克 60元,不低于每千克 30 元.经市场调查发现: 日销售量 y (千 克)是销售单价 x (元)的一次函数,且当 x=60 时, y=80; x=50 时, y=100 .在销售过程 中,每天还要支付其他费用 450 元.( 1)求出 y 与 x 的函数关系式,并写出自变量 x 的取值范围. (2)求该公司销售该原料日获利 w (元)与销售单价 x (元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元? 【考点】 二次函数的应用.【分析】(1)根据 y 与 x 成一次函数解析式,设为 y=kx +b ,把 x 与y 的两对值代入求出 k 与b 的值,即可确定出 y 与 x 的解析式,并求出 x 的范围即可;(2)根据利润 =单价×销售量列出 W 关于 x 的二次函数解析式即可; (3)利用二次函数的性质求出 W 的最大值,以及此时 x 的值即可. 【解答】 解:( 1)设 y=kx +b ,根据题意得 ,解得: k=﹣2, b=200, ∴y= ﹣2x+200(30≤x ≤60);(2)W=(x ﹣30)(﹣2x+200)﹣ 450=﹣2x 2+260x ﹣6450=﹣2(x ﹣65)2+2000; (3)W= ﹣2(x ﹣ 65)2+2000, ∵30≤x ≤60,∴x=60 时,w 有最大值为 1950 元,∴当销售单价为 60元时,该公司日获利最大,为 1950 元.﹣ 4=∴ M 点的纵坐标为:∴D 点的坐标为( 5, 4),反比例函数 y= 的图象经过 D 点,∴k=20 ,∴反比例函数的解析式为:∴ M 点的坐标为:22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图1所示,在四边形ABCD 中,AD∥BC,E为CD边的中点,连接AE 并延长交BC的延长线于点F,求证:S 四边形ABCD= S△ADE ;【变式猜想】如图 2 所示,在已知锐角∠ AOB 内有一定点P,过点P 任意作一条直线MN ,分别交射线OA,OB 于点M,N,小明在将直线MN 绕着点P 旋转的过程中发现,△ MON 的面积存在最小值,试问当MN 在什么位置时,△ MON 的面积最小【拓展应用】如图3所示,一块四边形土地OABC ,其中OA 边长60米,AB 边长30米,C点到OA 边的距离为45 米,使用测角器测得∠ AOC=45 °,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC )的一组对边相交),则其中以点O 为顶点的四边形地块的最大面积为1000m2.【考点】几何变换综合题.【分析】【原题初探】:根据可以求得△ ADE ≌△ FCE ,就可以得出S△ADE=S△FCE就可以得出结论;【变式猜想】:根据问题情境的结论可以得出当直线旋转到点P是MN 的中点时S△MON最小,过点M 作MG∥OB 交EF于G.由全等三角形的性质可以得出结论;【拓展应用】:当过点P的直线l与四边形OABC 的另一组对边CB、OA分别交M、N,延长CB 交x轴于T,由B、C的坐标可得直线BC 的解析式,就可以求出T的坐标,从而求出△OCT 的面积,再由问题迁移的结论可以求出最大值,通过比较就可以求出结论.【解答】解:【原题初探】证明:∵ AD ∥BC,∴∠ ADE= ∠ FCE,在△ ADE 与△ FCE 中,,∴△ ADE≌△ FCE,∴S△ADE =S△ FCE,∴S四边形ABCD =S四边形ABCE+S△ADE =S四边形ABCE +S△ FCE=S△ABF;【变式猜想】当直线旋转到点P是MN 的中点时S△MON最小,如图( 1),过点 P 的另一条直线 EF 交 OA 、OB 于点 E 、F ,设 PF <PE ,过点 M 作 MG ∥OB 交 EF 于 G ,由方法探究可以得出当 P 是 MN 的中点时 S 四边形 MOFG =S △MON .∵S 四边形 MOFG <S △EOF , ∴S △MON <S △EOF ,∴当点 P 是 MN 的中点时 S △MON 最小; 【拓展应用】 ① 如图 3 ,当过点 P 的直线 l 与四边形 OABC 的一组对边 OC 、AB 分别交于点 M 、N ,延长 OC 、AB 交于点 D ,∵OA 边长 60 米,使用测角器测得∠ AOC=45 °, OA ⊥AB , ∴△ OAD 是等腰直角三角形, ∴S △ AOD = AO 2= × 602=1800由变式猜想的结论可知,当 PN=PM 时,△ MND 的面积最小, ∴四边形 ANMO 的面积最大. 作 PP 1⊥ OA ,MM 1⊥OA ,垂足分别为 P 1,M 1, ∴M 1P 1=P 1A=20 , ∴OM 1=M 1M=20 , ∴MN ∥OA ,当过点 P 的直线 l 与四边形 OABC 的另一组对边 CB 、OA 分别交 M 、N ,延长 CB 交 x 轴 于T ,过点 C 作 CH ⊥OA , ∴CH=45 . ∵∠ COA=45 °,∴△ CHA 为等腰直角三角形, ∴OC=45 , ∵OC ⊥BC ,∴△OCT 是等腰直角三角形,2∴S △OCT = OC 2=2025, OT=90由问题迁移的结论可知,当 PM=PN 时,△ MNT 的面积最小, ∴四边形 CMNO 的面积最大. ∴NP 1=M 1P 1,MM 1=2PP 1=40,∴S 四边形 OANM=S △OMM1+S 四边形 ANMM1 × 20× 20+20× 40=1000② 如图 4 ,∴ TM 1=40∴OM 1=OT ﹣TM 1=50.∵AT=AB=30 ,∴AM 1=TM 1﹣AT=40 ﹣30=10,∵AP 1=20 ,∴P1N=P1M1=AP1=AM 1=20﹣10=10,∴NT=P 1N+AP1+AT=10+20+30=60∴S△MNT = ×40×60=1200,∴S四边形OCMN =2025 ﹣1200=725< 1000.∴综上所述:截得四边形面积的最大值为1000(m2),故答案为1000m2.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B 两点,与y轴交于C点,已知 B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△ MBC 的面积的最大值,并求出此时M(1)该函数解析式只有一个待定系数,只需将 B 点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定 A 点坐标,然后通过证明△ ABC 是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△ MBC 的面积可由 S △MBC = BC ×h 表示,若要它的面积最大,需要使 h 取最大值, 即点 M 到直线 BC 的距离最大,若设一条平行于 BC 的直线,那么当该直线与抛物线有且 只有一个交点时,该交点就是点M .方法二:(1)略. (2)通过求出 A ,B ,C 三点坐标,利用勾股定理或利用斜率垂直公式可求出 AC ⊥ BC ,从 而求出圆心坐标.(3)利用三角形面积公式, 过 M 点作 x 轴垂线, 水平底与铅垂高乘积的一半, 得出△ MBC 的面积函数,从而求出 M 点.【解答】 方法一:解:(1)将 B ( 4,0)代入抛物线的解析式中,得:0=16a ﹣ × 4﹣ 2,即: a= ;(2)由( 1)的函数解析式可求得: A (﹣ 1,0)、C (0,﹣ 2);∴OA=1 ,OC=2,OB=4 ,即: OC 2=OA ?OB ,又: OC ⊥AB ,∴△ OAC ∽△ OCB ,得:∠ OCA= ∠OBC ;∴∠ ACB= ∠OCA+∠OCB=∠OBC+∠OCB=90 °,∴△ ABC 为直角三角形, AB 为△ABC 外接圆的直径;所以该外接圆的圆心为 AB 的中点,且坐标为: ( , 0). 3)已求得: B (4, 0)、C ( 0,﹣ 2),可得直线 BC 的解析式为: y= x ﹣设直线 l ∥BC ,则该直线的解析式可表示为: y= x+b ,当直线 l 与抛物线只有一个交点时, 可列方程:2 x +b= x y= x ﹣ 4. x ﹣2,即: x 2﹣2x ﹣2﹣ b=0,且△ =0;∴4﹣4×﹣ 2﹣b ) =0,即 b= ﹣ 4;∴直线 l :∴抛物线的解析式为:所以点M 即直线l 和抛物线的唯一交点,有:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC =S梯形OCMN+S△MNB ﹣S△OCB= ×2×(2+3)+ ×2×3﹣× 2× 4=4.方法二:∴K AC×K BC=﹣1,∴ AC⊥BC,∴△ ABC 是以AB 为斜边的直角三角形,△外接圆的圆心坐标为(,0).(3)过点M 作x 轴的垂线交BC ′于H,∵B(4,0),C(0,﹣2),∴l BC:y= x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),22 ∴S△ MBC = ×(H Y﹣M Y)(B X﹣C X)= ×(t﹣2﹣t2+ t+2)(4﹣0)=﹣t2+4t,∴当t=2 时,S有最大值4,∴M(2,﹣3).1)略.∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC= =﹣2,K BC= = ,ABC 的外接圆的圆心是AB 的中点,△ ABC 的2020 年9 月20 日。

2020年中考数学押题卷及答案(共三套)

2020年中考数学押题卷及答案(共三套)

2020年中考数学押题卷及答案(共三套)中考数学押题卷及答案(一)注意事项:1.答题前,务必将自己的姓名、准考证号填写在规定的位置.2.答题时,卷Ⅰ必须使用2B铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚.3.所有题目必须在答题卡上作答,在试卷上答题无效.4.本试题共6页,满分150分,考试用时120分钟.5.考试结束后,将试卷和答题卡一并交回.卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分,在每小题的四个选项中,只有一个选项正确)1.在实数5,227,0,π2,36,-1.414中,有理数有( D )A.1个B.2个C.3个D.4个2.下列计算正确的是( C )A.x4+x4=x16B.(-2a)2=-4a2C.x7÷x5=x2D.m2·m3=m63.某红外线遥控器发出的红外线波长为0.00000094 m,用科学记数法表示这个数为( C )A.9.4×10-8 m B.9.4×108 mC.9.4×10-7 m D.9.4×107m4.下列说法正确的个数为( B )①两组对边分别相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直的平行四边形是菱形;④正方形是轴对称图形,有2条对称轴.A.1个B.2个C.3个D.4个5.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( A )A.16个B.20个C.25个D.30个6.下列汉字或字母中既是中心对称图形又是轴对称图形的是( C )7.某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是( C ) A.这组数据的众数是170B.这组数据的中位数是169C .这组数据的平均数是169D .若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为128.如图,在△ABC 中,∠C =90°,AC =6,BC =8,将点C 折叠到AB 边的点E 处,折痕为AD ,则CD 的长为( A )A .3B .5C .4D .3 59.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( C )A .3个B .4个C .5个D .6个10.下列因式分解正确的是( C )A .x 2+2x -1=(x -1)2B .-x 2+(-2)2=(x -2)(x +2)C .x 3-4x =x (x +2)(x -2)D .(x +1)2=x 2+2x +111.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( B )A .122°B .151°C .116°D .97°,第11题图),第13题图),第14题图)12.若关于x的一元二次方程(a-1)x2-2x+2=0有实数根,则整数a的最大值为( B )A.-1 B.0 C.1 D.213.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( D ) A.2 B.8 C.13 D.21314.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0;②2a+b>0;③b2-4ac>0;④ac>0.其中正确的是( C ) A.①②B.①④C.②③D.③④15.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C 逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( B ) A.4 B.3 C.2 D.1点拨:连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB =4,根据旋转可知,A′B′=AB=4,∵P是A′B′的中点,∴PC =12A ′B ′=2,∵CM =BM =1,又∵PM ≤PC +CM ,即PM ≤3,∴PM 的最大值为3(此时P ,C ,M 共线).卷Ⅱ二、填空题(本大题共5小题,每小题5分,共25分)16.已知实数a ,b 在数轴上的位置如图所示,化简|a +b|-(a -b )2的结果为__-2a __.17.若关于x 的分式方程ax a +1=4x -1的解与方程6x =3的解相同,则a =__-2__.18.如图,菱形ABCD 的对角线BD ,AC 的长分别为2,23,以点B 为圆心的弧与AD ,DC 相切,则图中阴影部分的面积是-π__.19.我们规定:若m →=(a ,b),n →=(c ,d),则m →·n →=ac +bd.例如m →=(1,2),n →=(3,5),则m →·n →=1×3+2×5=13,已知m →=(2,4),n →=(2,-3),则m →·n →=__-8__.20.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是__89__个.点拨:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n 个图形共有小正方形的个数为(n +1)2+n ,所以第8个图形共有小正方形的个数为:9×9+8=89.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(本题8分)计算:(2017-π)0-(13)-1+|3-4|+2sin 60°+27.解:原式=2+3322.(本题8分)先化简,再求值:(1-3x +1)÷x 2-4x +4x 2-1,其中x =3.解:原式=x -1x -2,当x =3时,原式=223.(本题10分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,3,4,7.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于5且小于8的概率.解:(1)画树状图如下:所得两位数为11,31,41,71,13,33,43,73,14,34,44,74,17,37,47,77这16种等可能结果(2)由(1)知所得两位数算术平方根大于5且小于8,即该数大于25且小于64的有8种,∴其算术平方根大于5且小于8的概率为1224.(本题12分)如图,在平行四边形ABCD 中,AB =3 cm ,BC =5 cm ,∠B =60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF.(1)求证:四边形CEDF 是平行四边形;(2)①当AE =__3.5__cm 时,四边形CEDF 是矩形;②当AE=__2__cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)解:(1)∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG =∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∠FCG=∠EDG,CG=DG,∠CGF=∠DGE,∴△FCG≌△EDG(ASA),∴CF=DE,∴四边形CEDF是平行四边形(2)①当AE=3.5 cm时,四边形CEDF是矩形,理由:过点A作AM⊥BC于点M,∵∠B=60°,∠AMB=90°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠B=∠CDA=60°,AB=DC=3,∵四边形CEDF是矩形,∴∠CED=∠AMB=90°.在△MBA 和△EDC中,∠AMB=∠CED,∠B=∠CDE,AB=CD,∴△MBA ≌△EDC(AAS),∴BM=DE=1.5.∵BC=AD=5,∴AE=CM=3.5,即当AE=3.5 cm时,四边形CEDF是矩形,故答案为:3.5;②当AE=2 cm时,四边形CEDF是菱形,理由:∵四边形CEDF是菱形,∴CE=ED,∵∠CDE=60°,∴△CDE是等边三角形,∴DE=CD=3,∵AD=5,∴AE=2,即当AE=2 cm时,四边形CEDF是菱形,故答案为:225.(本题12分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人,如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?解:(1)设该社区的图书借阅总量从2015年至2017年的年平均增长率为x,根据题意得7500(1+x)2=10800,解得x1=0.2,x2=-2.2(舍去)答:该社区的图书借阅总量从2015年至2017年的年平均增长率为20%(2)10800×(1+0.2)=12960(本),10800÷1350=8(本),12960÷1440=9(本),(9-8)÷8×100%=12.5%.故a的值至少是12.5.26.(本题14分)如图,在△ABC中,BE是它的角平分线,∠C =90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知cos A =32,⊙O 的半径为3,求图中阴影部分的面积.解:(1)连接OE ,∵BE 是∠OBC 的角平分线,∴∠OBE =∠CBE ,∵OE =OB ,∴∠OEB =∠OBE ,∴∠OEB =∠CBE ,∴OE ∥BC ,∴∠AEO =∠C =90°,∵OE 是⊙O 的半径,∴AC 是⊙O 的切线(2)连接OF ,∵cosA =32,∴∠A =30°,∴∠ABC =∠AOE =60°,∵OB =OF =3,∴∠OFB =∠ABC =60°,∴∠EOF =60°,∴扇形OEF 的面积为:60π×32360=3π2,∵OE =3,∠BAC =30°,∴AO =2OE =6,∴AB =AO +OB =9,∴BC =12AB =92. ∴由勾股定理可知:AE =33,AC =923, ∴CE =AC -AE =323,∵BF =OB =3,∴CF =BC -BF =32, ∴梯形OFCE 的面积为(CF +OE )·CE 2=2738, ∴阴影部分面积为2738-3π227.(本题16分)如图,抛物线y =ax 2+bx +c 经过点A(5,0),B(6,-6)和原点.(1)求抛物线的函数解析式;(2)若过点B 的直线y =kx +b 与抛物线交于点C(2,m),请求出△OBC 的面积S 的值;(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E ,直线PF 与直线DC 及两坐标轴围成矩形OFED ,问是否存在点P ,使得△OCD 与△CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)抛物线的函数解析式为y =-x 2+5x(2)∵点C 在抛物线上,∴-22+5×2=m ,解得m =6,∴点C 的坐标为(2,6),∵点B ,C 在直线y =kx +b 上,∴⎩⎪⎨⎪⎧6=2k +b ,-6=6k +b ,解得⎩⎪⎨⎪⎧k =-3,b =12, ∴直线BC 的解析式为y =-3x +12,设BC 与x 轴交于点G ,则点G 的坐标为(4,0),所以S △OBC =12×4×6+12×4×|-6|=24 (3)存在点P ,使得△OCD 与△CPE 相似,设P (m ,n ),∵∠ODC =∠E =90°,故CE =m -2,EP =6-n ,若△OCD与△CPE 相似,则OD CE =DC EP 或OD PE =DC EC ,即6m -2=26-n 或66-n=2m -2,解得m =20-3n 或n =12-3m ,又∵(m ,n )在抛物线上,∴⎩⎪⎨⎪⎧m =20-3n ,n =-m 2+5m 或⎩⎪⎨⎪⎧n =12-3m ,n =-m 2+5m ,解得⎩⎪⎨⎪⎧m 1=103,n 1=509,⎩⎪⎨⎪⎧m 2=2,n 2=6或⎩⎪⎨⎪⎧m 1=2,n 1=6,⎩⎪⎨⎪⎧m 2=6,n 2=-6,故点P 的坐标为(103,509)和(6,-6)中考数学押题卷及答案(二)注意事项:1.答题前,务必将自己的姓名、准考证号填写在规定的位置.2.答题时,卷Ⅰ必须使用2B 铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚.3.所有题目必须在答题卡上作答,在试卷上答题无效.4.本试题共6页,满分150分,考试用时120分钟.5.考试结束后,将试卷和答题卡一并交回.卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分,在每小题的四个选项中,只有一个选项正确)1.64的立方根是( C )A.8 B.±8 C.2 D.±22.下列计算错误的是( A )A.(-2x)2=-2x2B.(-2a3)2=4a6C.(-x)9÷(-x)3=x6D.-a2·a=-a33.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是( B )A.8.5×105吨B.8.5×106吨C.8.5×107吨D.85×106吨4.如图,该几何体的俯视图是( B )5.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是( D )A.角平分线B.中位线C.高D.中线6.青蛙是人类的朋友,为了了解某地青蛙的数量,先从池塘里捕捞20只青蛙,作上标记,放回池塘,经过一段时间后,再从池塘中捞出40只青蛙,其中有标记的有4只,请你估计一下,这个池塘里有多少只青蛙( D )A.100只B.150只C.180只D.200只7.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的中位数是( C )A.4小时B.4.5小时C.5小时D.5.5小时8.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是( B )A.15°B.25°C.30°D.35°9.下列命题中,正确的是( D )A.平行四边形既是中心对称图形,又是轴对称图形B.四条边相等的四边形是正方形C.三角形的内心到三角形各顶点的距离相等D.有一个角为60°的等腰三角形是等边三角形10.若关于x的一元二次方程kx2-2x-1=0有两个实数根,则k的取值范围是( C )A.k≠0 B.k≥-1C.k≥-1且k≠0 D.k>-1且k≠011.如图,已知AB ,AD 是⊙O 的弦,∠B =20°,点C 在弦AB 上,连接CO 并延长CO 交于⊙O 于点D ,∠D =15°,则∠BAD 的度数是( D )A .30°B .45°C .20°D .35°,第11题图) ,第12题图),第14题图)12.如图,已知双曲线y =-3x (x <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,则△AOC 的面积为( B )A .6 B.92 C .3 D .213.某校组织1080名学生去外地参观,现有A ,B 两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租12辆,设A 型客车每辆坐x 人,根据题意列方程为( D )A.1080x =1080x -15+12B.1080x =1080x -15-12 C.1080x =1080x +15-12 D.1080x =1080x +15+12 14.如图所示的抛物线是二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法错误的是( C )A.abc>0 B.当x<1时,y随x的增大而减小C.a-b+c>0 D.当y>0时,x<-2或x>415.如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP的最小值的是( B )A.BC B.CEC.AD D.AC点拨:如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴当P,C,E共线时,PB+PE的值最小,最小值为CE的长度.卷Ⅱ二、填空题(本大题共5小题,每小题5分,共25分)16.分解因式:x3-4xy2=__x(x+2y)(x-2y)__.17.如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AD=6,BD=2,AE=9,则EC的长是__3__.,第17题图),第19题图) 18.为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a,b对应的密文为a-2b,2a+b.例如,明文1,2对应的密文是-3,4.当接收方收到密文是1,7时,解密得到的明文是__3,1__.19.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为3π__.20.如图是一组有规律图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…,依此规律,第n个图案有__3n +1__个三角形.(用含n的代数式表示)解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…,∴第n 个图案有(3n+1)个三角形.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(本题8分)计算:(-1)2017-(12)-1+(π-3.14)0+|1-3|-3tan 30°.解:原式=-322.(本题8分)先化简,再求值:(a -2a 2+2a -a -1a 2+4a +4)÷a -4a +2,其中a 满足a 2+2a -7=0.解:原式=1a 2+2a ,∵a 2+2a -7=0,∴a 2+2a =7,∴原式=1723.(本题10分)某经销单位将进价为每件27.4元的商品按每件40元销售,经两次调价后调至每件32.4元.(1)若该商店两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,其销量就增加10件,若该商品原来每月可销售500件,那么两次调价后,每月销售该商品可获利多少元?解:(1)设这个降价率为x,依题意得40(1-x)2=32.4,解得x1=0.1=10%,x2=1.9(舍去).答:这个降价率为10%(2)∵降价后多销售的件数为[(40-32.4)÷0.2]×10=380(件),∴两次调价后,每月可销售该商品的件数为380+500=880(件),∴每月销售该商品可获利(32.4-27.4)×880=4400(元).答:两次调价后,每月销售该商品可获利4400元24.(本题12分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A,B,C,D表示这四种不同的口味粽子)的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整的统计图.请根据以上信息回答下列问题:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外形完全相同的A ,B ,C ,D 粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?解:(1)调查的居民数有240÷40%=600(人)(2)C 类的人数是600-180-60-240=120(人),A 类所占百分比为180÷600=30%,C 类所占百分比为120÷600=20%,补图略(3)爱吃D 粽的人数是8000×40%=3200(人)(4)画树状图略,则P (第二个吃到的恰好是C 粽)=312=1425.(本题12分)如图,在平行四边形ABCD 中,过B 作BE ⊥CD ,垂足为点E ,连接AE ,F 为AE 上一点,且∠BFE =∠C.(1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30°,求AE 的长.解:(1)∵AD ∥BC ,∴∠C +∠ADE =180°,∵∠BFE =∠C ,∠AFB +∠BFE =180°,∴∠AFB =∠EDA ,∵AB ∥DC ,∴∠BAE =∠AED ,∴△ABF ∽△EAD(2)∵AB ∥CD ,BE ⊥CD ,∴∠ABE =90°,∵AB =4,∠BAE =30°,∴AE =2BE ,由勾股定理可求得AE =83326.(本题14分)如图,AB 是⊙O 的直径,AB =43,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB.(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC 的长度.(结果保留π)解:(1)∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE(2)连接AC.∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°.∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE(3)作BM ⊥PF 于M ,则CE =CM =CF ,∵CF CP =34,设CE =CM=CF =3a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM PM =CM BM,∴BM 2=CM ·PM =3a 2,∴BM =3a ,tan ∠BCM =BM CM =33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴劣弧BC 的长为60×π×23180=233π27.(本题16分)如图,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴、y 轴建立平面直角坐标系.(1)求AE 的长;(2)求经过O ,D ,C 三点的抛物线的解析式;(3)若点N 在(2)中抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.解:(1)∵CE =CB =OA =5,CO =AB =4,∴在Rt △COE 中,OE =CE 2-CO 2=3,∵OA =5,∴AE =5-3=2(2)在Rt △ADE 中,设AD =m ,则DE =BD =4-m ,由勾股定理,得AD 2+AE 2=DE 2,即m 2+22=(4-m )2,解得m =32,∴D (-32,-5),∵C (-4,0),O (0,0),∴设过O ,D ,C 三点的抛物线为y =ax (x +4),∴-5=-32a (-32+4),解得a =43, ∴抛物线解析式为y =43x (x +4)=43x 2+163x (3)∵抛物线的对称轴为直线x =-2,点M 在抛物线上,∴设N (-2,n ),M (m ,43m 2+163m ),又由题意可知C (-4,0),E (0,-3),①当EN 为对角线,即四边形ECNM 是平行四边形时,则线段EN 中点的横坐标为-1,线段CM 中点的横坐标为m +(-4)2,∵EN ,CM 互相平分,∴m +(-4)2=-1,解得m =2,∵43×22+163×2=16,∴M (2,16);②当EM 为对角线,即四边形ECMN 是平行四边形时,则线段EM 中点的横坐标为m 2,线段CN 中点的横坐标为-3,∵EN ,CM 互相平分,∴m 2=-3,解得m =-6,∵43×(-6)2+163×(-6)=16,∴M (-6,16);③当EC 为对角线,即四边形EMCN 是平行四边形时,同理可得0+(-4)2=m +(-2)2,解得m =-2.∵43×(-2)2+163×(-2)=-163,∴M (-2,-163).综上可知,存在满足条件的点M ,其坐标为(2,16),(-6,16)或(-2,-错误!)中考数学押题卷及答案(三)一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的) 1.(3分)|﹣2|的值是( )A .﹣2B .2C .D .﹣2.(3分)下列计算正确的是( )A .(a +2)(a ﹣2)=a 2﹣2B .(a +1)(a ﹣2)=a 2+a ﹣2C .(a +b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab +b 23.(3分)如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°4.(3分)一个几何体的三视图如图所示,这个几何体是( )A.棱柱B.正方形C.圆柱D.圆锥5.(3分)有11个互不相同的数,下面哪种方法可以不改变它们的中位数()A.将每个数加倍B.将最小的数增加任意值C.将最大的数减小任意值 D.将最大的数增加任意值6.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③B.②③C.①④D.②④二、填空题(每小题3分,共24分)7.(3分)计算:=.8.(3分)分解因式:x3y﹣xy=.9.(3分)计算:=.10.(3分)月球与地球的平均距离约为384400千米,将数384400用科学记数法表示为.11.(3分)计算:=.12.(3分)如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是.13.(3分)用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).14.(3分)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D= cm.三、解答题(共10小题,满分78分)15.(5分)解关于x的不等式组:.16.(6分)(1)操究发现:如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD①求∠EAF的度数;②DE与EF相等吗?请说明理由(2)类比探究:如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,CF=CD,CF⊥CD,请直接写出下列结果:①∠EAF的度数②线段AE,ED,DB之间的数量关系17.(6分)已知:关于x的方程x2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.18.(6分)甲、乙两辆汽车分别从A、B两城同时沿高速公路驶向C 城,已知A、C两城的路程为500千米,B、C两城的路程为450千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.19.(7分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20.(7分)△OAB是⊙O的内接三角形,∠AOB=120°,过O作OE ⊥AB于点E,交⊙O于点C,延长OB至点D,使OB=BD,连CD.(1)求证:CD是⊙O切线;(2)若F为OE上一点,BF的延长线交⊙O于G,连OG,,CD=6,求S.21.(7分)如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).22.(8分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)23.(12分)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.24.(14分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.参考答案与试题解析一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b2【解答】解:A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D3.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.4.(3分)一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:C.5.(3分)有11个互不相同的数,下面哪种方法可以不改变它们的中位数()A.将每个数加倍B.将最小的数增加任意值C.将最大的数减小任意值 D.将最大的数增加任意值【解答】解:A、将每个数加倍,则中位数加倍;B、将最小的数增加任意值,可能成为最大值,中位数将改变;C、将最大的数减小任意值,可能成为最小值,中位数将改变;D、将最大的数增加任意值,还是最大值,中位数不变.故选D.6.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③B.②③C.①④D.②④【解答】解:垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选C.二、填空题(每小题3分,共24分)7.(3分)计算:=.【解答】解:原式==,故答案为:8.(3分)分解因式:x3y﹣xy=xy(x+1)(x﹣1).【解答】解:原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)9.(3分)计算:=5.【解答】解:=(﹣1)+()+()+…+()=(﹣1)=5.10.(3分)月球与地球的平均距离约为384400千米,将数384400用科学记数法表示为 3.844×105.【解答】解:384400=3.844×105,故答案为:3.844×105.11.(3分)计算:=.【解答】解:=×××…××=×××…××==.故答案为:.12.(3分)如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是4﹣4.【解答】解:如图,过P作PE⊥CD,PF⊥BC,∵正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCE=30°∴PF=PB•sin60°=4×=2,PE=PC•sin30°=2,=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4S△BPD﹣×4×4=4+4﹣8=4﹣4.故答案为:4﹣4.13.(3分)用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为174cm2(精确到1cm2).【解答】解:直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18﹣5=13,由勾股定理得,AB=12,∵BD×AO=AB×BO,BD==,圆锥底面半径=BD=,圆锥底面周长=2×π,侧面面积=×2×π×12=π≈174cm2.14.(3分)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D= 1.5 cm.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.三、解答题(共10小题,满分78分)15.(5分)解关于x的不等式组:.【解答】解:∵,由①得:(a﹣1)x>2a﹣3③,由②得:x>,当a﹣1>0时,解③得:x>,若≥,即a≥时,不等式组的解集为:x>;当1≤a <时,不等式组的解集为:x ≥;当a ﹣1<0时,解③得:x <,若≥,即a ≤时,<x <;当a <1时,不等式组的解集为:<x <.∴原不等式组的解集为:当a ≥时,x >;当a <时,<x <.16.(6分)(1)操究发现:如图1,△ABC 为等边三角形,点D 为AB 边上的一点,∠DCE=30°,∠DCF=60°且CF=CD ①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由(2)类比探究:如图2,△ABC 为等腰直角三角形,∠ACB=90°,点D 为AB 边上的一点,∠DCE=45°,CF=CD ,CF ⊥CD ,请直接写出下列结果: ①∠EAF 的度数②线段AE ,ED ,DB 之间的数量关系【解答】解:(1)①∵△ABC 是等边三角形, ∴AC=BC ,∠BAC=∠B=60°,。

2020年河北省中考数学押题试卷(一)(含答案解析)

2020年河北省中考数学押题试卷(一)(含答案解析)

2020年河北省中考数学押题试卷(一)一、选择题(本大题共16小题,共42.0分)1.下列说法:①每一个图形都有对称轴;②等腰三角形都有对称轴;③△ABC和△A′B′C′关于直线l对称,则△ABC和△A′B′C′全等;④五角星不是轴对称图形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2.如图,数轴上点A表示数a,则|a−1|是()A. 1B. 2C. 3D. −23.计算10−(12)2009×(−2)2010的结果是()A. −2B. −1C. 2D. 34.猜猜“它”是谁:“它”的倒数等于16与−4的商,“它”是()A. −4B. −14C. 4 D. 145.函数y=√−x+1x+1的自变量x的取值范围是()A. x≥0B. x≤0且x≠−1C. x≠−1D. −1≤x≤06.不等式组{2x+9≥3,1+2x3>x−1的解集是()A. x≥−3B. −3≤x<4C. −3≤x<2D. x>47.在△ABC中,点D,E,F分别在BC,AB,CA上,且DE//CA,DF//BA,连接EF,则下列三种说法:①如果EF=AD,那么四边形AEDF是矩形②如果EF⊥AD,那么四边形AEDF是菱形③如果AD⊥BC且AB=AC,那么四边形AEDF是正方形其中正确的有()A. 3个B. 2个C. 1个D. 0个8.点P1(x1,y1)P2(x2,y2)都在反比例函数y=2019x的图象上,若x1<x2<0,则A. y2>y1>0B. y1>y2>0C. y1<y2<0D. y2<y1<09.若x=(−2)×3,则x的倒数是()A. −16B. 16C. −32D. 2310.如图所示,菱形ABOC如图所置,其一边OB在x轴上,将菱形ABOC绕点B顺时针旋转75°至FBDE的位置,若BO=2,∠A=120°,则点E的坐标为()A. (√6−2,−√6)B. (√5−2,−√5)C. (√32,−√5)D. (√63,−√6)11.数据1、2、3的平均数是()A. 1B. 2C. 3D. 3212.已知一次函数y=32x+m和y=−32x+n的图像都经过点A(−2,0)且与y轴分别交于B、C两点,那么△ABC的面积为()A. 2B. 3C. 4D. 613.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇,若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图,则A、B两地之间的距离为()千米.A. 150B. 300C. 350D. 45014.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当−1<x<3时,y>0,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤15.如图,在正方形ABCD中,P、Q分别为BC、CD的中点,则∠CPQ的度数为()A. 50°B. 60°C. 45°D. 70°16.已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;………在这样连续6次旋转的过程中,点M在图中直角坐标系中的纵坐标可能是()B. −2.2C. 2.3D. −2.3A. √32二、填空题(本大题共3小题,共10.0分)17.方程x2−3x=0的根是_________.18.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是AE=1,CF=2,则EF长_______.19.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为BD⏜,则图中阴影部分的面积是______.三、解答题(本大题共7小题,共68.0分)20.已知a−b=b−c=3,a 2+b 2+c 2=1求代数式ab+ac+bc的值。

2020年河北省中考数学押题试卷及答案详解

2020年河北省中考数学押题试卷及答案详解

2020年河北省中考数学押题试卷一.选择题(本题共42分,第1-10题,每小题3分,第11-16题,每小题2分,请将你认为正确的选项填在规定位置)1.(3分)天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为()A.14.96×107B.1.496×107C.14.96×108D.1.496×108 2.(3分)如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)3.(3分)下列说法正确的是()A.﹣m一定表示负数B.平方根等于它本身的数为0和1C.倒数是本身的数为1D.互为相反数的绝对值相等4.(3分)“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x•(1+30%)×80%=2080B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%5.(3分)关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣16.(3分)把方程x2+8x﹣3=0化成(x+m)2=n的形式,则m,n的值分别是()A.4,13B.﹣4,19C.﹣4,13D.4,197.(3分)我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l 和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A.B.C.D.8.(3分)如图,反比例函数y=的图象经过点A(4,1),当y<2时,x的取值范围是()A.x>2B.x<2C.x<0或x>2D.0<x<29.(3分)如图,⊙O的半径为5,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.810.(3分)一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是,袋中白球共有()A.1个B.2个C.3个D.4个11.(2分)若关于x的方程=1的解为正数,则m的范围为()A.m≥2且m≠3B.m>2且m≠3C.m<2且m≠3D.m>212.(2分)如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(﹣1,),顶点B(1,),设直线AE与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为()A.B.1C.D.13.(2分)如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100°B.105°C.110°D.115°14.(2分)如图图象中,不可能是关于x的一次函数y=mx﹣(m﹣6)的图象的是()A.B.C.D.15.(2分)已知抛物线y=x2+(m+1)x+m,当x=1时,y>0,且当x<﹣3时,y的值随x值的增大而减小,则m的取值范围是()A.m>﹣1B.m<5C.m≥5D.﹣1<m≤5 16.(2分)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论①2a+c>0;②若(),(),(,y3)在抛物线上,则y1>y2>y3③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形;其中正确结论个数有()个.A.1B.2C.3D.4二.填空题(共3小题,满分11分)17.(3分)一元二次方程式x(x﹣6)=0的两个实数根是.18.(4分)甲列车从A地开往B地,速度是60km/h,乙列车比甲晚1h从B地开往A地,速度是90km/h,已知A、B两地相距300km,当两车距离为15km时,乙列车行驶的时间为h.19.(4分)现规定一种运算:a*b=a2+ab﹣b,则3*(﹣2)=.三.解答题(共7小题,满分67分)20.(8分)(1)将6﹣4x+x2减去﹣x﹣5+2x3,把结果按x的降幂排列.(2)已知关于x的方程4x﹣20=m(x+1)﹣10无解,求代数式的值.21.(9分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形图形,则x+y+z=.(4)如图4所示,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连结AG和GE,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?22.(9分)学校准备购置一批教师办公桌椅,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求一套A型桌椅和一套B型桌椅的售价各是多少元;(2)学校准备购进这两种型号的办公桌椅200套,平均每套桌椅需要运费10元,并且A 型桌椅的套数不多于B型桌椅的套数的3倍.请设计出最省钱的购买方案,并说明理由.23.(9分)如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△P AB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.24.(10分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.25.(10分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,AB=,摆动臂AD可绕点A旋转,AD=.(1)在旋转过程中,①当A、D、B三点在同一直线上时,求BD的长;②当A、D、B三点为同一直角三角形的顶点时,求BD的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△A′B′C′外的点D1转到其内的点D2处,如图2,此时∠AD2C=135°,CD2=1,求BD2的长.(3)若连接(2)中的D1D2,将(2)中△AD1D2的形状和大小保持不变,把△ADD3绕点A在平面内自由旋转,分别取D1D2、CD2、BC的中点M、P、N,连接MP、PN、NM,M随着△MD1D2绕点A在平面内自由旋转,△MPN的面积是否发生变化,若不变,请直接写出△MPN的面积;若变化,△MPN的面积是否存在最大与最小?若存在,请直接写出△MPN面积的最大值与最小值.(温馨提示×==)26.(12分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2020年河北省中考数学押题试卷参考答案与试题解析一.选择题(共16小题,满分39分)1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为()A.14.96×107B.1.496×107C.14.96×108D.1.496×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数149600000用科学记数法表示为1.496×108.故选:D.2.(3分)如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即(∠1+∠2)=90°;而∠1的余角为90°﹣∠1,可将上式代入90°﹣∠1中,即可求得结果.【解答】解:由图知:∠1+∠2=180°;∴(∠1+∠2)=90°;∴90°﹣∠1=(∠1+∠2)﹣∠1=(∠2﹣∠1).故选:C.3.(3分)下列说法正确的是()A.﹣m一定表示负数B.平方根等于它本身的数为0和1C.倒数是本身的数为1D.互为相反数的绝对值相等【分析】根据平方根、倒数以及绝对值的性质即可判断.【解答】解:A、﹣m有可能是正数,也可能是负数或0,故选项错误;B、平方根等于它本身的数为0,故选项错误;C、倒数是本身的数为±1,故选项错误;D、互为相反数的绝对值相等,正确.故选:D.4.(3分)“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x•(1+30%)×80%=2080B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%【分析】设该电器的成本价为x元,求出成本价提高之后然后打折之后的价钱,据此列方程.【解答】解:设该电器的成本价为x元,由题意得,x(1+30%)×80%=2080.故选:A.5.(3分)关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解可得答案.【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.6.(3分)把方程x2+8x﹣3=0化成(x+m)2=n的形式,则m,n的值分别是()A.4,13B.﹣4,19C.﹣4,13D.4,19【分析】利用配方法求解可得.【解答】解:∵x2+8x﹣3=0,∴x2+8x=3,∴x2+8x+16=3+16,即(x+4)2=19,∴m=4,n=19,故选:D.7.(3分)我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l 和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A.B.C.D.【分析】根据垂线的作法即可判断.【解答】解:观察作图过程可知:A.作法正确,不符合题意;B.作法正确,不符合题意;C.作法错误,符号题意;D.作法正确,不符合题意.故选:C.8.(3分)如图,反比例函数y=的图象经过点A(4,1),当y<2时,x的取值范围是()A.x>2B.x<2C.x<0或x>2D.0<x<2【分析】求得函数为2时的x的值,根据反比例函数的图象即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(4,1),∴k=4×1=4,∴y=,当y=2时,解得x=2,∴当y<2时,x<0或x>2.故选:C.9.(3分)如图,⊙O的半径为5,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.8【分析】首先连接OA,由⊙O的半径为5,圆心O到弦AB的距离OM的长为3,由勾股定理即可求得AM的长,然后由垂径定理求得AB的长.【解答】解:连接OA,∵⊙O的半径为5,圆心O到弦AB的距离OM的长为3,∴OA=5,OM=3,∴AM==4,∴AB=2AM=8.故选:D.10.(3分)一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是,袋中白球共有()A.1个B.2个C.3个D.4个【分析】设白球有x个,根据摸出的球是红球的概率是,利用概率公式列出方程,解之可得.【解答】解:设白球有x个,根据题意,得:=,解得:x=2,即袋中白球有2个,故选:B.11.(2分)若关于x的方程=1的解为正数,则m的范围为()A.m≥2且m≠3B.m>2且m≠3C.m<2且m≠3D.m>2【分析】先将原方程去分母,化为整式方程,再根据解为正数及原方程的分母不为0,可得m的取值范围.【解答】解:原方程两边同时乘以(x﹣1)得:m﹣3=x﹣1∴x=m﹣2∵解为正数,且m﹣2≠1∴m>2,且m≠3故选:B.12.(2分)如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(﹣1,),顶点B(1,),设直线AE与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为()A.B.1C.D.【分析】根据正六边形的性质得出点E与B重合时,α的角度不变;点E与F、M重合时,α的角度不变;点E与G、H重合时,α的角度不变,此时角度最小;求出tan∠EAN 和tan∠MAO的值,当OE⊥AE时,α角是最大的,由OE=2,OA=4,得出α=30°,tanα=;即可得出结果.【解答】解:如图所示,连接AM,∵正六边形是中心对称图形,绕中心O旋转时,点E与B重合时,α的角度不变;点E与F、M重合时,α的角度不变;点E与G、H重合时,α的角度不变,此时角度最小;∵AN=4﹣,EN=1,OM=OE==2,∴tan∠EAN===,tan∠MAO===;当OE⊥AE时,α角是最大的,∵OE=2,OA=4,∴α=30°,∴tanα=∴当α取最大角时,它的正切值为;故选:C.13.(2分)如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100°B.105°C.110°D.115°【分析】由平行四边形ABCD中,若∠A+∠C=130°,可求得∠A的度数,继而求得∠D的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=130°,∴∠A=65°,∴∠D=180°﹣∠A=115°.故选:D.14.(2分)如图图象中,不可能是关于x的一次函数y=mx﹣(m﹣6)的图象的是()A.B.C.D.【分析】分别根据四个答案中函数的图象求出m的取值范围即可.【解答】解:A、由函数图象可知,解得0<m<6;B、由函数图象可知,解得m=6;C、由函数图象可知,解得m<0,m>6,无解;D、由函数图象可知,解得m<0.故选:C.15.(2分)已知抛物线y=x2+(m+1)x+m,当x=1时,y>0,且当x<﹣3时,y的值随x值的增大而减小,则m的取值范围是()A.m>﹣1B.m<5C.m≥5D.﹣1<m≤5【分析】根据“当x=1时,y>0,且当x<﹣3时,y的值随x值的增大而减小”列出不等式组并解答.【解答】解:依题意得:.解得﹣1<m≤5.故选:D.16.(2分)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论①2a+c>0;②若(),(),(,y3)在抛物线上,则y1>y2>y3③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形;其中正确结论个数有()个.A.1B.2C.3D.4【分析】利用二次函数的性质一一判断即可.【解答】解:∵﹣<,a>0,∴a>﹣b,∵x=﹣1时,y>0,∴a﹣b+c>0,∴2a+c>a﹣b+c>0,故①正确,若(),(),(,y3)在抛物线上,由图象法可知,y1>y2>y3;故②正确,∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,∴ax2+bx+c﹣t=0有实数解要使得ax2+bx+k=0有实数解,则k=c﹣t≤c﹣n;故③错误,设抛物线的对称轴交x轴于H.∵=﹣,∴b2﹣4ac=4,∴x=,∴|x1﹣x2|=,∴AB=2PH,∵BH=AH,∴PH=BH=AH,∴△P AB是直角三角形,∵P A=PB,∴△P AB是等腰直角三角形.故④正确.综上,结论正确的是①②④,故选:C.二.填空题(共3小题,满分11分)17.(3分)一元二次方程式x(x﹣6)=0的两个实数根是x1=0,x2=6.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x﹣6)=0,可得x=0或x﹣6=0,解得:x1=0,x2=6.故答案为:x1=0,x2=6.18.(4分)甲列车从A地开往B地,速度是60km/h,乙列车比甲晚1h从B地开往A地,速度是90km/h,已知A、B两地相距300km,当两车距离为15km时,乙列车行驶的时间为 1.5或1.7h.【分析】分两种情况:①两车相遇之前两车距离为15km;②两车相遇之后两车距离为15km.【解答】解:当两车距离为15km时,设乙列车行驶的时间为xh.分两种情况:①两车相遇之前两车距离为15km,由题意,可得60(x+1)+90x=300﹣15,解得x=1.5;②两车相遇之后两车距离为15km,由题意,可得60(x+1)+90x=300+15,解得x=1.7.答:当两车距离为15km时,乙列车行驶的时间为1.5或1.7h.故答案为1.5或1.7.19.(4分)现规定一种运算:a*b=a2+ab﹣b,则3*(﹣2)=5.【分析】根据题中的新定义将所求式子化为普通运算,计算即可得到结果.【解答】解:根据题意得:3※2=32+3×(﹣2)﹣(﹣2)=9﹣6+2=5.故答案为:5.三.解答题(共7小题,满分67分)20.(8分)(1)将6﹣4x+x2减去﹣x﹣5+2x3,把结果按x的降幂排列.(2)已知关于x的方程4x﹣20=m(x+1)﹣10无解,求代数式的值.【分析】(1)先去括号,再合并同类项,再按x的指数从大到小排列各项即可;(2)先将方程4x﹣20=m(x+1)﹣10整理为(4﹣m)x=m+10,再根据方程无解得出4﹣m=0,m+10≠0,求出m的值,再代入即可求解.【解答】解:(1)(6﹣4x+x2)﹣(﹣x﹣5+2x3)=6﹣4x+x2+x+5﹣2x3=﹣2x3+x2﹣3x+11;(2)4x﹣20=m(x+1)﹣10,(4﹣m)x=m+10,由题意,得4﹣m=0,m+10≠0,解得m=4.当m=4时,=×42﹣=7﹣1=6.21.(9分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=30.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形图形,则x+y+z=9.(4)如图4所示,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连结AG和GE,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?【分析】(1)由大正方形等于9个长方形面积的和;(2)将所求式子转化为a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac),代入已知条件即可;(3)将式子化简为(2a+b)(a+2b)=2a2+5ab+2b2,即可确定x、y、z的值;(4)阴影部分的面积等于两个正方形面积减去两个直角三角形面积.【解答】解:(1)由图可知大正方形面积为(a+b+c)2,大正方形由9个长方形组成,则有(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;故答案为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac),∵a+b+c=10,ab+ac+bc=35,∴a2+b2+c2=100﹣2×35=30;故答案为30;(3)∵(2a+b)(a+2b)=2a2+5ab+2b2,∴x=2,y=2,z=5,∴x+y+z=9;故答案为9;(4)由已知,阴影部分的面积等于两个正方形面积减去两个直角三角形面积,即a2+b2﹣a(a+b)﹣b2=a2+﹣=[(a+b)2﹣3ab],∵a+b=10,ab=20,∴[(a+b)2﹣3ab]=(100﹣60)=20.22.(9分)学校准备购置一批教师办公桌椅,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求一套A型桌椅和一套B型桌椅的售价各是多少元;(2)学校准备购进这两种型号的办公桌椅200套,平均每套桌椅需要运费10元,并且A型桌椅的套数不多于B型桌椅的套数的3倍.请设计出最省钱的购买方案,并说明理由.【分析】(1)设一套A型桌椅的售价是x元,一套B型桌椅的售价是y元,根据“购进2套A型桌椅和1套B型桌椅共需2000元;购进1套A型桌椅和3套B型桌椅共需3000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型桌椅m套,则购进B型桌椅(200﹣m)套,由购进A型桌椅的套数不多于B型桌椅的套数的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再设购买费及运费的总和为w元,根据总费用=购买单价×购买数量+每套的运费×套数,即可得出w关于m的函数关系式,利用一次函数的性质即可找出最省钱的购买方案.【解答】解:(1)设一套A型桌椅的售价是x元,一套B型桌椅的售价是y元,依题意,得:,解得:.答:一套A型桌椅的售价是600元,一套B型桌椅的售价是800元.(2)设购进A型桌椅m套,则购进B型桌椅(200﹣m)套,依题意,得:m≤3(200﹣m),解得:m≤150.再设购买费及运费的总和为w元,依题意,得:w=600m+800(200﹣m)+10×200=﹣200m+162000.∵﹣200<0,∴w值随着m值的增大而减小,∴当购进A型桌椅150套、B型桌椅50套时,总费用最少,最少费用为132000元.23.(9分)如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△P AB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.【分析】(1)由条件可得出,可求出CD的长,则⊙P的半径可求出;(2)证明△ACD∽△ABO,可得比线线段,求出CD,AD的长,过点P 作PE⊥AO于点E,证明△CPE∽△CAD,由比例线段可求出点P的坐标,可求出△POB 的面积;(3)①若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,则△P AB的面积可求出.②若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,可求出CF=3,过点P作PG⊥AB于点G,可得DG=,则PG为△DCF的中位线,PG=,则△P AB的面积可求出.【解答】解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△P AB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△P AB的面积==.综上所述,在整个运动过程中,△P AB的面积是定值,定值为.24.(10分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.【分析】(1)根据A、B的横坐标,结合图象即可得到不等式﹣x+n≤的解集;(2)根据待定系数法即可求得;(3)根据三角形面积公式求得即可.【解答】解:(1)由图象可知:不等式﹣x+n≤的解集为﹣2≤x<0或x≥4;(2)∵一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.∴k=4×(﹣2)=﹣2m,﹣2=﹣4+n解得m=4,k=﹣8,n=2,∴反比例函数和一次函数的解析式分别为y=﹣,y=﹣x+2;(3)S△ABC==6.25.(10分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,AB=,摆动臂AD可绕点A旋转,AD=.(1)在旋转过程中,①当A、D、B三点在同一直线上时,求BD的长;②当A、D、B三点为同一直角三角形的顶点时,求BD的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△A′B′C′外的点D1转到其内的点D2处,如图2,此时∠AD2C=135°,CD2=1,求BD2的长.(3)若连接(2)中的D1D2,将(2)中△AD1D2的形状和大小保持不变,把△ADD3绕点A在平面内自由旋转,分别取D1D2、CD2、BC的中点M、P、N,连接MP、PN、NM,M随着△MD1D2绕点A在平面内自由旋转,△MPN的面积是否发生变化,若不变,请直接写出△MPN的面积;若变化,△MPN的面积是否存在最大与最小?若存在,请直接写出△MPN面积的最大值与最小值.(温馨提示×==)【分析】(1)①分两种情形分别求解即可.②显然∠ABD不能为直角.当∠ADB为直角时,根据AB2=AD2+BD2,计算即可,当∠BAD=90°时,根据BD2=AD2+AB2,计算即可.(2)如图1,连接D1D2,D1C,则△AD1D2为等腰直角三角形,利用勾股定理求出CD1,证明△BAD2≌△CAD1,利用全等三角形的性质证明BD2=CD1即可;(3)如图2所示,连接CD1,证明△PMN为等腰直角三角形.根据三角形的面积公式,由BD2的最大值和最小值可求出答案.【解答】解:(1)①当点D落在线段AB上,BD=AB﹣AD=,当点D落在线段BD的延长线上时,BD=AB+AD=+,∴BD的长为﹣或.②显然∠ABD不能为直角,当∠ADB为直角时,AD2+BD2=AB2,∴,当∠BAD为直角时,AB2+AD2=BD2,∴,∴BD长为或.(2)如图,连接D1D2,D1C,则△AD1D2为等腰直角三角形,∴,∴AD1=AD2,AB=AC,∵∠BAC=∠D2AD1,∴∠BAD2=∠CAD1,在△ABD2和△ACD1中,,∴△BAD2≌△CAD1(SAS),∴BD2=CD1,又∵∠AD2C=135°,∴∠D1D2C=∠AD2C﹣∠AD2D1=135°﹣45°=90°,∴=,∴.(3)如图2,所示,连接CD1,理由:∵点P,M分别是CD2,D2D1的中点,∴,PM∥CD1,∵点N,M分别是BC,D1D2的中点,∴,PN∥BD2,∵BD2=CD1,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CD1,∴∠D2PM=∠D2CD1,∵PN∥BD2,∴∠PNC=∠D2BC,∵∠D2PN=∠D2CB+∠PNC=∠D2CB+∠D2BC,∴∠MPN=∠D2PM+∠D2PN=∠D2CD1+∠D2CB+∠D2BC=∠BCD1+∠D2BC=∠ACB+∠ACD1+∠D2BC=∠ACB+∠ABD2+∠D2BC=∠ACB+∠ABC.∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°.∴△PMN为等腰直角三角形.∴.=,∴当BD2取最大时,△PMN的面积最大,此时最大面积S==.当BD2取最小时,△PMN面积最小,此时最小面积S==.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【分析】(1)将点B,C的坐标代入y=﹣x2+bx+c即可;(2)①求出顶点坐标,直线MB的解析式,由PD⊥x轴且OD=m知P(m,﹣2m+6),即可用含m的代数式表示出S;②在①和情况下,将S与m的关系式化为顶点式,由二次函数的图象及性质即可写出点P的坐标;(3)分情况讨论,如图2﹣1,当∠CPD=90°时,推出PD=CO=3,则点P纵坐标为3,即可写出点P坐标;如图2﹣2,当∠PCD=90°时,证∠PDC=∠OCD,由锐角三角函数可求出m的值,即可写出点P坐标;当∠PDC=90°时,不存在点P.【解答】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得,解得,,∴二次函数的解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线BM的解析式为y=kx+b,将点B(3,0),M(1,4)代入,得,解得,∴直线BM的解析式为y=﹣2x+6,∵PD⊥x轴且OD=m,∴P(m,﹣2m+6),∴S=S△PCD=PD•OD=m(﹣2m+6)=﹣m2+3m,即S=﹣m2+3m,∵点P在线段BM上,且B(3,0),M(1,4),∴1≤m≤3;②∵S=﹣m2+3m=﹣(m﹣)2+,∵﹣1>0,∴当m=时,S取最大值,∴P(,3);(3)存在,理由如下:如图2﹣1,当∠CPD=90°时,∵∠COD=∠ODP=∠CPD=90°,∴四边形CODP为矩形,∴PD=CO=3,将y=3代入直线y=﹣2x+6,得,x=,∴P(,3);如图2﹣2,当∠PCD=90°时,∵OC=3,OD=m,∴CD2=OC2+OD2=9+m2,∵PD∥OC,∴∠PDC=∠OCD,∴cos∠PDC=cos∠OCD,∴=,∴DC2=PD•OC,∴9+m2=3(﹣2m+6),解得,m1=﹣3﹣3(舍去),m2=﹣3+3,∴P(﹣3+3,12﹣6),当∠PDC=90°时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(,3)或(﹣3+3,12﹣6).。

2020年江苏省中考数学押题练习试卷A卷附解析

2020年江苏省中考数学押题练习试卷A卷附解析

2020年江苏省中考数学押题练习试卷A 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.四边形ABCD 中,AC ,BD 相交于点O ,能识别这个四边形是正方形的为( )A .AO=BO=CO=DO ,AC ⊥BDB .AB ∥CD ,AC=BDC .AD ∥BC ,∠A=∠CD .AO=C0,BO=D0,AB=DC2.一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )A .6cmB .5cmC .8cmD .7cm3.下列运算中,错误..的是( ) A .(0)a ac c b bc =≠ B .1a b a b --=-+ C .0.55100.20.323a b a b a b a b ++=-- D .x y y x x y y x--=++ 4.如图,在△ABC 中,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,•交AC 于点E ,若BD+CE=9,则线段DE 的长为( )A .9B .8C .7D .6 5. 如果代数式2934k k -+的值为 2,那么k 的值是( ) A .322-± B .32± C .322± D .32-±6. 将方程2440y y ++=的左边配成完全平方后得( )A .2(4)0y +=B .2(4)0y -=C .2(2)0y +=D .2(2)0y -=7.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-8.下列条件中,能判定四边形为平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边平行,一组对角互补C .一组对角相等,一组邻角互补D .一组对角相等,另一组对角互补 9.由6个大小相同的小正方体组合而成的立方体图形如图所示,则关于它的三视图说法正确的是( ) A .主视图的面积最大 B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大10.如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A .6个B .5个C .4个D .3个11.把抛物线y=x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x +5,则有( )A .b=3,c=7B .b=-9,c=-15C .b=3,c=3D .b=-9,c=2112.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h 所满足的范围是( )A .h>15B . 10<h<15C . 5<h<10D . 3<h<513.甲、乙、丙三人抽签确定一人参加某项活动,乙被抽中的概率是( )A .12B .13C .14D .1614.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC △内一点P 到三边的距离都相等.则PC 为( )A .1B 2C .322D .2215.已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于( )A .-1B .0C .1D .216.函数y =ax 2+bx +c 的图像如图所示,这个函数解析式为( )A .y =-x 2+2x +3B .y =x 2―2x ―3C .y =―x 2―2x +3D .y =―x 2―2x ―3二、填空题17.如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形).18.在下列直角坐标系中(1)请写出在□ABCD 内.(不包括边界)横、纵坐标均为整数的点,且和为零的点的坐标;(2)在□ABCD 内.(不包括边界)任取一个横、纵坐标均为整数的点,求该点的横、纵坐标之和为零的概率.19.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 . 20.李明进行跳远练习,将跳远结果统计如下: 距离(m) 2 34 5 6 所跳次数(次) 34 5 2 O 则频率最大的跳远距离是 .21.定理“全等三角形的对应角相等”的逆命题是 ,它是 命题(填“真”或“假'').22.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式 .23.已知一个样本的最大值是182,最小值是130,样本容量不超过100.若取组距为10,则画频数分布直方图时应把数据分成 组.24.如图,在方格纸上有一个顶点都在格点上的△ABC ,则这个三角形是________三角形.25.已知关于x 的分式方程4333k x x x-+=--有增根,则k 的值是 . 26.22()49x y -+÷( )=23x y +. 三、解答题27.如图,由小正方形组成的L 及T 字形的图形中,而且他们都是正方体展开图的一部分,请你用三种方法分别在图中添画一个正方形使它成为轴对称图形.28.如图①,四边形ABCD 是等腰梯形,AB ∥DC ,由4个这样的等腰梯形可以拼出图②所示的平行四边形.(1)求四边形ABCD 的四个内角的度数;(2)试探究四边形ABCD 的四条边之间存在的等量关系,并说明理由;(3)请用两种不同的方法,在图③和图④的梯形ABCD 内画一条直线,将梯形ABCD 分成面积相等的两部分(只要所画的直线位置不同,便视为两种不同的方法);(4)现有图①中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请画出大致示意图.29.如图为若干名学生每分钟脉搏跳动次数的频数分布折线图.(1)求学生的总人数;(2)分布在两端虚设的两组的组中值分别是多少?(3)估计样本的中位数.30.观察下图中的各种图形,说出哪些图形可以放在一起形成轴对称图形.(可以将图形上下放置或左右放置)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.A5.C6.C7.A8.C9.C10.B11.A12.C13.B14.B15.C16.C二、填空题17.答案不唯一如:长方体、圆柱等18.其中横、纵坐标和为零的点有3个,31155P ==∴.(2)∵在□ABCD 内横、纵坐标均为整数的点有15个,解:(1)(11)(00)(11)--,,,,,.19.4.9米20.4 m21.对应角相等的两个三角形是全等三角形,假22.a 2-b 2=(a +b )(a -b )23.624.等腰25.126.32y x三、解答题27.如图:28.(1)60°,60°,l20°,l20°;(2)AB=2AD=2DC=2BC ;(3)DP+AQ=PC+QB(4)答案不唯一29.(1)30人,(2)组中值分别为65和95,(3)中位数约为80次 30.①与⑥,②与④,⑤与⑩,⑥与⑦,⑧与⑨。

2020年中考数学押题卷一(附答案)

2020年中考数学押题卷一(附答案)

2020 年中考数学押题卷一(附答案)注意事项:1.本试卷共 5 页,满分 120 分,考试时间 120 分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第Ⅰ卷一、选择题(本大题共12 小题,每题 3 分,共 36 分 .在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.计算 10+(﹣ 24)÷ 8+2×(﹣ 6)的结果是()A.﹣ 5B.﹣ 1C.1D. 52.一个正常人的心跳平均每分钟70 次,一天大体跳的次数用科学记数法表示这个结果是()A.× 105B.× 103C.× 104D. 504× 1023.列方程中有实数解的是A. x2 1 0B.x1C. x 1xD. x2x 121 x21x4. 桌上倒扣着反面相同的 5 张扑克牌,其中 3 张黑桃、 2 张红桃.从中随机抽取一张,则()A.能够早先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性相同大D.抽到红桃的可能性更大5.以下四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120 °后,能与原图形完全重合的是()6.如图,点A, B, C 是⊙ O 上的三点,已知∠AOB=100°,那么∠ ACB的度数是()A. 30°B. 4 0°C. 50°D.60°7. 用 4 个完满相同的小正方体搭成以下列图的几何体,该几何体的()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同8.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10 户家庭的月用水情况,则以下关于这10 户家庭的月用水量说法错误的选项是()月用水量(吨)4569户数(户)3421 A.中位数是 5 吨B.众数是 5 吨C.极差是 3 吨D.平均数是吨9.关于 x 的一元二次方程(m﹣ 5)x2+2x+2= 0 有实根,则m 的最大整数解是()A. 2B. 3C. 4D. 510.关于二次函数y= 2x2+x﹣ 3,以下结果中正确的选项是()A.抛物线有最小值是y=﹣B. x>﹣ 1 时 y 随 x 的增大而减小C.抛物线的对称轴是直线x=﹣D.图象与x 轴没有交点11.如图, AB=DB,∠ 1=∠ 2,请问增加下面哪个条件不能够判断△ABC≌△ DBE的是()A. BC=BE B. AC=DE C.∠ A=∠ D D.∠ ACB=∠ DEB12.如图,△ABC为等边三角形,以AB 为边向形外作△ABD,使∠ ADB= 120°,再以点 C 为旋转中心把△CBD 旋转到△CAE,则以下结论:①D、A、E 三点共线;②DC 均分∠ BDA;③ ∠ E=∠BAC;④DC= DB+DA,其中正确的有()A.1 个B. 2 个C. 3 个D.4 个第Ⅱ卷二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13.若一元二次方程x2﹣( a+2) x+2a=0 的两个实数根分别是 3、 b,则 a+b=.14.在平行四边形ABCD中,对角线 AC、BD 订交于点 O.若是 AB=14,BD=8, AC=x,那么 x 的取值范围是.15.如图,在正方形ABCD中,点 E、F 分别在 BC、CD上,且 BE=DF,若∠ EAF=30°,则 sin∠EDF=.16.如图,在Rt△ ABC中,∠ ACB=90°,∠ A=30°, AC=15cm,点径为 3cm 的⊙ O 与△ ABC 的边相切时,x=.O 在中线CD 上,设OC=xcm,当半17.如,在平面直角坐系中,△ABC的点坐分( 4,0 ),(8 ,2),( 6,4).已知△ A1B1C1的两个点的坐( 1,3 ),( 2,5 ),若△ ABC 与△ A1B1C1位似,△ A1B1C1的第三个点的坐.18.二次函数 y=的象如,点A位于坐原点,点A, A , A ⋯A在 y 的正半上,点0123nB1, B2, B3⋯B n在二次函数位于第一象限的象上,点C1,C2, C3⋯C n在二次函数位于第二象限的象上,四形A0B1A1C1,四形 A1B2A2C2,四形 A2B3A3C3⋯四形 A n﹣1B n A n C n都是菱形,∠ A0B1A1=B A =∠ A B A ⋯=∠ A B A =60 °,菱形 A B AC 的周.∠ A1 2 2 2 3 3n﹣ 1 n n n﹣ 1 n n n三、解答(本大共 6 小,共 66 分 .解答写出文字明、演算步或推理程.)19.(本10 分 )解不等式合意填空,完成本的解答.( 1)解不等式①,得;( 2)解不等式②,得;( 3)把不等式①和②的解集在数上表示出来:( 4)原不等式组的解集为.20.(本题 10 分 )如图,在△ ABC 中,∠ ACB= 90°, M 、N 分别是的中点,延长BC 至点 D,使 CD=BD,连接DN、 MN .若 AB= 6.( 1)求证: MN = CD;( 2)求 DN 的长.21.(本题 10 分 )2019 年 3 月 30 日,四川省凉山州木里县境内发生森林火灾,30 名左右的扑火英雄牺牲,让人感觉痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100 分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完满的统计图表:组别成绩 x/ 分组中值A50≤ x< 6055B60≤ x< 7065C70≤ x< 8075D80≤ x< 9085E90≤ x< 10095请依照图表供应的信息,解答以下各题:( 1)补全频数分布直方图和扇形统计图;( 2)分数段80≤ x< 90 对应扇形的圆心角的度数是°,所抽取的学生竞赛成绩的中位数落在区间内;(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.22.(本题 12 分 )如图,在⊙ O 中,半径OD⊥直径 AB,CD 与⊙ O 相切于点D,连接 AC 交⊙ O 于点 E,交 OD 于点G,连接 CB并延长交⊙于点F,连接 AD, EF.(1)求证:∠ ACD=∠ F;(2)若 tan ∠ F=①求证:四边形ABCD是平行四边形;②连接 DE,当⊙ O 的半径为 3 时,求 DE 的长.23.(本题 12 分 )如图示一架水平翱翔的无人机AB 的尾端点 A 测得正前面的桥的左端点P的俯角为α其中tanα= 2,无人机的翱翔高度AH 为 500米,桥的长度为 1255 米.(1)求点 H 到桥左端点 P 的距离;(2)若无人机前端点 B 测得正前面的桥的右端点 Q 的俯角为 30°,求这架无人机的长度 AB.24.(本题 12 分)已知抛物线y= ax2﹣ 2ax﹣2( a≠ 0).( 1)当抛物线经过点P( 4,﹣ 6)时,求抛物线的极点坐标;( 2)若该抛物线张口向上,当﹣1≤ x≤ 5 时,抛物线的最高点为M,最低点为N,点 M 的纵坐标为,求点 M 和点 N 的横坐标;( 3)点 A( x1, y1)、 B(x2, y2)为抛物线上的两点,设t ≤ x1≤ t+1,当 x≥3时,均有 y1≥ y2,求 t 的取值范围.参照答案第Ⅰ卷一、选择题(本大题共12 小题,每题 3 分,共 36 分 .在每题给出的四个选项中,只有一项为哪一项符合题目要求的)第Ⅱ卷二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13. 5 1 4. 20<x< 3615.16. 2,3或6.17.( 3, 4)或( 0, 4).三、解答题(本大题共7 小题,共 66 分 .解答应写出文字说明、演算步骤或推理过程.)19.解:,(1)解不等式①,得 x<﹣ 1,(2)解不等式②,得 x≤ 2,(3)把不等式①和②的解集在数轴上表示出来为:( 4)∴原不等式组的解集为x<﹣ 1,故答案为: x<﹣ 1,x≤ 2, x<﹣ 1.20.( 1)证明:∵ M 、N 分别是的中点,∴MN = BC, MN ∥BC,∵ CD= BD,∴CD= BC,∴MN = CD;(2)解:连接 CM,∵MN ∥ CD, MN = CD,∴四边形 MCDN 是平行四边形,∴ DN= CM,∵∠ACB=90°,M 是AB 的中点,∴ CM= AB,∴ DN= AB= 3.21.解:( 1)样本容量是:10÷5%= 200,D 组人数是: 200﹣( 10+20+30+60)= 80(人),D 组所占百分比是:× 100%=40%,E 组所占百分比是:× 100%=30%.补全频数分布直方图和扇形统计图以下列图:( 2)分数段80≤x< 90 对应扇形的圆心角的度数是:360°×= 144°;一共有 200 个数据,依照从小到大的序次排列后,第100 个与第 101 个数据都落在 D 组,所以所抽取的学生竞赛成绩的中位数落在80≤ x< 90 区间内.故答案为144, 80≤ x<90;(3)( 55× 10+65× 20+75× 30+85× 80+95× 60)÷ 200= 83(分).所以估计该校参赛学生的平均成绩是83 分.22.( 1)证明:∵ CD 与⊙ O 相切于点D,∴OD⊥ CD,∵半径 OD⊥直径 AB,∴AB∥ CD,∴∠ ACD=∠ CAB,∵∠ EAB=∠ F,∴∠ ACD=∠ F;(2)①证明:∵∠ ACD=∠ CAB=∠ F,∴ tan∠ GCD= tan∠GAO= tan∠ F=,设⊙ O 的半径为 r,在 Rt△ AOG 中, tan ∠ GAO==,∴ OG=r,∴ DG= r﹣r=r,在 Rt△ DGC 中, tan∠ DCG==,∴CD= 3DG= 2r,∴DC= AB,而DC∥ AB,∴四边形ABCD是平行四边形;②作直径DH,连接 HE,如图, OG= 1,AG==,CD= 6, DG= 2, CG==2,∵DH 为直径,∴∠HED= 90°,∴∠H+∠HDE= 90°,∵DH⊥ DC,∴∠ CDE+∠ HDE= 90°,∴∠ H=∠ CDE,∵∠ H=∠ DAE,∴∠ CDE=∠ DAC,而∠ DCE=∠ ACD,∴△ CDE∽△ CAD,∴=,即=,∴ DE=.23.解:( 1)在 Rt△ AHP 中,∵ AH=500,由 tan ∠ APH= tanα===2,可得PH=250米.∴点 H 到桥左端点P 的距离为250 米.(2)设 BC⊥HQ 于 C.在 Rt△ BCQ中,∵ BC= AH= 500,∠ BQC=30°,∴ CQ==1500米,2020年中考数学押题卷一(附答案) 11 / 11∵ PQ = 1255 米,∴ CP =245 米,∵ HP = 250 米,∴ AB = HC =250 ﹣245= 5 米.答:这架无人机的长度AB 为5 米. 24.解:( 1)该二次函数图象的对称轴是x == 1; ( 2)∵该二次函数的图象张口向上,对称轴为直线x = 1,﹣ 1≤ x ≤5, ∴当 x =5时, y 的值最大,即M ( 5, ). 把 M (5,)代入 y = ax 2﹣ 2ax ﹣ 2,解得 a = ,∴该二次函数的表达式为y = x 2﹣ 2x ﹣ 2,当 x = 1 时, y = ,∴ N ( 1,﹣ );( 3)当 a >0 时,该函数的图象张口向上,对称轴为直线 x = 1,∵ t ≤ x 1≤ t+1,当 x 2≥ 3 时,拥有 y 1≥ y 2,点 A ( x 1 ,y 1 )B ( x 2, y 2)在该函数图象上, ∴ t ≥ 3 或 t+1≤ 1﹣( 3﹣ 1),解得, t ≥ 3 或 t ≤﹣ 2;当 a < 0 时,该函数的图象张口向下,对称轴为直线x = 1, ∵ t ≤ x 1 2时,拥有12 1 1 22 ≤ t+1,当 x ≥ 3 y ≥ y ,点 A ( x ,y )B ( x , y )在该函数图象上, ∴, ∴﹣ 1≤ t ≤ 2.t 的取值范围﹣ 1≤ t ≤ 2.。

湖北省2020年中考数学押题卷一解析版

湖北省2020年中考数学押题卷一解析版

回,再随机摸出一个小球,则两次摸出的小球标号之和等于
5 的概率为 ( )
A. 1 5
【答案】 C
B. 1 4
C. 1 3
D. 1 2
【解析】画树状图得:
Q 共有 12 种等可能的结果,两次摸出的小球标号之和等于
5 的有 4 种情况,
两次摸出的小球标号之和等于
41
5 的概率是:
.故选: C .
12 3
A. 1 5
B. 1 4
C. 1 3
D. 1 2
8.如图,现有 3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角
线上的三个数字之和均相等,图中给出了部分数字,则
P 处对应的数字是(

A. 7
B. 5
C. 4
D. 1
9.如图, 平面直角坐标系 xOy 中,四边形 OABC的边 OA在 x 轴正半轴上, BC∥ x 轴,∠OAB=90°, 点 C(3, k
2),连接 OC.以 OC为对称轴将 OA翻折到 OA′,反比例函数 y= 的图象恰好经过点 A′、 B,则 k 的值是 x
()
A. 9
B. 13 3
169
C.
15
D. 3 3
10.如图,已知⊙O 的半径为 2,点 A、B、C 在⊙O上,若四边形 OABC是菱形, 则图中阴影部分的面积为 ( )
2
A. 3π- 2√3
19.(本小题满分 8 分)某校为了做好全校 800 名学生的眼睛保健工作,对学生的视力情况进行一次抽样调
查,如图是利用所得数据绘制的频数分布直方图(视力精确到
0.1 )请你根据此图提供的信息,回答下列问
题:
( 1)本次调查共抽测了

黑龙江省2020年中考数学押题卷及答案

黑龙江省2020年中考数学押题卷及答案

4
21. (本题 10 分 ) 2019 年 3 月 30 日,四川省凉山州木里县境内发生森林火灾, 30 名左右的扑火英雄牺牲,让人
感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一 次“防火安全知识竞赛”(满分 100 分),赛后从中抽取了部分学生的成绩进行整理,并制作了如 下不完整的统计图表:
C.抛物线的对称轴是直线 x=﹣
D .图象与 x 轴没有交点
11.如图, AB=DB,∠ 1=∠ 2,请问添加下面哪个条件不能判断△ ABC≌△ DBE的是(

A. BC=BE
B. AC=DE C .∠ A=∠ D
D .∠ ACB=∠ DEB
12.如图,△ ABC为等边三角形,以 AB为边向形外作△ ABD,使∠ ADB=120°,再以点 C 为旋转中
°,所抽取的学生竞赛成绩的中位
数落在
区间内;
( 3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估
计该校参赛学生的平均成绩.
22.( 本题 12 分 )
如图,在⊙ O中,半径 OD⊥直径 AB,CD与⊙ O相切于点 D,连接 AC交⊙ O于点 E,交 OD于点 G,
连接 CB并延长交⊙于点 F,连接 AD, EF.
抽到红桃的可能性更大
5.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转
120°后,能与原图形
完全重合的是(

6.如图,点 A, B, C 是⊙ O上的三点,已知∠ AOB=10°0 ,那么∠ ACB的度数是(

A .30° B . 4 0° C .50°
D .60°
7. 用 4 个完全相同的小正方体搭成如图所示的几何体,该几何体的(

2020中考数学押题卷(湖北黄冈卷)(解析版)

2020中考数学押题卷(湖北黄冈卷)(解析版)

2020中考数学押题卷(湖北黄冈卷)学校班级学号(考号)姓名得分一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项符合题目要求,请将选择项前面的字母代号填涂到相应位置上)1.16的算术平方根是()A.2 B.4 C.±2 D.±4【答案】A【解析】=4,4的算术平方根是2,故选:A.2.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.【答案】D【解析】从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.3.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104B.25.9×105C.2.59×106D.0.259×107【答案】C【解析】将2590000用科学记数法表示为:2.59×106.故选:C.4.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解析】A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.5.下列图形中,∠1一定大于∠2的是()A.B.C.D.【答案】C【解析】A、根据对顶角相等,∠1=∠2,故本选项错误;B、根据两直线平行、内错角相等,∠1=∠2,故本选项错误;C、根据外角等于不相邻的两内角和,∠1>∠2,故本选项正确;D、根据圆周角性质,∠1=∠2,故本选项错误.故选:C.6.已知△AB C中,∠A=70°,∠B=60°,则∠C=()A.50°B.60°C.70°D.80°【答案】A【解析】∵∠A+∠B+∠C=180°,而∠A=70°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣70°﹣60°=50°.故选:A.7.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解析】原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选:A.8.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55°C.60°D.65°【解析】如图,∵长方形纸片对边平行,∴∠1=∠EFB=60°,由翻折的性质得,∠2=∠1=60°,∴∠AED′=180°﹣∠1﹣∠2=180°﹣60°﹣60°=60°.故选:C.二、填空题(本大题共有8个小题,每小题3分,共24分)9.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为【答案】(2,4).【解析】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4).10.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是【答案】11【解析】由统计图可得,本班学生有:6+9+10+8+7=40(人), 该班这些学生一周锻炼时间的中位数是:1111.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是【答案】3232π【解析】连接OC 交MN 于点P ,连接OM 、ON , 由题意知,OC ⊥MN ,且OP =PC =1, 在Rt △MOP 中,∵O M =2,OP =1, ∴cos ∠POM ==,AC ==,∴∠POM =60°,MN =2MP =2,∴∠AOB =2∠AOC =120°,则图中阴影部分的面积=S 半圆﹣2S 弓形MCN =×π×22﹣2×(﹣×2×1)=2﹣π,12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1,x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列结论:①4a ﹣2b +c <0;②2a ﹣b <0;③a <0;④b 2+8a >4ac ,其中正确的有个【答案】4【解析】①当x =﹣2时,y =ax 2+bx +c ,y =4a ﹣2b +c , ∵﹣2<x 1<﹣1,∴y <0,故①正确;②∵二次函数y =ax 2+bx +c (a ≠0)的图象经过点(﹣1,2), ∴a ﹣b +c =2,与y 轴交于(0,1)点,c =1, ∴a ﹣b =1,二次函数的开口向下,a <0, 又﹣1<﹣<0,∴2a ﹣b <0,故②正确;③因为抛物线的开口方向向下,所以a <0,故③正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即>2,由于a <0,所以4ac ﹣b 2<8a ,即b 2+8a >4ac ,故④正确. 13.分解因式:9﹣12t +4t 2= . 【答案】(3﹣2t )2【解析】原式=(3﹣2t )2.故答案为:(3﹣2t )2 14.关于x 的方程32311+=-x x 的解是x = . 【答案】6【解析】去分母得:2x +3=3x ﹣3,移项合并得:﹣x =﹣6,解得:x =6,故答案为:615.A 、B 两地之间为直线距离且相距600千米,甲开车从A 地出发前往B 地,乙骑自行车从B 地出发前往A 地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B 地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s (千类)与甲出发的时间t (小时)之间的图象,则当甲第二次与乙相遇时,乙离B 地的距离为 千米.【答案】【解析】设甲的速度为a km/h ,乙的速度为b km/h ,,解得,,设第二次甲追上乙的时间为m 小时, 100m ﹣25(m ﹣1)=600,解得,m =,∴当甲第二次与乙相遇时,乙离B 地的距离为:25×()=千米,故答案为:.16.如图,已知矩形ABC D 中,点E 是BC 边上的点,BE =2,EC =1,AE =BC ,DF ⊥AE ,垂足为F .则下列结论:①△ADF ≌△EAB ;②AF =BE ;③DF 平分∠ADC ;④sin ∠CDF =32. 其中正确的结论是 .(把正确结论的序号都填上)【答案】①②【解析】∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°, ∵BE =2,EC =1,∴AE =AD =BC =3,AB ==,∵AD ∥BC ,∴∠DAF =∠AEB , ∵DF ⊥AE ,∴∠AFD =∠B =90°, ∴△EAB ≌△ADF , ∴AF =BE =2,DF =AB =,故①②正确,不妨设DF 平分∠ADC ,则△ADF 是等腰直角三角形,这个显然不可能,故③错误, ∵∠DAF +∠ADF =90°,∠CDF +∠ADF =90°, ∴∠DAF =∠CDF ,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④错误,故答案为①②.三、简答题(本大题共有9个小题,共72分.请在指定区域作答,解析时应写出文字说明、证明过程或演算步骤)17.计算:|–2|+(sin36°–)0–+tan45°.【解析】原式=2+1–2+1=2.18.已知于x的元二次方程x2–6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22–x1x2≤30,且a为整数,求a的值.【解析】(1)∵关于x的一元二次方程x2–6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(–6)2–4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22–x1x2≤30,∴(x1+x2)2–3x1x2≤30,∴36–3(2a+5)≤30,∴a≥–,∵a为整数,∴a的值为–1,0,1.19.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).【解析】(1)∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.20.体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【解析】(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.21.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表年级平均数中位数众数七116 a115八119 126 117七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100101102103105106108109109110110111112113115115115116117119根据以上信息,回答下列问题:(1)表中a=_____;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是甲(填“甲”或“乙”),理由是_____.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?【解析】(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a==118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500×=270(人).22.如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.【解析】过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.23.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.【解析】(1)∵OA=OD,∠A=∠B=30°,∴∠A=∠ADO=30°,∴∠DOB=∠A+∠ADO=60°,∴∠ODB=180°–∠DOB–∠B=90°,∵OD是半径,∴BD是⊙O的切线;(2)∵∠ODB=90°,∠DBC=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)∵OD=1,∴DE=2,BD=,∴BE==,∵BD是⊙O的切线,BE是⊙O的割线,∴BD2=BM•BE,∴BM=2BDBE=37=377.24.【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:第一次:菜价3元/千克质量金额甲1千克3元乙1千克3元第二次:菜价2元/千克质量金额甲1千克__________元乙__________千克3元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量)【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价、,比较、的大小,并说明理由.【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时(p<v),船顺水航行速度为(v+p),逆水航行速度为(v–p),所需时间为t2.请借鉴上面的研究经验,比较t1、t2的大小,并说明理由.【解析】(1)2×1=2(元),3÷2=1.5(元/千克)故答案为2;1.5.(2)甲两次买菜的均价为:(3+2)÷2=2.5(元/千克)乙两次买菜的均价为:(3+3)÷(1+1.5)=2.4(元/千克)∴甲两次买菜的均价为2.5(元/千克),乙两次买菜的均价为2.4(元/千克).【数学思考】==,==,∴–═–=≥0,∴≥.【知识迁移】t1=,t2=+=,∴t1–t2═–=,∵0<p<v,∴t1–t2<0,∴t1<t2.25.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(–3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求–的值.【解析】(1)令ax2+6ax=0,ax(x+6)=0,∴A(–6,0);(2)①如图,连接PC,连接PB延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDP=∠CDE,∴∠ECD=∠COE,∴CE=DE.②设OE=m,即E(m,0),由切割线定理得:CE2=OE•AE,∴(m–t)2=m•(m+6),∴①,∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,由角平分线定理:,即:②,由①②得,整理得:t2+18t+36=0,∴t2=–18t–36,∴.。

2020年中考数学押题卷三(附答案)

2020年中考数学押题卷三(附答案)

2020年中考数学押题卷三(附答案)注意事项:1. 本试卷共5页,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣6的倒数是()A.B.﹣C.6 D.﹣62.89岁的侯云德院士获得2017年国家最高科学技术奖,这位著名的医学病毒学专家发现最小的病毒的半径仅有0.000009毫米,将0.000009用科学记数法表示应是()A.9×10﹣6B.9×10﹣5C.0.9×10﹣6D.0.9×10﹣53.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣1 B.a•b>0 C.﹣b<0<﹣a D.|a|>|b| 4.如图,下列水平放置的几何体中,左视图不是矩形的是()A. B. C.D.5.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.36.下列4个点,不在反比例函数y=﹣图象上的是()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.( 3,2)7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨)3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差8.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④9.若一个正六边形的边心距为2,则该正六边形的周长为()A.24B.24 C.12D.410.如图,⊙O中,AC为直径,MA,MB分别切⊙O于点A,B,∠BAC=25°,则∠AMB的大小为()A.25°B.30°C.45°D.50°11.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>112.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13. 若关于x的分式方程133x mx x-=--无解,则m=_________.14. 函数12y xx=+-的定义域是 .15.如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是。

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题一、选择题1.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)2.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣二、填空题3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC =PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题5.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.6.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接PA,点P在运动过程中,PA﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.【答案与解析】一、选择题1.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.2.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF =2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.二、填空题3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD =5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则PA+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO 的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题5.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=PA′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.6.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=PA﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=PA﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,PA﹣有最大值为,2020年中考数学压轴题一、选择题1.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°2.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题3.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第3题第4题4.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.2.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP=3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题3.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.4.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x 即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.2020年中考数学压轴题一、选择题1.已知函数y =ax 2+bx +c 的图象的一部分如图所示,则a +b +c 取值范围是( )A .﹣2<a +b +c <0B .﹣2<a +b +c <2C .0<a +b +c <2D .a +b +c <22.如图所示,矩形OABC 中,OA =2OC ,D 是对角线OB 上的一点,OD =OB ,E 是边AB 上的一点.AE =AB ,反比例函数y =(x >0)的图象经过D ,E 两点,交BC 于点F ,AC 与OB 交于点M .EF与OB 交于点G ,且四边形BFDE 的面积为.下列结论:①EF ∥AC ;②k =2;③矩形OABC 的面积为;④点F 的坐标为(,)正确结论的个数为( )A .1个B .2个C .3个D .4个 二、填空题 3.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (﹣1,0),点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .4.如图,AE=4,以AE 为直径作⊙O ,点B 是直径AE 上的一动点,以AB 为边在AE 的上方作正方形ABCD ,取CD 的中点M ,将△ADM 沿直线AM 对折,当点D 的对应点D ´落在⊙O 上时,BE 的长为 .三、解答题5.在平面直角坐标系xOy 中,有不重合的两个点Q (x 1,y 1)与P (x 2,y 2).若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“折距”,记做D PQ .特别地,当PQ 与某条坐标轴平EA OB D CM D´行(或重合)时,线段PQ的长即点Q与点P之间的“折距”.例如,在图1中,点P(1,﹣1),点Q(3,﹣2),此时点Q与点P之间的“折距”D PQ=3.(1)①已知O为坐标原点,点A(3,﹣2),B(﹣1,0),则D AO=,D BO=.②点C在直线y=﹣x+4上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=3x+6上以动点.请你直接写出点E与点F之间“折距”D EF的最小值.6.如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3.动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)用含t的代数式分别表示线段BF和PF的长度,则有BF=,PF=.(2)如图2,作点D关于CE的对称点D′,当FG恰好过点D′时,求t的值.(3)如图3,作△FGP的外接圆⊙O,当点P在运动过程中.①当外接圆⊙O与四边形ABCE的边BC或CE相切时,请求出符合要求的t的值;②当外接圆⊙O的圆心O落在△FGP的内部(不包括边上)时,直接写出t的取值范围.【答案与解析】一、选择题1.【分析】函数y=ax2+bx+c的图象开口向下可知a小于0,由于抛物线顶点在第一象限即抛物线对称轴在y轴右侧,当x=1时,抛物线的值必大于0由此可求出a的取值范围,将a+b+c用a表示出即可得出答案.【解答】解:由图象可知:a<0,图象过点(0,1),所以c=1,图象过点(﹣1,0),则a﹣b+1=0,当x=1时,应有y>0,则a+b+1>0,将a﹣b+1=0代入,可得a+(a+1)+1>0,解得a>﹣1,所以,实数a的取值范围为﹣1<a<0.又a+b+c=2a+2,∴0<a+b+c<2.故选:C.2.【分析】设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,证明=即可判断①;表示出D和E的坐标,根据系数k的几何意义求得k的值即可判断②;求得B的坐标,求得矩形OABC的面积即可判断③;求得F的坐标即可判断④.【解答】解:设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,∴B(a,n),∵E,F在反比例函数y=上,∴ab=mn,∴BC•AE=CF•AB,∴=,∴EF∥AC,故①正确;∵OD=OB,AE=AB,∴D(a,n),E(a,n),∵OA=2OC,∴a=2n,∴B(2n,n),D(n,n),E(2n,n),∵反比例函数y=经过点F,E,∴k=mn=2n•n,∴m=n,∴F(n,n),∴BF=2n﹣n=n,BE=n,∵四边形BFDE的面积=S△BDF+S△BDE=,∴×n×(n﹣n)+×n×(2n﹣n)=,解得n=,∴E(3,),F(,)∴k=3×=2,故②④正确;∵B(3,),∴矩形OABC的面积为,故③正确;故选:A.二、填空题3.【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.4.三、解答题5.【分析】(1)①D AO=|3﹣0|+|﹣2﹣0|=5,即可求解;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,即可求解;(2)EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,即可求解.【解答】解:(1)①D AO=|3﹣0|+|﹣2﹣0|=5,同理D BO=1,故答案为:5,1;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,最小值为4;(2)如图2,过点E分别作x、y轴的平行线交直线y=﹣x+4于F1、F2,则EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,如图3,将直线y=﹣x+4向右平移与圆相切于点E,平移后的直线与x轴交于点G,连接OE,设原直线与x、y轴交于点M、N,则点M、N的坐标分别为(﹣2,0)、点N(0,6),则MN=2,则△MON∽△GEO,则,即,则GO=,EF1=MG=2﹣=.6.【分析】(1)由△PFB∽△ECD,得==,由此即可解决问题.(2)如图2中,由△D′MG∽△CDE,得=,求出MG,根据PF=CG=CM﹣MG,列出方程即可解决问题.(3)①存在.如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG,由PB=MF=MG=FG=PC,得到3t=(5﹣3t),即可解决问题.如图5中,当⊙O与BC相切时,连接GO,延长GO交PF于M,连接OF、OP,由△FGM∽△PFB,得=,列出方程即可解决问题.②求出两种特殊位置t的值即可判断.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠D=90°,AD∥BC,在Rt△ECD中,∵∠D=90°,ED=3.CD=4,∴EC==5,∵PF∥CE,FG∥BC,∴四边形PFGC是平行四边形,∴∠FPB=∠ECB=∠DEC,∴△PFB∽△ECD,∴==,∴==,∴BF=4t,PF=5t,故答案为4t,5t.(2)如图2中,∴D、D′关于CE对称,∴DD′⊥CE,DM=MD′,∵•DE•DC=•EC•DM,∴DM=D′M=,CM==,由△D′MG∽△CDE,得=,∴=,∴MG=,∴PF=CG=CM﹣MG,∴5t=﹣,∴t=.∴t=时,D′落在FG上.(3)存在.①如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG.∵OP⊥BC,BC∥FG,∴PO⊥FG,∴FM=MG由PB=MF=MG=FG=PC,得到3t=(5﹣3t),解得t=.如图5中,当⊙O与EC相切时,连接GO,延长GO交PF于M,连接OF、OP.∵OG⊥EC,BF∥EC,∴GO⊥PF,∴MF=MP=t,∵△FGM∽△PFB,∴=,∴=,解得t=.综上所述t=或时,⊙O与四边形ABCE的一边(AE边除外)相切.②如图6中,当∠FPG=90°时,由cos∠PCG=cos∠CED,∴=,∴t=,如图7中,当∠FGP=90°时,∴=,∴t=,观察图象可知:当<t<时,外接圆⊙O的圆心O落在△FGP的内部.2020年中考数学压轴题一、选择题1.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣82.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题3.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF 最大时,S△ADE=.第3题第4题4.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.三、解答题5.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.6.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B 左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【答案与解析】一、选择题1.【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.2.【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.二、填空题3.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH ≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.4.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.三、解答题5.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.6.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.2020年中考数学压轴题一、选择题1.如图,在等腰△ABC中,AB=AC,把△ABC沿EF折叠,点C的对应点为O,连接AO,使AO平分∠BAC,若∠BAC=∠CFE=50°,则点O是()A.△ABC的内心B.△ABC的外心C.△ABF的内心D.△ABF的外心2.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.二、填空题3.如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是.4.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.三、解答题5.如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.(1)求证:四边形ECDG是菱形;(2)若DG=6,AG=,求EH的值.6.如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+,I为△BCD内心,求OI的长.【答案与解析】一、选择题1.【分析】连接OB、OC,根据AB=AC,AO平分∠BAC,∠BAC=50°,可得AO是BC的垂直平分线,∠BAO=∠CAO=25°,得OB=OC,根据折叠可证明∠OAC=∠OCA=25°,得OA=OC,进而OA=OB=OC,可得点O是三角形ABC的外心.【解答】解:如图,连接OB、OC,∵AB=AC,AO平分∠BAC,∴AO是BC的垂直平分线,∴OB=OC,∵∠BAC=50°,AO平分∠BAC,∴∠BAO=∠CAO=25°,根据折叠可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=100°,∴∠FCO=(180°﹣100°)=40°,∵AB=AC,∠BAC=50°,∴∠ACB=(180°﹣50°)=65°,∴∠OCA=∠ACB﹣∠FCO=65°﹣40°=25°,∴∠OAC=∠OCA=25°,∴OA=OC,∴OA=OB=OC,∴O是△ABC的外心.故选:B.2.【分析】过F作FN⊥BC,交BC延长线于N点,连接AC,构造直角△EFN,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,根据相似三角形的对应边成比例,求得NE=CD=,运用正方形性质,可得出△CNF是等腰直角三角形,从而求出CE.【解答】解:如图,过F作FN⊥BC,交BC延长线于N点,连接AC.∵DE的中点为G,EG绕E顺时针旋转90°得EF,∴DE:EF=2:1.∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∴CE:FN=DE:EF=DC:NE=2:1,∴CE=2NF,NE=CD=.∵∠ACB=45°,∴当∠NCF=45°时,A、C、F在一条直线上.则△CNF是等腰直角三角形,∴CN=NF,∴CE=NE=×=,∴CE=时,A、C、F在一条直线上.故选:D.二、填空题3.【分析】作A'F⊥BC于F,则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,A'F=AB=2,得出∠D'=∠A'BC=30°,得出BF=A'F=2,由矩形和平行四边形的性质得出BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,得出CD⊥A'D',得出A'F∥CD,证出四边形A'ECF 是矩形,得出CE=A'F=2,A'E=CF,证出DE=BF=2,即可得出答案.【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;4.【分析】首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.【解答】解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,BB i,∵AO⊥AB1,AP⊥AB i,∴∠OAP=∠B1AB i,又∵AB1=AO•tan30°,AB i=AP•tan30°,∴AB1:AO=AB i:AP,∴△AB1B i∽△AOP,∴∠B1B i=∠AOP.同理得△AB1B2∽△AON,∴∠AB1B2=∠AOP,∴∠AB1B i=∠AB1B2,∴点B i在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).由图形2可知:Rt△APB1中,∠APB1=30°,∴,Rt△AB2N中,∠ANB2=30°,∴=,∴,∵∠PAB1=∠NAB2=90°,∴∠PAN=∠B1AB2,∴△APN∽△AB1B2,∴==,∵ON:y=﹣x,∴△OMN是等腰直角三角形,∴OM=MN=,∴PN=,∴B1B2=,综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.故答案为:.。

崇左市2020年中考数学押题卷及答案

崇左市2020年中考数学押题卷及答案

∠ BAG=∠ BAD,∠ CAF=∠ CAD,
∴∠ BAG+∠ CAF=∠ BAD+∠ CAD=∠ BAC= 45°;
∴∠ GAF=∠ BAG+∠ CAF+∠ BAC= 90°;
∴四边形 AFHG是正方形,
( 2)∵四边形 AFHG是正方形,
∴∠ BHC= 90°,
又 GH= HF= AD, GB= BD= 6, CF= CD= 4;
DP绕点逆时针旋转 2 α 得到线段 DF,连结 BF,请直接写出 DE.BF、BP 三者的数量关系(不需证明)
24.( 本题 12 分) 已知二次函数 y= ax2﹣ 2ax+3 的最大值为 4,且该抛物线与 y 轴的交点为 C,顶点为 D.
( 1)求该二次函数的解析式及点 C,D的坐标; ( 2)点 P( t , 0)是 x 轴上的动点,
甲种车进价的 1.5 倍,且购进的甲种车比乙种车少 5 辆.
( 1)甲种电动自行车每辆的进价是多少元?
( 2)这批电动自行车上市后很快销售一空.该商店计划按原进价再次购进这两种电动自行车共
50 辆,将新购进的电动自行车按照表格中的售价销售.设新购进甲种车
m辆( 20≤m≤ 30),两种车
全部售出的总利润为 y 元(不计其他成本) .
D.①②③④
12. 如图,在 Rt△ ABC中,∠ B= 90°, AB= 6, BC=8,点 D在 BC上,以 AC为对角线的所有平行四
边形 ADCE中, DE的最小值是(

A. 4
B. 6
C. 8
D. 10
第Ⅱ卷
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
13.分解因式: x2﹣ 4x=

2020年江西省中考数学押题试卷及答案解析

2020年江西省中考数学押题试卷及答案解析

2020年江西省中考数学押题试卷一.选择题(共6小题,满分18分,每小题3分)1.若|﹣4|<a,则a的值可以是()A.﹣3B.﹣2C.0D.52.下列计算中正确的是()A.3x2+2x=5x3B.﹣3(x﹣4)=﹣3x+12C.(﹣3x)2•4x2=﹣12x4D.x6÷x2=x33.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.4.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1 5.如图,将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,DB的延长线交EF 于点H,则∠DHE的大小为()A.90°B.95°C.100°D.105°6.如图,直线y=x+b(b>0)分别交x轴、y轴于点A、B,直线y=kx(k<0)与直线y =x+b(b>0)交于点C,点C在第二象限,过A、B两点分别作AD⊥OC于D,BE⊥OC于E,且BE+BO=8,AD=4,则ED的长为()A.2B.C.D.1二.填空题(共6小题,满分18分,每小题3分)7.函数y=中,自变量x的取值范围是.8.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.9.如图,2008年北京奥运会圆了所有中国人的百年奥运梦,开幕式上奇特的点火式为世界所惊.(图中为奥运会中所用的圣火盆),其中圣火盆高120cm,盆体深20cm,立柱高110cm,CD=60cm.盆口圆的直径AB=.10.若一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2的值是.11.如图1的长方形ABCD中,E在AD上,沿BE将A点往右折成如图2所示,再作AF ⊥CD于点F,如图3所示,若AB=2,BC=3,∠BEA=60°,则图3中AF的长度为.12.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为.三.解答题(共5小题,满分30分,每小题6分)13.(6分)(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.14.(6分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.15.(6分)已知线段AC.(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.16.(6分)在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外完全相同,将球摇匀,从中任取1球.(1)请按取出不同颜色球的概率从小到大的顺序排列;(2)怎样改变各颜色球的数目,使取出每一种颜色的球的概率相等.17.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;四.解答题(共3小题,满分24分,每小题8分)18.(8分)国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.最喜欢的锻炼项目人数打球120跑步a游泳b跳绳30其他c(1)这次问卷调查的学生总人数为,人数a+c=;(2)扇形统计图中,n=,“其他”对应的扇形的圆心角的度数为度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?19.(8分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)当y2>y1时,求x的取值范围;(3)求点B到直线OM的距离.20.(8分)如图,安徽江准集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线L且AE=25cm,手臂AB=BC=60cm,末端操作器CD=35cm,AF∥直线L.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD =60°,求末端操作器节点D到地面直线L的距离.(结果保留根号)五.解答题(共2小题,满分18分,每小题9分)21.(9分)如图,已知AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD ∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的周长.22.(9分)如图,在菱形ABCD中,∠BAD=120°,点E在对角线BD上,将线段CE绕点C顺时针旋转120°,得到CF,连接DF.(1)求证:△BCE≌△DFC.(2)若BC=2.求四边形ECFD的面积,六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.2020年江西省中考数学押题试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.若|﹣4|<a,则a的值可以是()A.﹣3B.﹣2C.0D.5【分析】根据绝对值的性质进行判断.【解答】解:因为|﹣4|=4,|﹣4|<a,所以a的值可以是5.故选:D.2.下列计算中正确的是()A.3x2+2x=5x3B.﹣3(x﹣4)=﹣3x+12C.(﹣3x)2•4x2=﹣12x4D.x6÷x2=x3【分析】直接利用合并同类项法则以及单项式乘以多项式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、3x2+2x,无法计算,故此选项错误;B、﹣3(x﹣4)=﹣3x+12,正确;C、(﹣3x)2•4x2=36x4,故此选项错误;D、x6÷x2=x4,故此选项错误;故选:B.3.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,据此可得答案.【解答】解:从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B.4.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+5≥1得x≥﹣4,解不等式>,得:x<﹣1,则不等式组的解集为﹣4≤x<﹣1,故选:B.5.如图,将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,DB的延长线交EF 于点H,则∠DHE的大小为()A.90°B.95°C.100°D.105°【分析】由旋转的性质和正方形的性质可得∠BAE=35°,∠E=90°,∠ABD=45°,由四边形的内角和定理可求解.【解答】解:∵将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,∴∠BAE=35°,∠E=90°,∠ABD=45°,∴∠ABH=135°,∴∠DHE=360°﹣∠E﹣∠BAE﹣∠ABH=360°﹣135°﹣35°﹣90°=100°,故选:C.6.如图,直线y=x+b(b>0)分别交x轴、y轴于点A、B,直线y=kx(k<0)与直线y =x+b(b>0)交于点C,点C在第二象限,过A、B两点分别作AD⊥OC于D,BE⊥OC于E,且BE+BO=8,AD=4,则ED的长为()A.2B.C.D.1【分析】分别令y=0,x=0来求直线y=x+b(b>0)与x轴负半轴、y轴正半轴的交点A、B的坐标,根据全等三角形的判定和性质以及勾股定理即可得到结论.【解答】解:当y=0时,x+b=0,解得,x=﹣b,∴直线y=x+b(b>0)与x轴的交点坐标A为(﹣b,0);当x=0时,y=b,∴直线y=x+b(b>0)与y轴的交点坐标B为(0,b);∴OA=OB,∵AD⊥OC于D,BE⊥OC于E,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠EOB,在△DAO和△BOE中,∴△DAO≌△EOB,∴OD=BE,AD=OE=4,∵BE+BO=8,∴OB=8﹣BE,∵OB2=BE2+OE2,∴(8﹣BE)2=BE2+42,∴BE=3,∴DE=OE﹣OD=AD﹣BE=1,故选:D.二.填空题(共6小题,满分18分,每小题3分)7.函数y=中,自变量x的取值范围是x>﹣2且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+2≥0;分母不等于0,可知:x2+x﹣2≠0,解(x﹣1)(x+2)≠0,即x≠1,x≠﹣2;则就可以求出自变量x的取值范围.【解答】解:根据题意得:x+2≥0且x2+x﹣2≠0,解得:x>﹣2且x≠1.8.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 5.5×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.9.如图,2008年北京奥运会圆了所有中国人的百年奥运梦,开幕式上奇特的点火式为世界所惊.(图中为奥运会中所用的圣火盆),其中圣火盆高120cm,盆体深20cm,立柱高110cm,CD=60cm.盆口圆的直径AB=80cm.【分析】作OF⊥CD,垂足为F,交AB于点P,交狐AB于E,连接OB、OD设⊙O的半径为r,在Rt△OFD中运用勾股定理求出OF的值.再次运用勾股定理在Rt△OPB中求出PB的值,最后求得AB的值.【解答】解:如图,作OF⊥CD,垂足为F,交AB于点P,交狐AB于E,连接OB、OD设⊙O的半径为r,依题意可知:PF=120﹣110=10cm,EF=20﹣10=10(cm),DF=CD=30cm.在Rt△OFD中,OD=r,OF=r﹣10,DF=30,∴r2=(r﹣10)2+302∴r=50cm在Rt△OPB中OB=50,OP=50﹣20=30.∴BP=cm∴AB=2BP=80cm即盆口圆的直径AB=80cm.故答案为:80cm.10.若一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2的值是﹣2.【分析】两根之积等于即可解决问题.【解答】解:∵一元二次方程x2+x﹣2=0的解为x1、x2,∴x1•x2=﹣2.故答案为﹣2.11.如图1的长方形ABCD中,E在AD上,沿BE将A点往右折成如图2所示,再作AF ⊥CD于点F,如图3所示,若AB=2,BC=3,∠BEA=60°,则图3中AF的长度为3﹣.【分析】如图3中,作AH⊥BC于H,求出BH,CH即可解决问题.【解答】解:如图3中,作AH⊥BC于H.由题意在Rt△ABH中,AB=2,∠AHB=90°,∠ABH=30°,∴BH=AB•cos30°=,∴CH=BC﹣BH=,∵AF⊥CD,∴∠AHC=∠C=∠AFC=90°,∴四边形AFCH是矩形,∴AF=CH=3﹣.故答案为3﹣.12.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为或5﹣.【分析】如图1,先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;如图2,当DE=OD=时,当△OED是等腰三角形,于是得到结论.【解答】解:当OE=DE时,当△OED是等腰三角形,如图1,连接OA,在矩形ABCD 中,CD=AB=3,AD=BC=5,∠BAD=90°,在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴=,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;如图2,当DE=OD=时,当△OED是等腰三角形,∴AE=5﹣;当OD=OE=时,当E与点A重合,不合题意舍去,综上所述,当△OED是等腰三角形时,AE的长为或5﹣;故答案为:或5﹣.三.解答题(共5小题,满分30分,每小题6分)13.(6分)(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.【分析】(1)直接利用乘法公式化简进而合并同类项即可;(2)直接利用多项式的乘法运算进而结合整式的混合运算法则计算得出答案.【解答】解:(1)原式=2(m2+2m+1)﹣(4m2﹣1)=2m2+4m+2﹣4m2+1=﹣2m2+4m+3;(2)原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=时,原式=2+=.14.(6分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.【分析】(1)由垂直得出∠AFE=∠AGC=90°,则∠AEF+∠EAF=90°,∠GAC+∠ACG =90°,由∠EAF=∠GAC得出∠AEF=∠ACG,即可得出结论;(2)由△ADE∽△ABC得出=,求出AB=BE+AE=7,则=,求出AC=,则CD=AC﹣AD=.【解答】(1)证明:AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∴∠AEF+∠EAF=90°,∠GAC+∠ACG=90°,∵∠EAF=∠GAC,∴∠AEF=∠ACG,∵∠EAD=∠CAB,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴=,∵AD=BE=4,AE=3,∴AB=BE+AE=4+3=7,∴=,解得:AC=,∴CD=AC﹣AD=﹣4=.15.(6分)已知线段AC.(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.【分析】(1)作AC的垂直平分线,垂足为O,然后截取OB=OD即可;(2)根据菱形的性质得AC⊥BD,OA=OC=4,OB=OD=3,再利用勾股定理计算出AD.【解答】解:(1)如图所示,四边形ABCD即为所求作的菱形;(2)∵AC=8,BD=6,且四边形ABCD是菱形,∴AO=4,DO=3,且∠AOD=90°,则AD===5.16.(6分)在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外完全相同,将球摇匀,从中任取1球.(1)请按取出不同颜色球的概率从小到大的顺序排列;(2)怎样改变各颜色球的数目,使取出每一种颜色的球的概率相等.【分析】(1)根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.(2)由于袋子中有三种颜色的6个球,要从袋子中随机取出一个球,使取出每种颜色的球的概率都相等,可知每一种球的概率都是,据此不难得出一个方案.【解答】解:(1)根据题意,袋子中共6个球,其中有1个白球,2个黄球和3个红球,故将球摇匀,从中任取1球,①恰好取出白球的可能性为,②恰好取出黄球的可能性为=,③恰好取出红球的可能性为=,故这些事件按发生的可能性从小到大的顺序排列是①<②<③.(2)将其中一个红球变成白球,可使取出每种颜色的球的概率都相等.此题答案不唯一.17.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;【分析】(1)根据全等三角形的判定和性质以及矩形的判定解答即可;(2)根据全等三角形的性质和勾股定理解答即可.【解答】证明:(1)∵AB⊥OM于B,DE⊥ON于E,∴∠ABO=∠DEA=90°.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL)∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=3,设AD=x,则OA=x,AE=OE﹣OA=9﹣x.在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,解得x=5.∴AD=5.即AB、AD的长分别为3和5.四.解答题(共3小题,满分24分,每小题8分)18.(8分)国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.最喜欢的锻炼项目人数打球120跑步a游泳b跳绳30其他c(1)这次问卷调查的学生总人数为300,人数a+c=90;(2)扇形统计图中,n=10,“其他”对应的扇形的圆心角的度数为18度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?【分析】(1)用打球的人数除以所占的百分比求出总人数,用总人数乘以游泳的人数所占的百分比,求出游泳的人数,再用总人数减去打球、游泳和跳绳的人数,即可求出a+c;(2)应跳绳的人数除以总人数即可求出n的值,再用360°乘以“其他”所占的百分比即可得出“其他”对应的扇形的圆心角的度数;(3)用总人数乘以“跳绳”所占的百分比即可.【解答】解:(1)这次问卷调查的学生总人数为120÷40%=300(人),游泳的人数有300×20%=60(人),则a+c=300﹣120﹣60﹣30=90(人),故答案为:300,90;(2)=10%,则n=10;“其他”对应的扇形的圆心角的度数为360°×(1﹣20%﹣25%﹣40%﹣10%)=18°;故答案为:10,18;(3)由于在调查的300名学生中,喜欢“跳绳”项目的学生有30名,所占的比例为10%,所以,该年级1200名学生中估计喜欢“跳绳”项目的有1200×10%=120人.19.(8分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)当y2>y1时,求x的取值范围;(3)求点B到直线OM的距离.【分析】(1)先把M(﹣2,m)代入y=﹣x﹣1求出m得到M(﹣2,1),然后把M点坐标代入y=中可求出k的值,从而得到反比例函数解析式;(2)通过解方程组得反比例函数与一次函数的另一个交点坐标为(1,﹣2),然后写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可;(3)设点B到直线OM的距离为h,然后利用面积法得到••h=1,于是解方程即可,【解答】解:(1)把M(﹣2,m)代入y=﹣x﹣1得m=2﹣1=1,则M(﹣2,1),把M(﹣2,1)代入y=得k=﹣2×1=﹣2,所以反比例函数解析式为y=﹣;(2)解方程组得或,则反比例函数与一次函数的另一个交点坐标为(1,﹣2),当﹣2<x<0或x>1时,y2>y1;(3)OM==,S△OMB=×1×2=1,设点B到直线OM的距离为h,••h=1,解得h=,即点B到直线OM的距离为.20.(8分)如图,安徽江准集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线L且AE=25cm,手臂AB=BC=60cm,末端操作器CD=35cm,AF∥直线L.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD =60°,求末端操作器节点D到地面直线L的距离.(结果保留根号)【分析】如图,作BH⊥AF于H,延长CD交AF于J,交EL于M,则四边形AEMJ是矩形,四边形BFJG是矩形.解直角三角形求出DM即可.【解答】解:如图,作BH⊥AF于H,延长CD交AF于J,交EL于M,则四边形AEMJ 是矩形,四边形BFJG是矩形.在Rt△ABF中,∵∠BAF=45°,AB=60cm,∴BH=GJ=30(cm),∵BG∥FJ,∴∠GBA=∠BAF=45°,∵∠CBA=75°,∴∠CBG=30°,∴CG=BC=30(cm),∴DM=CM﹣CD=CG+GJ+JM﹣CD=30+30+25﹣35=(20+30)(cm),五.解答题(共2小题,满分18分,每小题9分)21.(9分)如图,已知AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD ∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的周长.【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD 垂直即可.(2)阴影部分的周长可由CD+BC+扇形OBD的弧长求得;扇形的半径和圆心角已求得,那么关键是求出平行四边形CD的长,可通过证四边形ABCD是平行四边形,得出CD =AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD,∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°,∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD,又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O的半径为1,AB是⊙O的直径,∴AB=2,∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=2,由(1)知:△AOD是等腰直角三角形,∵OA=OD=1,∴BC=AD=,∴图中阴影部分的周长=CD+BC+=2++.22.(9分)如图,在菱形ABCD中,∠BAD=120°,点E在对角线BD上,将线段CE绕点C顺时针旋转120°,得到CF,连接DF.(1)求证:△BCE≌△DFC.(2)若BC=2.求四边形ECFD的面积,【分析】(1)由菱形的性质可得BC=CD,∠A=∠BCD=120°,由旋转的性质可得CF =CE,∠ECF=120°=∠BCD,由“SAS”可证△BCE≌△DFC;(2)如图,连接AC交BD于O,由菱形的性质可得AC⊥BD,AO=CO,BO=DO,∠BCA=60°,由直角三角形的性质可求CO=,BO=CO=3,即可求S△BCD=×6×=3,由全等三角形的性质可求解.【解答】解:(1)∵四边形ABCD是菱形,∴BC=CD,∠A=∠BCD=120°∵将线段CE绕点C顺时针旋转120°,得到CF,∴CF=CE,∠ECF=120°=∠BCD,∴∠BCE=∠DCF,且BC=CD,EC=CF,∴△BCE≌△DFC(SAS)(2)如图,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠BCA=60°,∵BC=2,∴CO=,BO=CO=3,∴BD=6,∴S△BCD=×6×=3,∵△BCE≌△DFC∴S△BEC=S△CDF,∴S△BCD=S四边形ECFD=3.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【分析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


一、选择题(每小题3分,共24分) 1.2013(1)-的结果是【 】 A .2013
B .1
C .
2013
D .
1
2.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是【 】
A .
3.下列运算正确的是【 】
A .236a a a ⋅=
B 2+4=2+2
C .2(2)(3)=6x x x +--
D .22()=a a --
4.小林家今年1~5月份的用电量情况如图所示,由图可 知,相邻两个月中,用电量变化最大的是【 】 A .1月至2月 B .2月至3月 C .3月至4月
D .4月至5月
5.如图,是由6个棱长为1个单位的正方体摆放而成的几何体,将正方体A 向右平移2个单位,再向后平移1个单位后,所得几何体的视图跟原几何体的视图相比【 】
月份
1234590
100
95
125
110
1—5月份电量统计图
用电量/千瓦时140
120
100801~5月份电量统计图
A .主视图改变,俯视图改变
B .主视图不变,俯视图不变
C .主视图不变,俯视图改变
D .主视图改变,俯视图不变
R
Q
P N O x
y
4
9M
图1
图2
第5题图 第6题图
6.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,若y 关于x 的函数图象如图2所示,则当x =9时,点R 应运动到【 】 A .N 处 B .P 处 C .Q 处 D .M 处
7.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为
(3,2).若反比例函数k
y x
=(x >0)的图象经过点A ,则k 的值为【 】 A . 6
B . 3
C .3
D .6
O C B
A
-3
2
y x G
E
F D
C B
A
第7题图 第8题图
8.已知正方形ABCD 的边长为5,E 在BC 边上运动,G 是DE 的中点,EG 绕
E 顺时针旋转90°得E
F ,当CE 为多少时,A ,C ,F 在一条直线上【 】
图②
图①
A A
A .35
B .43
C .53
D .34
二、填空题(每小题3分,共21分) 9.
计算:.
10.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可
知,这45名同学答对题数组成的样本的中位数是___题.
11.已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为___________. 12.某同学中午醒来发现钟表停了,他打开收音机想听电台整点报时,则他等
待的时间不超过15分钟的概率是___________.
13.如图,O 为矩形ABCD 的中心,M 为BC 边上任一点,ON ⊥OM 且与CD
边交于点N .若AB =6,AD =4,设OM =x ,ON =y ,则y 与x 之间的函数关系式为__________.
N M
O
D
C
B A
M
G
F E
D
C B
A
Q
C
A
第13题图 第14题图
第15题图
14.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =45°,
且DM 交AC 于点F ,ME 交BC 于点G ,连接FG .若AB =,AF =3,则FG =________.
15.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,P 是BC 边上的动点,
设BP =x ,若能在AC 边上找到一点Q ,使∠BQP =90°,则x 的取值范围是____.
三、解答题(本大题共8小题,满分75分)
16.(8分)先化简,再求值:22122121x x x x x
x x x ---⎛⎫
-÷ ⎪+++⎝⎭,其中x 满足210x x --=.
17.(9分)张老师就本班学生对心理健康知识的了解程度进行了一次调查统计.如图是他采集数据后绘制的两幅不完整的统计图(A :熟悉,B :了解较多,C :一般了解),请你根据图中提供的信息解答以下问题: (1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数; (4)如果全年级共1 000名同学,请你估算全年级对心理健康知识“了解较多”的学生人数.
图2
图1
20A 50%C 20%
1612840
B
了解程度
人数
18.(9分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,F 为BC 中点,BE 与DF ,DC 分别交于点G ,H ,∠ABE =∠CBE . (1)线段BH 与AC 相等吗?若相等,给予证明;若不相等,请说明理由. (2)求证:BG 2GE 2=EA 2.
G
H
F
E
D B
C
A
19.(9分)一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回.一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,立即返回(掉头时间忽略不计).已知轮船在静水中的速度是22千米/时,水流速度是2千米/时.下图表示轮船和快艇距甲港的距离y (千米)与
轮船出发时间x(小时)之间的函数图象,结合图象解答下列问题:(顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度-水流速度)(1)甲、乙两港口的距离是____千米,快艇在静水中的速度是___千米/时;(2)直接写出轮船返回时的解析式,并写出自变量的取值范围;
(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?
20.(9分)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断AB,AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
P
A
B
F
E
21.(10分)我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1 520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元.经过市场调查发现:该产品的销售单价定在200元到300元之间较为合理,销售单价x (元)与年销售量y (万件)之间的变化可近似的看作是如下表所反映的一次函数:
10
7
5
250230200年销售量y (万件)
销售单价x (元)
(1)请求出y 与x 之间的函数关系式,并直接写出自变量x 的取值范围. (2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损多少?
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1 790万元?若能,求出第二
年的产品售价;若不能,请说明理由.
22.(10分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B 90°,AD 6cm ,
AB 8cm ,BC 14cm .动点P ,Q 都从点C 出发,点P 沿C →B 方向做匀
速运动,点Q 沿C →D →A 方向做匀速运动,当其中一点到达终点时,另一点也随之停止运动. (1)求CD 的长;
(2)若点P 以1cm/s 的速度运动,点Q 以22cm/s 的速度运动,连接BQ ,
PQ ,设△BQP 面积为S (cm 2),点P ,Q 运动的时间为t (s ),求S 与t
之间的函数关系式,并写出t 的取值范围;
(3)若点P 的速度仍是1cm/s ,点Q 的速度为a cm/s ,要使在运动过程中出现PQ ∥DC ,请你直接写出a 的取值范围.
Q
P
D
C B A。

相关文档
最新文档