2019年全国高考理科数学数学分类汇编---不等式与线性规划

合集下载

(全国通用版)2019版高考数学总复习专题一高频客观命题点1.5不等式与线性规划课件理

(全国通用版)2019版高考数学总复习专题一高频客观命题点1.5不等式与线性规划课件理

Ⅰ卷 Ⅱ卷 Ⅰ卷
15
ⅡⅠⅡⅢⅠⅡⅢⅠⅡⅢ
卷卷卷卷卷卷卷卷卷卷
16
-4高考真题体验·对方向
新题演练提能·刷高分
不等式的性质与解不等式 1.(2016全国Ⅰ· 8)若a>b>1,0<c<1,则( ) A.ac<bc B.abc<bac C.alogbc<blogac D.logac<logbc 答案 C
-7高考真题体验·对方向
新题演练提能·刷高分
2.(2018北京丰台一模)已知a<b<0,则下列不等式中恒成立的是 ( )
A.������ > ������
答案
1
1
B. -������ < D.a3>b3
-������
C.2a>2b
A
解析
1 ∵a<b<0,∴������
>
1 ,故 A ������
正确; -������ >
������3 因为 ������
-11高考真题体验·对方向
新题演练提能·刷高分
6.(2018甘肃天水期中)对于任意实数x,不等式(a-2)x2-2(a-2)-4<0恒 成立,则实数a的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2] D.(-2,2) 答案 C 解析 当a-2=0,即a=2时,原不等式变为-4<0,显然不等式恒成立,此 时符合题意.当a-2≠0,即a≠2时,因为对于任意实数x,不等式(a-2)x22(a-2)-4<0恒成立, ������-2 < 0, 所以 ������ = [-2(������-2)]2 -4(������-2) × (-4) < 0, ������ < 2, 解得 ∴-2<a<2. -2 < ������ < 2. 综上可得-2<a≤2.故选 C.

2019年高考数学考纲解读专题06不等式与线性规划热点难点突破文含解析

2019年高考数学考纲解读专题06不等式与线性规划热点难点突破文含解析

不等式与线性规划1.若a >b ,则下列不等式成立的是( ) A .ln a >ln b B .0.3a >0.3bC .a 12>b 12D.3a >3b解析 因为a >b ,而对数函数要求真数为正数,所以ln a >ln b 不成立; 因为y =0.3x是减函数,又a >b ,则0.3a<0.3b,故B 错; 当a >b >0时,a >b ,则a 12>b 12,故C 错;y =x 13在(-∞,+∞)是增函数,又a >b ,则a 13>b 13,即3a >3b 成立,选D.答案 D2.设a =lg e ,b =(lg e)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析 0<lg e<1,即0<a <1,b =(lg e)2=a 2<a ,c =lg e =12lg e =12a <a ,又b =(lg e)2<lg 10lg e =12lg e =c ,因此a >c >b .故选B. 答案 B3.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( ) A .-1<a <1 B .0<a <2 C .-12<a <32D .-32<a <124.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2}B .{x |-2<x <2}C .{x |x <0或x >4}D .{x |0<x <4}解析 由题意可知f (-x )=f (x ),即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)(x +2).又函数在(0,+∞)上单调递增,所以a >0.f (2-x )>0,即ax (x -4)>0,解得x <0或x >4.故选C.答案 C5.已知点A (-2,0),点M (x ,y )为平面区域⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0上的一个动点,则|AM |的最小值是( )A .5B .3C .2 2D. 655解析 不等式组⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0表示的平面区域如图,结合图象可知|AM |的最小值为点A 到直线2x +y -2=0的距离,即|AM |min =|2×(-2)+0-2|5=655.答案 D6.如果实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥1,目标函数z =kx -y 的最大值为6,最小值为0,则实数k的值为( )A .1B .2C .3D .4解析 不等式组表示的可行域如图,A (1,2),B (1,-1),C (3,0)∵目标函数z =kx -y 的最小值为0,∴目标函数z =kx -y 的最小值可能在A 或B 时取得;∴①若在A 上取得,则k -2=0,则k =2,此时,z =2x -y 在C 点有最大值,z =2×3-0=6,成立; ②若在B 上取得,则k +1=0,则k =-1,此时,z =-x -y ,在B 点取得的应是最大值, 故不成立,∴k =2,故答案为B.答案 B7.已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1) 解析 由f (x )>0得32x-(k +1)·3x+2>0, 解得k +1<3x+23x ,而3x +23x ≥22(当且仅当3x=23x ,即x =log 32时,等号成立),∴k +1<22,即k <22-1.答案 B8.已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a +1c +c +1a的最小值为( ) A .4 B .4 2 C .8 D .8 2解析 ∵f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞), ∴a >0且Δ=4-4ac =0.∴c =1a,∴a +1c +c +1a =a +11a+1a +1a =⎝⎛⎭⎪⎫a 2+1a 2+⎝ ⎛⎭⎪⎫a +1a ≥4(当且仅当a =1时取等号),∴a +1c +c +1a的最小值为4,故选A. 答案 A9.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2n C.n 2+n +22D .n 2+n +1解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域,选C.答案 C10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③ D .③④⑤11.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( ) A.c a <b a B.b -ac>0 C.b 2c <a 2c D.a -c ac<0 解析:∵c <b <a 且ac <0,∴c <0,a >0,∴c a <b a ,b -ac >0,a -cac<0,但b 2与a 2的关系不确定,故b 2c <a 2c不一定成立.答案:C12.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析:依题意,-12与-13是方程ax 2-bx -1=0的两根,则⎩⎪⎨⎪⎧b a =-12-13,-1a =-12×⎝ ⎛⎭⎪⎫-13,即⎩⎪⎨⎪⎧b a =-56,1a =-16,又a <0,不等式x 2-bx -a <0可化为1a x 2-b a x -1>0,即-16x 2+56x -1>0,解得2<x <3.答案:A13.若正数x ,y 满足x +y =1,且1x +ay≥4对任意的x ,y ∈(0,1)恒成立,则a 的取值范围是( )A .(0,4]B .[4,+∞)C .(0,1]D .[1,+∞)解析:正数x ,y 满足x +y =1,当a >0时,1x +a y =(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2y x ·axy=1+a +2a ,当且仅当y =ax 时取等号,因为1x +ay ≥4对任意的x ,y ∈(0,1)恒成立,∴1+a +2a ≥4,解得a ≥1,∴a 的取值范围是[1,+∞).当a ≤0时显然不满足题意,故选D.答案:D14.已知函数f (x )=ax 2+bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (-x )的图象可以为( )解析:由f (x )<0的解集为{x |x <-3或x >1}知a <0,y =f (x )的图象与x 轴交点为(-3,0),(1,0), ∴f (-x )图象开口向下,与x 轴交点为(3,0),(-1,0). 答案:B15.设a ,b ∈R ,且a +b =3,则2a+2b的最小值是( ) A .6 B .4 2 C .2 2 D .2 6解析:2a +2b ≥22a +b=223=42,当且仅当2a =2b,a +b =3,即a =b =32时,等号成立.故选B.答案:B16.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0x -y ≥02x -y -2≥0,则z =y -1x +1的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-1,13 B.⎣⎢⎡⎦⎥⎤-12,13C.⎣⎢⎡⎭⎪⎫-12,+∞D.⎣⎢⎡⎭⎪⎫-12,1 解析:由题知可行域如图阴影部分所示,∴z =y -1x +1的取值范围为[k MA,1),即⎣⎢⎡⎭⎪⎫-12,1.答案:D17.设a ,b 为实数,则“a <1b 或b <1a”是“0<ab <1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:充分条件可举反例,令a =b =-10,此时a <1b ,b <1a ,但ab =100>1,所以“a <1b 或b <1a”不是“0<ab <1”的充分条件.反之,a ,b 为实数,当0<ab <1时,说明a ,b 同号.若a >0,b >0,则a <1b 或b <1a;若a <0,b <0,则a >1b 或b >1a .所以“a <1b 或b <1a ”不是“0<ab <1”的必要条件.综上可知“a <1b 或b <1a”是“0<ab <1”的既不充分也不必要条件. 答案:D18.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( ) A .-3 B .2 C .3 D .8 解析:y =x -4+9x +1=x +1+9x +1-5,因为x >-1,所以x +1>0,9x +1>0.所以由基本不等式,得y =x+1+9x +1-5≥2 x +9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号,所以a =2,b =1,a +b =3. 答案:C19.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1x -y ≥-12x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( ) A .[-4,2] B .(-4,2) C .[-4,1] D .(-4,1)解析:作出不等式组表示的区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B.答案:B20.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D .(-∞,-1) 解析:x 2+ax -2>0,即ax >2-x 2. ∵x ∈[1,5],∴a >2x-x 成立.∴a >⎝ ⎛⎭⎪⎫2x -x min .又函数f (x )=2x-x 在[1,5]上是减函数,∴⎝ ⎛⎭⎪⎫2x -x min =25-5=-235,∴a >-235.故选A.答案:A21.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2. 而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:222.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 223.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.24.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

2019年全国高考理科数学数学分类汇编---不等式与线性规划

2019年全国高考理科数学数学分类汇编---不等式与线性规划

因为 y 3x 是增函数,所以 3a 3b ,故 B 错;因为幂函数 y x 3 是增函数, a b ,所以
a3 b3 ,知 C 正确;取 a 1,b 2 ,满足 a b , 1 a b 2 ,知 D 错.
【详解】取 a 2, b 1 ,满足 a b ,ln( a b) 0 ,知 A 错,排除 A ;因为 9 3a 3b 3 ,
2019 年全国高考理科数学分类汇编——不等式与线性规划
1. ( 2019 北京理科)若 x, y 满足 | x | 1 y ,且 y≥-1,则 3x+y 的最大值为
A. -7
B. 1
C. 5
D. 7
【答案】 C
【解析】
【分析】
首先画出可行域,然后结合目标函数的几何意义确定其最值即可
.
1y
【详解】由题意
y2
2 , 所以曲线 C 上任意一点到
2
原点的距离都不超过 2 . 结论②正确 .
如图所示 , 易知 A 0, 1 , B 1,0 ,C 1,1, , D 0,1 ,
四边形 ABCD 的面积 S明显“心形”区域的面积大于
2
2
即“心形”区域的面积大于 3, 说法③错误 .
以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养
.
4.(2019 全国 2 卷理科)若 a>b,则 A. ln( a- b)>0
ab
B. 3 <3
C. a3- b3>0
D. │a│ >│b│
【答案】 C
【解析】
【分析】
本题也可用直接法,因为 a b ,所以 a b 0 ,当 a b 1时, ln( a b) 0 ,知 A 错,

2019届高考数学二轮复习不等式、线性规划课件(51张)(全国通用)

2019届高考数学二轮复习不等式、线性规划课件(51张)(全国通用)
[答案] D
x+2y≤1, 4.设 x,y 满足约束条件2x+y≥-1,
x-y≤0,
则 z=(x+1)2+y2
的取值范围是________.
[解析]
由xx- +y2=y=0, 1,
解得x=13, y=13,
即 C13,13.
(x+1)2+y2 的几何意义是区域内的点(x,y)与定点(-1,0)间
(3)方法:使用基本不等式时,一般通过“拆、拼、凑”的技 巧把求最值的函数或代数式化为 ax+bx(ab>0)的形式,常用的方法 是变量分离法和配凑法.
考点三 线性规划问题 1.线性目标函数 z=ax+by 最值的确定方法 把线性目标函数 z=ax+by 化为 y=-abx+bz,可知bz是直线 ax+by=z 在 y 轴上的截距,要根据 b 的符号确定目标函数在什么 情况下取得最大值、什么情况下取得最小值. 2.常见的目标函数类型 (1)截距型:形如 z=ax+by,可以转化为 y=-abx+bz,利用 直线在 y 轴上的截距大小确定目标函数的最值;
[解析]

x>1


x

1 x-1

x

1

1 x-1

1≥2 x-1×x-1 1+1=3,当且仅当 x-1=x-1 1,即 x=2 时
等号成立,所以最小值为 3,∴a≤3,即实数 a 的取值范围是(- ∞,3].故选 A.
[答案] A
[快速审题] (1)看到有关不等式的命题或结论的判定,想到 不等式的性质.
[答案] 15,197
[快速审题] (1)看到最优解求参数,想到由最值列方程(组) 求解.
(2)看到最优解的个数不唯一,想到直线平行;看到形如 z= (x-a)2+(y-b)2 和形如 z=yx- -ba,想到其几何意义.

理科数学2010-2019高考真题分类训练专题七不等式第二十讲二元一次不等式(组)与简单的线性规划问题

理科数学2010-2019高考真题分类训练专题七不等式第二十讲二元一次不等式(组)与简单的线性规划问题

专题七 不等式第二十讲 二元一次不等式(组)与简单的线性规划问题2019年1.(2019浙江3)若实数,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则=3+2y 的最大值是A .1-B .1C .10D .122.(2019北京理5)若x ,y 满足1x y ≤-,且1y ≥- 则3x y +的最大值为(A )-7 (B )1 (C )5 (D )73.(2019天津理2)设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……则目标函数4z x y =-+的最大值为A.2B.3C.5D.62010-2018年一、选择题1.(2018天津)设变量,y 满足约束条件5,24,1,0,x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩≤≤≤≥ 则目标函数35z x y =+的最大值为A . 6B .19C .21D .452.(2017新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩≤≥≥,则2z x y =+的最小值是A .B .C .D .3.(2017天津)设变量,x y 满足约束条件20,220,0,3,x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩≥≥≤≤则目标函数z x y =+的最大值为A .23B .1C .32D .3 4.(2017山东)已知x ,y 满足3035030x y x y x -+⎧⎪++⎨⎪+⎩≤≤≥,则2z x y =+的最大值是A .0B .2C .5D .65.(2017北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩≤≥≤ 则2x y +的最大值为A .1B .3C .5D .96.(2017浙江)若x ,y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩≥≥≤,则2z x y =+的取值范围是A .[0,6]B . [0,4]C .[6,)+∞D .[4,)+∞7.(2016年山东)若变量,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是 A .4 B .9 C .10 D .128.(2016浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩,中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB =A .B .4C .D .69.(2016天津)设变量,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为A .4-B .6C .10D .1710.(2015陕西)某企业生产甲、乙两种产品均需用,A B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为A .12万元B .16万元C .17万元D .18万元11.(2015天津)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为A .3B .4C .18D .4012.(2015福建)若变量,x y 满足约束条件20,0,220,x y x y x y +⎧⎪-⎨⎪-+⎩≥≤≥ 则2z x y =-的最小值等于A .52-B .2-C .32- D .2 13.(2015山东)已知,x y 满足约束条件020x y x y y -⎧⎪+⎨⎪⎩≥≤≥,若z ax y =+的最大值为4,则a =A .3B .2C .-2D .-314.(2014新课标Ⅰ)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3p :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p15.(2014安徽)y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不.唯一..,则实数a 的值为( ) A .121-或B .212或C .2或1D .12-或 16.(2014福建)已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为A .5B .29C .37D .49 17.(2014北京)若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为A .2B .-2C .12D .12- 18.(2013新课标Ⅱ)设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是A .7-B .6-C .5-D .3-19.(2013陕西)若点(,)x y 位于曲线y = ||与y = 2所围成的封闭区域,则2-y 的最小值为A .-6B .-2C .0D .220.(2013四川)若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是A .48B .30C .24D .1621.(2012广东)已知变量,x y 满足约束条件211y x y x y ⎧⎪+⎨⎪-⎩„…„,则3z x y =+的最大值为A .12B .11C .3D .-122.(2012广东)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为A .3B .1C .5-D .6-23.(2012山东)设变量y x ,满足约束条件222441x y x y x y +⎧⎪+⎨⎪--⎩…„…,则目标函数y x z -=3的取值范围是A .⎥⎦⎤⎢⎣⎡-6,23B .⎥⎦⎤⎢⎣⎡--1,23C .[]6,1-D .⎥⎦⎤⎢⎣⎡-23,6 24.(2012福建)若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为A .1-B .1C .32D .225.(2012天津)设变量,x y 满足约束条件22024010x y x y x +-⎧⎪-+⎨⎪-⎩……„,则目标函数32z x y =-的最小值为A .−5B .−4C .−2D .326.(2012辽宁)设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .5527.(2011广东)已知平面直角坐标系xOy 上的区域D由不等式02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A的坐标为,则z =OM u u u u r ·OA u u u r 的最大值为 A .3 B .4 C .D .28.(2011安徽)设变量y x y x y x 2,1||||,+≤+则满足的最大值和最小值分别为A .1,-1B .2,-2C .1,-2D .2,-129.(2011湖南)设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为A .(1,1 B .(1+∞) C .(1,3 ) D .(3,+∞)30.(2010新课标)已知ABCD Y 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(,y )在ABCD Y 的内部,则=2-5y 的取值范围是A .(-14,16)B .(-14,20)C .(-12,18)D .(-12,20)31.(2010山东)设变量,x y 满足约束条件20510080x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤,则目标函数34z x y =-的最大值和最小值分别为A .3,11-B .3,11--C .11,3-D .11,3二、填空题32.(2018北京)若x ,y 满足12x y x +≤≤,则2y x -的最小值是__________.33.(2018全国卷Ⅰ)若x ,y 满足约束条件220100--⎧⎪-+⎨⎪⎩≤≥≤x y x y y ,则32z x y =+的最大值为__.34.(2018全国卷Ⅱ)若,x y 满足约束条件25023050+-⎧⎪-+⎨⎪-⎩≥,≥,≤,x y x y x 则=+z x y 的最大值为___.35.(2018浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则3z x y =+的最小值是__,最大值是__.36.(2017新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩≤≥≤,则32z x y =-的最小值为 .37.(2017新课标Ⅲ)若x ,y 满足约束条件200x y y ⎪+-⎨⎪⎩≤≥,则34z x y =-的最小值为__.38.(2016年全国I)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 g ,乙材料1 g ,用5个工时;生产一件产品B 需要甲材料0.5 g ,乙材料0.3 g ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 g ,乙材料90 g ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.39.(2016全国III)若x ,y 满足约束条件1020220x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤,则z x y =+的最大值为 .40.(2016江苏)已知实数,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y +的取值范围是 .41.(2015新课标Ⅰ)若,x y 满足约束条件10040x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤,则y x 的最大值为 . 42.(2015新课标Ⅱ)若,x y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤,则z x y =+的最大值为__.43.(2014安徽)不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为________.44.(2014浙江)当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.45.(2014湖南)若变量,x y 满足约束条件4y x x y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为-6,则k = .46.(2013新课标Ⅰ)设,x y 满足约束条件10x y ⎨-≤-≤⎩,则2z x y =-的最大值为___.47.(2013浙江)设z kx y =+,其中实数,x y 满足2242240x x y x y ≥⎧⎪-+≥⎨⎪--<⎩,若的最大值为12,则实数k =________ .48.(2013湖南)若变量,y 满足约束条件28,04,03,x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩则+y 的最大值为________.49.(2012新课标)设x ,y 满足约束条件130x y x y x y --⎧⎪+⎪⎨⎪⎪⎩…„……,则y x z 2-=得取值范围为 .50.(2011湖南)设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .51.(2011陕西)如图,点(,)x y 在四边形ABCD 内部和边界上运动,那么2x y -的最小值为________.52.(2011新课标)若变量,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值 是_________. 53.(2010安徽)设x ,y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最大值为8,则a b +的最小值为 __ _.CO排放量b及每万54.(2010陕西)铁矿石A和B的含铁率a,冶炼每万吨铁矿石的的2吨铁矿石的价格c如下表:CO的排放量不超过2(万吨)则购买铁某冶炼厂至少要生产1.9(万吨)铁,若要求2矿石的最少费用为(万元).三、解答题55.(2010广东)某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?。

2019年全国高考数学·分类汇编 专题23 不等式选讲(解析版)

2019年全国高考数学·分类汇编 专题23 不等式选讲(解析版)

专题23不等式选讲【母题来源一】【2019年高考全国Ⅱ卷理数】已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【答案】(1)(,1)-∞;(2)[1,)+∞【母题来源二】【2018年高考全国Ⅱ卷理数】设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞U .【母题来源三】【2017年高考全国Ⅱ卷理数】已知330,0,2a b a b >>+=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.【答案】(1)证明略;(2)证明略.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b +≤+.(2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等.【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a −c|≤|a −b|+|b −c|,当且仅当(a −b )(b −c )≥0时,等号成立.③推论1:||a|−|b||≤|a+b|.④推论2:||a|−|b||≤|a −b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数.(二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题.(三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b +≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12n a a a n+++≥L a 1=a 2=…=a n 时,等号成立.1.【陕西省汉中市2019届高三全真模拟考试数学试题】已知函数()f x x a x b =++-.(1)当1a =,1b =时,求不等式()4f x ≤的解集;(2)若0a >,0b >,()f x 的最小值为2,求12a b +的最小值.【答案】(1){}22x x -≤≤;(2)32+2.【重庆西南大学附属中学校2019届高三第十次月考数学试题】设函数()333()442f x x x g x x a x =-+-=-++,. (1)解不等式()10f x >;(2)若对于任意1x ∈R ,都存在2x ∈R ,使得12()()f x g x =成立,试求实数a 的取值范围.【答案】(1){}41x x x ><-或;(2)[4,0]-.3.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学试题】已知函数()|3|f x x =-.(1)若()1f x ≤,求x 的取值范围;(2)在(1)的条件下,求()g x =.【答案】(1)[2,4];(2.4.【甘肃省、青海省、宁夏回族自治区2019届高三5月联考数学试题】已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集; (2)若x ∀∈R ,使得()()(2)f x a f x f a ++…恒成立,求a 的取值范围. 【答案】(1){}|22x x -<<;(2)22,3⎡⎤--⎢⎥⎣⎦.5.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】(1)已知,,a b c +∈R ,且1a b c ++=,证明1119a b c++≥;(2)已知,,a b c +∈R ,且1abc =111a b c ≤++. 【答案】(1)见解析(2)见解析6.【宁夏石嘴山市第三中学2019届高三四模考试数学试题】已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >.(1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c a a b c++≥. 【答案】(1)2m =;(2)见证明.7.【海南省海口市2019年高考调研测试卷数学试题】已知函数()221f x x x =++-.(1)求()f x 的最小值;(2)若不等式()0f x x a +-<的解集为(,)m n ,且6n m -=,求a 的值.【答案】(1)3(2)8a =8.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考数学试题】已知()2321f x x x =+--.(1)求不等式()2f x <的解集;(2)若存在x ∈R ,使得()32f x a >-成立,求实数a 的取值范围.【答案】(1)(),0-∞;(2)2,23⎛⎫-⎪⎝⎭.9.【新疆乌鲁木齐市2019届高三第二次诊断性测试数学试题】已知函数0,))0((f x x a x b a b =+-->>. (1)当1,2a b ==时,解关于x 的不等式()2f x >;(2)若函数()f x 的最大值是3,求12a b+的最小值.【答案】(1)32x x ⎧⎫>⎨⎬⎩⎭;(2)(133+.10.【重庆市南开中学2019届高三第三次教学质量检测考试数学试题】已知函数()2145f x x x =++-的最小值为M .(1)求M ;(2)若正实数a ,b ,c 满足a b c M ++=,求证:2222227a b a c b c c b a+++++≥. 【答案】(1)72;(2)详见解析.。

〖高考首发2019〗高考数学(理)分类专题:15-线性规划与基本不等式

〖高考首发2019〗高考数学(理)分类专题:15-线性规划与基本不等式

考纲解读明方向分析解读 1.了解不等式的有关概念及其分类,掌握不等式的性质及其应用,明确各个性质中结论成立的前提条件.2.能利用不等式的相关性质比较两个实数的大小.3.利用不等式的性质比较大小是高考的热点.分值约为5分,属中低档题.分析解读 1.多考查线性目标函数的最值问题,兼顾面积、距离、斜率等问题.2.能用线性规划的方法解决重要的实际问题,使收到的效益最大,耗费的人力、物力资源最少等.3.应重视数形结合的思想方法.4.本节在高考中主要考查与平面区域有关的范围、距离等问题以及线性规划问题,分值约为5分,属中低档题.分析解读 1.掌握利用基本不等式求最值的方法,熟悉利用拆添项或配凑因式构造基本不等式形式的技巧,同时注意“一正、二定、三相等”的原则.2.利用基本不等式求函数最值、求参数范围、证明不等式是高考热点.本节在高考中主要以选择题或填空题的形式进行考查,分值约为5分.分析解读不等式的性质与函数、导数、数列等内容相结合,解决与不等式有关的数学问题和实际问题是高考热点.2018年高考全景展示1.【2018年天津卷文】设变量x,y满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.2.【2018年文北京卷】设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.3.【2018年浙江卷】若满足约束条件则的最小值是___________,最大值是___________.【答案】 -28【解析】分析:先作可行域,再平移目标函数对应的直线,从而确定最值.详解:作可行域,如图中阴影部分所示,则直线过点A(2,2)时取最大值8,过点B(4,-2)时取最小值-2.点睛:线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得.4.【2018年天津卷文】已知,且,则的最小值为_____________.【答案】【解析】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.5.【2018年文北京卷】若,y满足,则2y−U最小值是_________.【答案】3【解析】分析:将原不等式转化为不等式组,画出可行域,分析目标函数的几何意义,可知当时取得最小值.详解:不等式可转化为,即,满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.点睛:此题考查线性规划,求线性目标函数的最值,当时,直线过可行域在轴上截距最大时,值最大,在轴上截距最小时,值最小;当时,直线过可行域在轴上截距最大时,值最小,在轴上截距最小时,值最大.6.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【2018年全国卷Ⅲ文】若变量满足约束条件则的最大值是________.【答案】3【解析】分析:作出可行域,平移直线可得详解:作出可行域由图可知目标函数在直线与的交点(2,3)处取得最大值3,故答案为3.点睛:本题考查线性规划的简单应用,属于基础题。

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划1.(2019福建宁德市期末)已知点,为不等式组所表示平面区域上的任意一点,则的最小值为()A. B. C. 1 D.【答案】B【解析】【分析】本道题结合不等式组,绘制可行域,则最小值即为点A到距离,即可。

【详解】结合不等式组,绘制可行域,则的最小值即为点A到距离,利用点到直线距离公式,故选B。

【点睛】本道题考查了线性规划问题,难度中等。

2.(2019河南开封期末)已知函数若,则的取值范围是A. B. C. D.【答案】B【解析】【分析】依题意,对a分a与a讨论,再解相应的不等式即可.【详解】∵,∴或即或即∴的取值范围是故选:B【点睛】本题考查分段函数的图象与性质的应用,突出考查分类讨论思想与方程思想的综合应用,属于中档题.3.(2019河南开封期末)若,满足约束条件则的取值范围为A. B. C. D.【答案】A【解析】【分析】问题转化为在约束条件下目标函数的取值范围,作出可行域由斜率公式数形结合可得.【详解】作出x,y满足约束条件的可行域如图:△ABC,表示区域内的点与点(﹣2,0)连线的斜率,联方程组可解得B(2,﹣2),同理可得A(2,4),当直线经过点B时,M取最小值:,当直线经过点A时,M取最大值1.则的取值范围:[,1].故选:A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.4.(2019河南郑州期末)已知变量,满足则的取值范围是__________.【答案】【解析】【分析】由约束条件作出可行域,再由z的几何意义求解得答案.【详解】由变量x,y满足作出可行域如图:A(2,3),解得B(,),z的几何意义为可行域内动点与定点D(3,﹣1)连线的斜率.∵k DA4,k DB13.∴z的取值范围是[﹣13,﹣4].故答案为:[﹣13,﹣4].【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.5.(2019湖北宜昌市期末)若,满足约束条件,则的最大值为__________.【答案】6【解析】【分析】作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.【详解】作出不等式组对应的平面区域如图:由z=﹣x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大,此时﹣x+y=6,即此时z=6,故答案为:6.【点睛】本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.6.(2019江西新余市期末)已知x,y满足不等式组则z=2x+y的最大值与最小值的比值为A. B. C. D. 2【答案】D【解析】解:因为x,y满足不等式组,作出可行域,然后判定当过点(2,2)取得最大,过点(1,1)取得最小,比值为2,选D7.(2019山东泰安市期末)若A为不等式组表示的平面区域,则当a 从﹣2连续变化到1时,则直线x+y=a扫过A中的那部分区域的面积为()A.1 B.C.D.【考点】简单线性规划.【分析】先由不等式组画出其表示的平面区域,再确定动直线x+y=a的变化范围,最后由三角形面积公式解之即可.【解答】解:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=﹣x+a)在y轴上的截距从﹣2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积S阴影=S△ADC﹣S△EOC=×3×﹣×1×1=故答案为:D.8.(2019山东泰安市期末)已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是 4 .【考点】基本不等式在最值问题中的应用;对数的运算性质.【分析】由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.【解答】解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.9.(2019山东泰安市期末)定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是.【考点】简单线性规划的应用;导数的运算;利用导数研究函数的单调性.【分析】先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用不等式的性质得到答案.【解答】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增,∵两正数a,b满足f(2a+b)<1,又由f(4)=1,即f(2a+b)<4,即2a+b<4,又由a>0.b>0;点(a,b)的区域为图中阴影部分,不包括边界,的几何意义是区域的点与A(﹣2,﹣2)连线的斜率,直线AB,AC的斜率分别是,3;则∈(,3);故答案为:().10.(2019山东泰安市期末)已知一家电子公司生产某种电子产品的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该电子产品x千件能全部销售完,每千件的销售收入为g(x)万元,且g(x)=(Ⅰ)写出月利润y(万元)关于月产量x(千件)的函数解析式;(Ⅱ)月产量为多少千件时,该公司在这一产品的生产中所获利润最大?并求出最大利润.【考点】函数模型的选择与应用.【分析】(Ⅰ)根据年利润=年销售收入﹣年总成本,可得年利润y(万元)关于年产量x(万件)的函数关系式;(Ⅱ)由(Ⅰ)的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.【解答】解:(Ⅰ)当0<x≤10时,y=x(13.5﹣x2)﹣20﹣5.4x=8.1x﹣x3﹣20,当x>10时,y=(﹣﹣)x﹣20﹣5.4x=148﹣2(+2.7x),∴y=,(Ⅱ)①当0<x≤10时,y′=8.1﹣x2,令y′=0可得x=9,x∈(0,9)时,y′>0;x∈(9,10]时,y′<0,=28.6万元;∴x=9时,ymax②当x>10时,y=148﹣2(+2.7x)≤148﹣120=22(万元)(当且仅当x=时取等号)…综合①②知:当x=9时,y取最大值…故当年产量为9万件时,服装厂在这一高科技电子产品的生产中获年利润最大…11.(2019山东潍坊市期末)若实数x,y满足,则z=x﹣2y的最大值是()A.2B.1C.﹣1D.﹣4【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出实数x,y满足对应的平面区域如图:由z=x﹣2y得y=x﹣z,平移直线y=x﹣z,由图象可知当直线y=x﹣z,经过点A时,直线y=x﹣z,的截距最小,此时z最大,由,解得A(﹣1,﹣1),z=1.故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.12.(2019山东潍坊市期末)由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(GB/T19522﹣2010)》于2011年7月1日正式实施.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阀值见表1.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图1,且图1表示的函数模型f(x)=,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln15≈2.71,ln30≈3.40)()表1 车辆驾驶人员血液酒精含量阀值A.5B.6C.7D.8【分析】由图知车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时x>2;令90•e﹣0.5x+14<20,解得x的取值范围,结合题意求得结果.【解答】解:由图知0≤x<2时,函数f(x)取得最大值,此时f(x)=40sin(x)+13,x≥2时,函数f(x)=90•e﹣0.5x+14;当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时x>2;由90•e﹣0.5x+14<20,得e﹣0.5x<,两边取自然对数,得lne﹣0.5x<ln,即﹣0.5x<﹣ln15,解得x>≈=5.42,所以喝啤酒后需6个小时后才可以合法驾车.注:如果根据图象可猜出6个小时.故选:B.【点评】本题考查了散点图的应用问题,也考查了分段函数与不等式的应用问题,是中档题.。

2019年高考全国各地数学理科真题分类汇编18个专题(解析版)

2019年高考全国各地数学理科真题分类汇编18个专题(解析版)

2019年高考全国各地数学理科真题分类汇编(解析版)专题一集合-------------------------------------------------------------- 2 专题二函数-------------------------------------------------------------- 3 专题三三角函数 ------------------------------------------------------ 16 专题四解三角形 ------------------------------------------------------ 26 专题五平面向量 ------------------------------------------------------ 29 专题六数列------------------------------------------------------------ 34 专题七不等式--------------------------------------------------------- 46 专题八复数------------------------------------------------------------ 48 专题九导数及其应用 ------------------------------------------------ 50 专题十算法初步 ------------------------------------------------------ 62 专题十一常用逻辑用语 --------------------------------------------- 65 专题十二概率统计 --------------------------------------------------- 67 专题十三空间向量、空间几何体、立体几何-------------------- 75 专题十四平面几何初步 -------------------------------------------- 95 专题十五圆锥曲线与方程 ----------------------------------------- 99 专题十六计数原理------------------------------------------------- 118 专题十七不等式选讲 ---------------------------------------------- 120 专题十八坐标系与参数方程--------------------------------------- 123专题一 集合(2019·全国Ⅰ理科)1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅱ理科)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅲ理科)已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【分析】先求出集合B 再求出交集.【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. (2019·天津理科)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =( )A. {}2B. {}2,3C. {}1,2,3-D. {}1,2,3,4【答案】D【分析】先求A B ⋂,再求()A C B 。

2019年高考数学考纲解读与热点难点突破专题06不等式与线性规划教学案文含解析

2019年高考数学考纲解读与热点难点突破专题06不等式与线性规划教学案文含解析

不等式与线性规划【2019年高考考纲解读】 高考对本内容的考查主要有:(1)一元二次不等式是C 级要求,线性规划是A 级要求.(2)基本不等式是C 级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用.试题类型可能是填空题,同时在解答题中经常与函数、实际应用题综合考查,构成中高档题. 【重点、难点剖析】 1.不等式的解法(1)求解一元二次不等式的基本思路:先化为一般形式ax 2+bx +c >0(a >0),再求相应一元二次方程ax 2+bx +c =0(a >0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.(2)解含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因.确定好分类标准、层次清楚地求解. 2.基本不等式(1)基本不等式a 2+b 2≥2ab 取等号的条件是当且仅当a =b . (2)几个重要的不等式:①ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).②a2+b22≥a +b 2≥ab ≥2aba +b(a >0,b >0). ③a +1a≥2(a >0,当a =1时等号成立).④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). (3)最值问题:设x ,y 都为正数,则有①若x +y =s (和为定值),则x =y 时,积xy 取得最大值s24; ②若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p. 3.不等式的恒成立、能成立、恰成立问题 (1)恒成立问题若不等式f (x )>A 在区间D 上恒成立,则等价于在区间D 上f (x )min >A ; 若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上f (x )max <B ; (2)能成立问题若在区间D 上存在实数x 使不等式f (x )>A 成立,则等价于在区间D 上f (x )max >A ; 若在区间D 上存在实数x 使不等式f (x )<B 成立,则等价于在区间D 上f (x )min <B ; (3)恰成立问题若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.4.使用基本不等式以及与之相关的不等式求一元函数或者二元函数最值时,基本的技巧是创造使用这些不等式的条件,如各变数都是正数,某些变数之积或者之和为常数等,解题中要根据这个原则对求解目标进行适当的变换,使之达到能够使用这些不等式求解最值的目的.在使用基本不等式求函数的最值、特别是求二元函数最值时一定要注意等号成立的条件,尽量避免二次使用基本不等式.5.平面区域的确定方法是“直线定界、特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集.线性目标函数z=ax+by中的z不是直线ax+by=z在y轴上的截距,把目标函数化为y=-abx+zb,可知zb是直线ax+by=z在y轴上的截距,要根据b的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.【题型示例】题型一、不等式的解法及应用【例1】【变式探究】【2017江苏,10】某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元,要使一年的总运费与总存储之和最小,则的值是▲ .【答案】30【解析】总费用,当且仅当,即时等号成立.【变式探究】【2016高考新课标1卷】若,则( )(A)(B)(C)(D)【答案】C【感悟提升】(1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论.【举一反三】(2015·江苏,7)不等式2x2-x<4的解集为________.解析∵2x2-x<4=22,∴x2-x<2,即x2-x-2<0,解得-1<x<2.答案 {x |-1<x <2}【变式探究】已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( ) A.1x2+1>1y2+1B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3【方法技巧】解不等式的四种策略(1)解一元二次不等式的策略:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)解简单的分式不等式的策略:将不等式一边化为0,再将不等式等价转化为整式不等式(组)求解. (3)解含指数、对数不等式的策略:利用指数、对数函数的单调性将其转化为整式不等式求解. (4)解含参数不等式的策略:根据题意确定参数分类的标准,依次讨论求解.【变式探究】 (1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎭⎫0,12成立,则a 的取值范围是________.(2)已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x<-1,或x>12,则f (10x )>0的解集为______. 【答案】(1)[-52,+∞) (2){x |x <-lg 2}【解析】(1)设f (x )=x 2+ax +1,其对称轴为x =-a 2.若-a 2≥12,即a ≤-1时,则f (x )在⎣⎡⎦⎤0,12上是减函数,若满足题意应有f ⎝⎛⎭⎫12≥0,即-52≤a ≤-1.若-a2≤0,即a ≥0时,则f (x )在⎣⎡⎦⎤0,12上是增函数,又f (0)=1>0成立,故a ≥0.若0<-a 2<12,即-1<a <0,则应有f ⎝⎛⎭⎫-a 2=a24-a22+1=1-a24≥0成立,故-1<a <0.综上,有a ≥-52.另解 也可转化为:a ≥-⎝⎛⎭⎫x +1x ,x ∈(0,12)恒成立,利用单调性求解.(2)依题意知f (x )>0的解为-1<x <12,故0<10x <12,解得x <lg 12=-lg 2.【规律方法】解一元二次不等式一般要先判断二次项系数的正负也即考虑对应的二次函数图象的开口方向,再考虑方程根的个数也即求出其判别式的符号,有时还需要考虑其对称轴的位置,根据条件列出方程组或结合对应的函数图象求解.题型二、简单的线性规划问题【例2】(2018年全国I卷)设变量满足约束条件A. 6B. 19C. 21D. 45【答案】C【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,A,本题选择C选项。

2019年全国1卷省份高考模拟理科数学分类---不等式与线性规划

2019年全国1卷省份高考模拟理科数学分类---不等式与线性规划

2019年全国1卷省份高考模拟理科数学分类----不等式与线性规划1.(2019安徽理科模拟)若x,y满足约束条件,则z=2x+y的最小值为.解:作出x,y满足约束条件,所表示的平面区域,B(2,2)作出直线2x+y=0,对该直线进行平移,可以发现经过点A(1,3)时,z取得最小值,Z取得最小值:5;故答案为:5.2.(2019河南百校联盟理科模拟)已知实数x,y满足不等式组201030yx yx y-≤⎧⎪--≤⎨⎪+-≥⎩,则yx取值范围为.解:如图,实数x,y满足不等式组,表示的平面区域△ABC(包括边界),所以表示(x,y)与(0,0)连线的斜率,因为A(1,2),B(2,1),所以,故.故答案为:.1[,2]2yx3.(2019福建理科模拟)若实数,满足约束条件,设的最大值与最小值分别为,,则__________.【答案】【解析】画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【点睛】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.4.(2019福建理科模拟)已知函数的图象如图所示.(1)求的值;(2)设,的最大值为,若正数,满足,证明:.【答案】(1);(2)见解析【解析】(1)由图知和,得;(2)写出的分段形式,求得函数的最大值,由展开利用基本不等式即可得证.【详解】(1)解:由,得,即.由,得,所以.(2)证明:由(1)知,所以,显然的最大值为6,即.因为,所以.因为(当且仅当,时取等号),所以.【点睛】本题主要考查了绝对值函数性质的研究,基本不等式的应用,属于中档题.5.(2019安徽淮南理科模拟)若x,y满足约束条件则的最小值为______.【答案】5【解析】解:作出不等式组对应的平面区域,z的几何意义为区域内的点到定点的距离的平方,则由图象可知,DA距离最小,此时的最小值为5,故答案为:5.作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.本题主要考查线性规划的应用,利用数形结合以及直线和圆的位置公式是解决本题的关键.6.(2019福建漳州理科模拟)设x,y满足约束条件则的最大值是A. B. 0 C. 8 D. 12【答案】C【解析】解:先根据x,y满足约束条件画出可行域,然后平移直线,当直线过点,解得时,z最大值为8.故选:C.先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线过点时,z最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.7.(2019广州理科模拟)已知实数x, y满足20,350,0,0,x yx yxy-≤⎧⎪-+≥⎪⎨>⎪>⎪⎩则1142x yz⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的最小值为____________.答案:1 16考点:线性规划,指数运算。

2019年高考数学试题分项版—不等式(解析版)

2019年高考数学试题分项版—不等式(解析版)

2019年高考数学试题分项版——不等式(解析版)一、选择题1.(2019·全国Ⅲ文,11)记不等式组+ , -表示的平面区域为D .命题p :∃(x ,y )∈D,2x+y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②(p ⌝)∨q ;③p ∧(q ⌝);④(p ⌝)∧(q ⌝). 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④ 答案 A解析 方法一 画出可行域如图中阴影部分(含边界)所示.目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 在y 轴上的截距.显然,当直线过点A (2,4)时,z min =2×2+4=8, 即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.方法二 取x =4,y =5,满足不等式组 + , - ,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.2.(2019·天津文,2)设变量x ,y 满足约束条件+ - , - + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.3.(2019·天津文,3)设x∈R,则“0<x<5”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由|x-1|<1可得0<x<2,所以“|x-1|<1的解集”是“0<x<5的解集”的真子集.故“0<x<5”是“|x-1|<1”的必要不充分条件.4.(2019·浙江,3)若实数x,y满足约束条件-+,--,+,则z=3x+2y的最大值是()A.-1 B.1 C.10 D.12答案 C解析作出可行域如图中阴影部分(含边界)所示,数形结合可知,当直线z=3x+2y过点A(2,2)时,z取得最大值,z max=6+4=10.5.(2019·浙江,5)设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为a>0,b>0,所以a+b≥2,由a+b≤4可得2≤4,解得ab≤4,所以充分性成立;当ab ≤4时,取a =8,b =,满足ab ≤4,但a +b ≥4,所以必要性不成立,所以“a+b ≤4”是“ab ≤4”的充分不必要条件. 6.(2019·全国Ⅱ理,6)若a >b ,则( ) A .ln(a -b )>0 B .3a <3b C .a 3-b 3>0 D .|a |>|b |答案 C解析 由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.7.(2019·北京理,5)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .7【思路分析】由约束条件作出可行域,令3z x y =+,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【解析】:由||11x y y -⎧⎨-⎩……作出可行域如图,联立110y x y =-⎧⎨+-=⎩,解得(2,1)A -,令3z x y =+,化为3y x z =-+,由图可知,当直线3y x z =-+过点A 时,z 有最大值为3215⨯-=. 故选:C .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 8.(2019·天津理,2)设变量x ,y 满足约束条件+ - ,- + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6答案 C解析画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.9.(2019·天津理,3)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由x2-5x<0可得0<x<5.由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要不充分条件.二、填空题1.(2019·全国Ⅱ文,13)若变量x,y满足约束条件+-,-,则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由+-=,+-=,解得=,=,即C点坐标为(3,0),故z max=3×3-0=9.2.(2019·北京文,10)若x,y满足,-,-+,则y-x的最小值为________,最大值为________.答案-3 1解析x,y满足的平面区域如图(阴影部分)所示.设z=y-x,则y=x+z.把z看作常数,则目标函数是可平行移动的直线,z的几何意义是直线y=x+z在y轴上的截距,通过图象可知,当直线y=x+z经过点A(2,3)时,z取得最大值,此时z max=3-2=1. 当经过点B(2,-1)时,z取得最小值,此时z min=-1-2=-3.3.(2019·天津文,10)设x∈R,使不等式3x2+x-2<0成立的x的取值范围为________.答案解析3x2+x-2<0变形为(x+1)(3x-2)<0,解得-1<x<,故使不等式成立的x的取值范围为.4.(2019·天津文,13)设x>0,y>0,x+2y=4,则的最小值为________.答案解析===2+.∵x>0,y>0且x+2y=4,∴4≥2(当且仅当x=2,y=1时取等号),∴2xy≤4,∴≥,∴2+≥2+=.5.(2019·天津理,13)设x>0,y>0,x+2y=5,则的最小值为________.答案4解析===2+.由x+2y=5得5≥2,即≤,即xy≤,当且仅当x=2y=时等号成立.所以2+≥2=4,当且仅当2=,即xy=3时取等号,结合xy≤可知,xy可以取到3,故的最小值为4.三、解答题1.(2019·全国Ⅰ文,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国Ⅱ文,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).3.(2019·全国Ⅲ文,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.4.(2019·江苏,21)C.[选修4-5:不等式选讲]设x∈R,解不等式|x|+|2x-1|>2.解当x<0时,原不等式可化为-x+1-2x>2,解得x<-;当0≤x≤时,原不等式可化为x+1-2x>2,即x<-1,无解;当x>时,原不等式可化为x+2x-1>2,解得x>1.综上,原不等式的解集为或.5.(2019·全国Ⅰ理,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.6.(2019·全国Ⅱ理,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).7.(2019·全国Ⅲ理,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.。

2019届高考数学二轮复习不等式与线性规划课件(39张)(全国通用)

2019届高考数学二轮复习不等式与线性规划课件(39张)(全国通用)
yx的几何意义为点(x,y)与坐标原 点连线的斜率.
画出可行域,如图中阴影部分所 示.
由xx=+1y,-4=0,得 C(1,3), 由题易知可行域上的 C 点与坐标原点连线的斜率最大, 且最大值为 3.
【命题立意】本题考查简单的线性规划,考查学生的 转化与化归能力、运算求解能力,考查的数学核心素养是 逻辑推理、数学运算.
B.1,52

C.lg

2,12
D.-lg
2,1-2lg
2
【解析】选 A. 如图,作出不等式组
y≤3x-2, x-2y+1≤0, 确 定 的 2x+y≤8 可行域:
因为 lg(y+1)-lg x= lgy+x 1,设 t=y+x 1,
显然,t 的几何意义是可行域内的点 P(x,y)与定点 E(0,
于 x 的不等式 f(x)≥x2+a在 R 上恒成立,则 a 的取值范围 是( )
A.-4176,2
B.-4176,3196
C.[-2 3,2]
D.-2

3,3196
【解析】 选 A.
由已知可得 f(x)>0.不等式 f(x)≥a+x2可转化为-
【命题立意】 本题考查简单的线性规划,考查学生的 转化与化归能力、运算求解能力,考查的数学核心素养是 逻辑推理、数学运算.
考 题 2[2015·全 国 卷 Ⅰ] 设 x 、 y 满 足 约 束 条 件 xxx+- -y1y-≥ ≤400≤, ,0,则yx的最大值为__________. 【解析】3
率,l1 为斜率 k1=kAB=-12. l2 与 x-y=0 平行,∴w∈ -12,1.
x+y-2≤0, (3)设 x,y 满足约束条件x-2y-2≤0,若 z=y-ax

2019年全国2卷省份高考模拟理科数学分类--不等式与线性规划

2019年全国2卷省份高考模拟理科数学分类--不等式与线性规划

2019年全国2卷省份高考模拟理科数学分类----不等式与线性规划1.(2019青海西宁四中理科模拟)已知实数x,y满足,则的最小值为A. 0B. aC.D.【答案】D【解析】解:由约束条件作出可行域如图,化目标函数为,由图可知,当直线过时,直线在y轴上的截距最小,z有最小值为.故选:D.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.2.(2019大连重点校协作体理科模拟)若实数x,y满足约束条件,则z=2x﹣3y的最小值为。

【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣3y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最值即可.【解答】解:实数x,y满足约束条件的可行域如图:目标函数z=2x﹣3y,点A(0,2),z在点A处有最小值:z=2×0﹣3×2=﹣6,故答案为:﹣6.【点评】本题主要考查了简单的线性规划,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解,是常用的一种方法.3.(2019吉林省四平一中理科模拟)已知,设满足约束条件的最大值与最小值的比值为,则()A. 为定值B. 不是定值,且C. 为定值D. 不是定值,且【答案】C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为3求得实数m的值..【详解】画出m>0,x,y满足约束条件的可行域如图:当直线z=x+y经过点A(2,m+4),z取得最大值,当直线经过B(﹣1,﹣2)时,z取得最小值,故k2为定值.故选:C.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. 4.(2019兰州市理科模拟)若满足约束条件,则的最小值为_______.【答案】【分析】由不等式组画出对应的平面区域,平移直线纵截距最大值,z 最小。

专题02 平面向量、不等式与线性规划、二项式定理-2019年高考数学(理)新课标全国卷Ⅰ考点讲评

专题02 平面向量、不等式与线性规划、二项式定理-2019年高考数学(理)新课标全国卷Ⅰ考点讲评
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
(二)不等式与线性规划
1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
类型4平面向量的平行与垂直
例4.(2013全国1理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=__________.
解析:∵c=ta+(1-t)b,∴b·c=ta·b+(1-t)|b|2,
又∵|a|=|b|=1,且a与b夹角为60°,b⊥c,
∴0=t|a||b|cos 60°+(1-t),0= +1-t,
(三)二项式定理
1.二项式定理
(1)能用计数原理证明二项式定理.
(2)会用二项式定理解决与二项展开式有关的简单问题.
二、考点讲评与真题分析
题型一平面向量
平面向量是高考必考内容,一般来说平面向量突出考查向量的几何运算或代数运算,结合图形和向量加法的三角形法则、平行四边形法,难度适中,侧重于考查向量的基本运算,很少与其它知识交汇,常考的题型有平面向量的线性表示、平行、垂直、数量积、平面向量的模.
(2)也可以利用定比分点,若 则 .
类型2平面向量基本定理及坐标运算
例2(2016·新课标Ⅰ,13)设向量a ,b ,且 a b a b ,则 .
【解析】由已知得: ,
∴ ,
解得 .
类型3平面向量的数量积、模长
例3(2017全国1理13)已知向量 , 的夹角为 , , ,则 .

2019年高考数学二轮复习专题06:不等式与线性规划

2019年高考数学二轮复习专题06:不等式与线性规划

2019年高考数学二轮复习专题06:不等式与线性规划一、单选题(共12题;共24分)1.(2分)已知实数 x,y 满足条件 {y ≤x −1x ≤3x +5y ≥4 ,令 z =lnx −lny ,则 z 的最小值为( )A .B .C .D .2.(2分)设x ,y 满足约束条件 {x +y ≥1x −y ≥−12x −y ≤2 ,若目标函数 z =ax +3y 仅在点(1,0)处取得最小值,则a 的取值范围( ) A .(-6,-3)B .(-6,3)C .(0,3)D .(-6,0]3.(2分)已知 {x −y ≥03x −y −6≤0x +y −2≥0 ,则z =22x +y 的最小值是( )A .1B .16C .8D .44.(2分)满足线性约束条件 {2x +y ≤3,x +2y ≤3,x ≥0,y ≥0 的目标函数 z =x +y 的最大值是 ( ) A .1B .C .2D .35.(2分)记 min{a,b,c} 为 a,b,c 中的最小值,若 x,y 为任意正实数,则 M =min{2x,1y ,y +1x} 的最大值是( ) A .B .2C .D .6.(2分)下列函数中,最小值为4的是( )A .B .C .D .7.(2分)已知实系数一元二次方程 x 2+(1+a)x +a +b +1=0 的两个实根为 x 1 , x 2 ,且0<x 1<1<x 2 ,则 b a 的取值范围是( )A .B .C .D .8.(2分)设 a >0 , b >0. 若3是 3a 与 3b 的等比中项,则1a +1b的最小值为 ( ) A .4 B .2 C .1 D .9.(2分)若关于x 的不等式 x 2−4x −2−a ≥0 在区间 [1,4] 内有解,则实数a 的取值范围是 ()A .B .C .D .10.(2分)设 x,y 满足约束条件 {x +y −3≥0x −y +1≥0x ≤3 ,则 z =2x +y 的最小值与最大值的和为( ) A .7B .8C .13D .1411.(2分)若正实数 a,b 满足1a +2b =√ab,则 ab 的最小值为( )A .B .C .D .12.(2分)已知m ,n ∈ R ,且m ﹣2n+6=0,则 2m+14n 的最小值为( )A .B .4C .D .3二、填空题(共7题;共13分)13.(1分)设变量 x,y 满足约束条件 {y ≥xx +2y −2≤0x +2≥0 ,则 z =|x −3y| 的最大值是 .14.(1分)已知 {2x −y +2≥0x +y −2≤0y −1≥0,则函数 z =3x −y 的取值范围是 .15.(1分)设任意实数 a >b >c >0 ,要使 log a b2018+4log b c2018≥m ⋅log c a2018 恒成立,则 m 的最小值为 .16.(2分)已知 x >0,y >0 ,且 x +2y =4 ,则 xy 的最大值是 , 1x +2y 的最小值是 .17.(1分)已知变量 x,y 满足约束条件 {x +y ≤6,x −3y ≤−2,x ≥1,,若目标函数 z =ax +by(a >0,b >0)的最小值为2,则 1a +3b的最小值为 .18.(2分)已知 x,y ∈R ,且 4x 2+y 2+xy =1 ,则 4x 2+y 2 的最小值 ,此时 x 的值为 .19.(5分)已知实数x,y满足约束条件{x−y≤0 x+y≥0x+2y−2≤0,则z=2x−y的取值范围是;三、解答题(共3题;共25分)20.(10分)已知函数f(x)=|x−5|+|x+4|(1)(5分)求不等式f(x)≥12的解集;(2)(5分)若f(x)−21−3a−1≥0对∀x∈R恒成立,求实数a的取值范围. 21.(10分)已知关于x的不等式x2+2x+1−a2≤0.(1)(5分)若a=2时,求不等式的解集;(2)(5分)当a为常数时,求不等式的解集.22.(5分)已知关于x的不等式ax2−3x+2>0的解集为{x|x<1或x>b}.(Ⅰ )求a,b的值;(Ⅱ )当x>0,y>0且满足ax+by=1时,有2x+y≥k2+k+2恒成立,求k的取值范围.答案解析部分1.【答案】A【解析】【解答】作可行域如图,A(3,2),则yx≤k OA=23∴z=lnx−lny=lnxy≥ln32,故答案为:A.【分析】本题利用二元一次不等式组画出可行域,再利用线性规划问题的解决方法求出目标函数的最小值。

2019年高考数学真题分类汇编专题06:不等式与线性规划(基础题)

2019年高考数学真题分类汇编专题06:不等式与线性规划(基础题)

2019年高考数学真题分类汇编 专题06:不等式与线性规划(基础题)1.(2019•浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤--≥+-0043043y x y x y x ,则yx z 23+=的最大值是( )A.-1B.1C.10D.12 【答案】 C【考点】简单线性规划的应用【解析】【解答】作出可行域和目标函数相应的直线,平移该直线,可知当过(2,2)时,目标函数取最大值10. 故答案为:C.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值.2.(2019•天津)设变量x,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧-≥-≥≥+-≤-+110202y x y x y x 则目标函数y x z +-=4的最大值为( )A.2B.3C.5D.6 【答案】 C【考点】简单线性规划的应用【解析】【解答】作出不等式对应的平面区域,由y x z +-=4得z x y +=4,平移直线z x y +=4 ,可知当直线z x y +=4 经过直线与的交点时,直线z x y +=4 的截距最大,此时z最大 由解得此时直线与的交点为此时z 的最大值为故答案为:C【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可得出z 的最大值。

3.(2019•北京)若x ,y 满足|x|≤1-y ,且y≥-1.则3x+y 的最大值为( )A.-7B.1C.5D.7 【答案】 C【考点】简单线性规划【解析】【解答】根据题意,x 、y 满足⎪⎩⎪⎨⎧-≥-≤-≥111y y x y x ,作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最大值5. 故答案为:C.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值.4.(2019•卷Ⅱ)若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≤-+≥-+02030632y y x y x ,则,y x z -=3的最大值是________。

第11题 不等式性质、不等式解法、 线性规划与基本不等式--2019年高考数学23题试题分析与考题集训含答案

第11题 不等式性质、不等式解法、 线性规划与基本不等式--2019年高考数学23题试题分析与考题集训含答案

第11题 不等式性质、不等式解法、 线性规划与基本不等式【考法】本主题考题类型为选择题、填空题,以函数、不等式、三角函数等为载体,考查不等式的性质、简单不等式解法、简单线性规划解法和基本不等式(重要不等式)应用等,考查运算求解能力、数形结合思想,难度为基础题或中档题,分值为5至10分.【考前回扣】1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0,Δ=0,Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.基本不等式(1)a +b 2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,满足基本不等式中“正”、“定”、“等”的条件. 5.线性规划(1)可行域的确定,“线定界,点定域”.(2)线性目标函数的最大值、最小值一般在可行域的顶点处取得.(3)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.【考前回扣】1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax2+bx+c>0时,易忽视系数a的讨论导致漏解或错解,要注意分a>0,a<0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f(x)g(x)≤0直接转化为f(x)·g(x)≤0,而忽视g(x)≠0. 4.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f(x)=x2+2+1x2+2的最值,就不能利用基本不等式求最值;求解函数y=x+3x(x<0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y-2x+2是指已知区域内的点(x,y)与点(-2,2)连线的斜率,而(x-1)2+(y-1)2是指已知区域内的点(x,y)到点(1,1)的距离的平方等.【考向】考向一不等关系与不等式的性质应用【解决法宝】1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,有时需要应用相关函数的性质,也可以用作差比较法或作商比较法.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.例1【2019届河北衡水十三中质检(四)】设,,则下列不等式中不一定成立的是()A.B.C.D.【分析】举反例否定D,而A,B,C可结合函数与不等式性质给予证明.【解析】因为在上是增函数,所以,因为-c在上是减函数,所以,因为,所以,当时,,所以D不成立,选D.考向二不等式的解法【解决法宝】(1)对于一元二次不等式,首先要看二次项系数a是否为正,若为负,则将其变为正数,再求相应一元二次方程的根,再利用大于0的不等式在两边,小于零的不等式在中间,写出一元二次不等式的解集.(2)对简单的分式、指数、对数不等式的基本思想是分别利用实数运算性质、指数函数的单调性、对数函数的单调性等价转化为整式不等式(一般为一元二次不等式)求解.(3)对含参数不等式,常用分类讨论的方法,关键是找到对参数进行讨论的原因,确定好分类标准,有理有据、层次清楚地求解.(4)解不等式与集合结合命题时,先解不等式确定集合,再按集合的关系与运算求解. (5)分段函数与不等式结合命题,应注意分段求解.(6)对函数不等式问题,先判断函数图像与性质,再借助函数图象与单调性,将函数不等式化为简单不等式求解,注意函数定义域.例2【河北省唐山市2018届上学期期末】已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足的x 的取值范围是( )A.B.C.D.【分析】由实数乘积符号法则知不等式等价于或,再由函数()f x 的性质,即可画出函数()f x 的图象,结合函数图象即可列出关于x 的不等式,即可解出x 的范围.考向三 不等式恒成立问题【解决法宝】不等式恒成立问题一般用分离参数法转化为函数最值求解或用赋值法讨论求解.注意区分几类问题的解法:①对任意x ∈A ,f(x)>M(或f(x)<M)恒成立;②存在x ∈A ,使f(x)>M(或f(x)<M)成立. 例3【2019届浙江省宁波市期末】已知不等式对任意正整数均成立,则实数的取值范围___【分析】首先利用转换思想把分式不等式转换为整式不等式,进一步利用赋值法和集合法求出实数的范围. 【解析】由,得:,记.,则或;或,或;或,当时,或,所求范围为.考向四 简单线性规划的应用【解决法宝】解简单线性规划的应用基本思路是:画、移、解、代.技巧是:往往在“角点”处取得最值,直接代入点的坐标即可;若目标为非线性,关键点是理解目标函数的几何意义,常见代数式的几何意义:(1)表示点),(y x 与点),(b a 之间的距离;(2)表示),(y x 到直线距离的22B A +倍;(3)ax by --表示点),(y x 与点),(b a 连线的斜率. 例4【2019届贵州省遵义市绥阳中学模拟(一)】若实数,满足不等式组则的最大值为( ) A .B .C .D .【分析】由约束条件作出可行域,再令,因此要取最大值只需取最小值,结合图像即可得出结果.【解析】由约束条件作出可行域如下,令,所以要取最大值只需取最小值,又可化为,所以表示直线在轴截距的相反数,由图像可得,直线过点时,截距最大,即最小,易得,所以,因此的最大值为4,故选D考向五简单线性规划”逆向”问题,确定参数的取值(范围)【解决法宝】1.当参数在线性规划问题的约束条件中时,作可行域要意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.2.在线性规划问题可行域下的恒成立问题,一定要结合“可行域”将“恒成立”加以控制,使之转化为平面区域间关系的恒成立,再进行解答.3.在约束条件中的二元不等式若含有参数且给定了该参数的取值范围的问题,就意味着直线是“动直线”,则应将该动直线运动的“最大”“最小”位置固定下来,根据运动的趋势确定好不同情况下的可行域,再针对解答目标逐步分析方能获解.学-科网4.目标函数中含有参数时,要根据问题的实际意义注意转化成“直线的斜率”、“点到直线的距离”等模型进行讨论研究.例5.【2019届山东省菏泽市一模】已知实数满足约束条件,若目标函数的最大值为2,则的值为()A.-1 B.C.1 D.2【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【解析】由约束条件作出可行域如图所示,其中,,,目标函数可化为,当直线过点时最大,所以,解得,故选C考向六基本不等式应用【解决法宝】利用基本不等式求最值时应注意:(1)在应用基本不等式求最值时,要把握三个方法,即“一正——各项(因式)都为正数;二定——和或积为定值;三相等——等号能取等号”,这三个方法缺一不可. (2)若无明显“定值”,则用配凑的方法,使和为定值或积为定值.当多次使用不等式时,一定要注意每次是否保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转换是否有误的一种方法. (3)必须掌握的三个不等式:(1)a ,b R ∈,则(当且仅当a b =时取等号).(2)a ,b R ∈,则(当且仅当a b =时取等号).(3)a ,b R +∈,则(当且仅当a b =时取等号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年全国高考理科数学分类汇编——不等式与线性规划1.(2019北京理科)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为A. −7B. 1C. 5D. 7【答案】C【解析】【分析】首先画出可行域,然后结合目标函数的几何意义确定其最值即可. 【详解】由题意1,11y y x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.【点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.2.(2019北京理科)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A. ①B. ②C. ①②D. ①②③ 【答案】C【解析】【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.【详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确. 由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.3.(2019北京理科)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 (1). 130 (2). 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即.min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养. 4.(2019全国2卷理科)若a >b ,则A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │ 【答案】C【解析】【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.5.(2019江苏卷)设x ∈R ,解不等式||+|2 1|>2x x -. 【答案】1{|1}3x x x <->或.【解析】【分析】由题意结合不等式的性质零点分段即可求得不等式的解集.【详解】当x <0时,原不等式可化为122x x -+->,解得x <–13:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力. 6.(2019天津卷理科)设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为A. 2B. 3C. 5D. 6【答案】D【解析】【分析】画出可行域,用截距模型求最值。

【详解】已知不等式组表示的平面区域如图中的阴影部分。

目标函数的几何意义是直线4y x z =+在y 轴上的截距,故目标函数在点A 处取得最大值。

由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -, 所以max 4(1)15z =-⨯-+=。

故选C 。

【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.7.(2019天津卷理科)设x R ∈,则“250x x -<”是“|1|1x -<”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】分别求出两不等式的解集,根据两解集的包含关系确定.【详解】化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件,故选B 。

【点睛】本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件。

8(2019天津卷理科).设0,0,25x y x y >>+=,______.【答案】【解析】分析】把分子展开化为26xy +,再利用基本不等式求最值。

【详解】xy = 0,0,25,0,x y x y xy >>+=>∴≥=当且仅当3xy=,即3,1x y==时成立,故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立。

9.(2019浙江卷)若实数,x y满足约束条件340340x yx yx y-+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y=+的最大值是()A. 1- B. 1C. 10D. 12【答案】C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y经过平面区域的点(2,2)时,=3+2z x y取最大值max322210z=⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.10.(2019浙江卷)若0,0a b>>,则“4a b+≤”是“4ab≤”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.11.(2019上海春季高考)不等式15x +<的解集为______答案:()6,4- 12.(2019上海春季高考)已知a b R ∈、,则“22a b >”是“a b >”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分又非必要条件答案:C。

相关文档
最新文档