最新重庆市中考数学18题专题训练

合集下载

重庆市中考数学18题专题训练

重庆市中考数学18题专题训练

X重庆市中考数学18题专题训练一、反比例函数与三角形1、如图,11POA∆、212P A A∆都是等腰直角三角形,点1P、2P在函数4yx=(0x>)的图像上,斜边1OA、12A A、都在x轴上,则点2A的坐标__________2、如图所示,()()111222P x y P x y,,,,……,()n n nP x y,在函数()9y xx=>的图象上,11OP A∆,212P A A∆,323P A A∆,…,1n n nP A A-∆,…都是等腰直角三角形,斜边1121n nOA A A A A-,,…,都在x轴上,则12ny y y+++=…__________3、如图,直线y=x+4与x轴、y轴交于A、B两点,与y=kx相交于C、D两点,过C点作CE⊥y轴,垂足为E点,S△BDE =32,则k=__________4、如图,直线y=x+3与x轴、y轴分别交于A、B两点,与y=kx(x<0)的图像交于C、D两点,E是点C关于点A的中心对称点,EF⊥OA于F,若△AOD的面积与△AEF的面积之和为72时,则k=__________5、如图,反比例函数y=kx(k<0)与直线y=x+4交于C、D两点,S△OCD=2S△AOC,则k=D B A yx O CBAO Y XC B A CDO YX6、如图,直线y=-x+b 与x 轴相交于点A ,与y 轴相交于点B ,与双曲线y= 2x 相交于C 、D 两点,当S △BOC + S△AOD= S △COD 时,b=7、如图,直线y=-2x-2分别与两坐标轴交于A 、B 两点,C 为双曲线y= kx (x>0)上的一点,AC 交y 轴于点D ,且D为AC 的中点,若△ABC 的面积为52 ,则k=8、如图,直线y=–43 x 与双曲线y= k x 交于A 、B 两点,C (5,0)为x 轴正半轴上一点,若∠ACB=90°,则k= 9、将直线y x =向左平移1个单位长度后得到直线a ,如图,直线a 与反比例函数()10y x x=>的图象相交于A ,与x 轴相交于B ,则22OA OB -=yxAB Oa10、如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2)。

精品 九年级数学 中考集训题 18

精品 九年级数学 中考集训题 18

7 4
B.1
7 或1 4
D.
7 9 或1 或 4 4
4.如图,⊙ p 内含于⊙ O ,⊙ O 的弦 AB 切⊙ p 于点 C,OP∥AB.若阴影部分的面积为 16 ,则弦 AB 的 长为( A.6 ) B.8 C.12 D.18
5.如图,在平面直角坐标系中,⊙M 与 y 轴相切于原点 O,平行于 x 轴的直线交⊙M 于 P,Q 两点,点 P 在点 Q 的右方,若点 P 的坐标是(-1,2) ,则点 Q 的坐标是( A. (-4,2) B. (-4.5,2) C. (-5,2)
25.如图,已知二次函数 y=x +bx+c 的图象与 x 轴交于 A,B 两点,与 y 轴交于点 P,顶点为 C(1,﹣2) . (1)求此函数的关系式; (2)作点 C 关于 x 轴的对称点 D,顺次连接 A,C,B,D.若在抛物线上存在点 E,使直线 PE 将四边形 ABCD 分成面积相等的两个四边形,求点 E 的坐标; (3)在(2)的条件下,抛物线上是否存在一点 F,使得△PEF 是以 P 为直角顶点的直角三角形?若存 在,求出点 F 的坐标及△PEF 的面积;若不存在,请说明理由.
22.如图,点 P 是正方形 ABCD 边 AB 上一点(不与点 A,B 重合),连接 PD 并将线段 PD 绕点 P 顺时针方向 旋转 90°得到线段 PE,PE 交边 BC 于点 F,连接 BE,DF. (1)求∠CBE 的度数; (2)当正方形 ABCD 边长等于 3,且 AD FD PD 时,求线段 BE 的长度。
1
) D. (-5.5,2)
6.在平面直角坐标系中,对于平面内任一点(m,n) ,规定以下两种变换: ① f ( m, n) ( m, n) ,如 f (2,1) (2, 1) ;② g ( m, n) ( m, n) ,如 g (2,1) ( 2, 1) . 按照以上变换有: f g 3, 4 f 3, 4 3, 4 ,那么 g f 3, 2 等于( A.(3,2) B.(3,-2)

重庆市中考数学第18.25、26题附详细答案doc

重庆市中考数学第18.25、26题附详细答案doc

重庆市中考数学第18、25、26题(附详细答案)18.正方形ABCD 中,对角线AC ,BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ′,点F 是DE 的中点,连接AF ,BF ,E ′F .若AE=.则四边形ABFE ′的面积是.【分析】如图,连接EB 、EE ′,作EM ⊥AB 于M ,EE ′交AD 于N .易知△AEB ≌△AED ≌△ADE ′,先求出正方形AMEN 的边长,再求出AB ,根据S 四边形ABFE ′=S 四边形AEFE ′+S △AEB +S △EFB 即可解决问题.【解答】解:如图,连接EB 、EE ′,作EM ⊥AB 于M ,EE ′交AD 于N .∵四边形ABCD 是正方形,∴AB=BC=CD=DA ,AC ⊥BD ,AO=OB=OD=OC ,∠DAC=∠CAB=∠DAE ′=45°,根据对称性,△ADE ≌△ADE ′≌△ABE , ∴DE=DE ′,AE=AE ′,∴AD 垂直平分EE ′,∴EN=NE ′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED 平分∠ADO ,EN ⊥DA ,EO ⊥DB ,∴EN=EO=1,AO=+1,∴AB=AO=2+,∴S △AEB =S △AED =S △ADE ′=×1(2+)=1+,S △BDE =S △ADB ﹣2S △AEB =1+,∵DF=EF ,∴S △EFB =,∴S △DEE ′=2S △ADE ﹣S △AEE ′=+1,S △DFE ′=S △DEE ′=,∴S 四边形AEFE ′=2S △ADE ﹣S △DFE ′=,∴S 四边形ABFE ′=S 四边形AEFE ′+S △AEB +S △EFB =.故答案为.【点评】本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.25.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB=2,求BC的长;(2)如图1,当点G在AC上时,求证:BD=CG;(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.【分析】(1)如图1中,过点A作AH⊥BC于H,分别在RT△ABH,RT△AHC中求出BH、HC即可.(2)如图1中,过点A作AP⊥AB交BC于P,连接PG,由△ABD≌△APG推出BD=PG,再利用30度角性质即可解决问题.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,只要证明∠BAD=30°即可解决问题.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∴∠AHB=∠AHC=90°,在RT△AHB中,∵AB=2,∠B=45°,∴BH=ABcosB=2×=2,AH=ABsinB=2,在RT△AHC中,∵∠C=30°,∴AC=2AH=4,CH=ACcosC=2,∴BC=BH+CH=2+2.(2)证明:如图1中,过点A作AP⊥AB交BC于P,连接PG,∵AG⊥AD,∴∠DAF=∠EAC=90°,在△DAF和△GAE中,,∴△DAF≌△GAE,∴AD=AG,∴∠BAP=90°=∠DAG,∴∠BAD=∠PAG,∵∠B=∠APB=45°,∴AB=AP,在△ABD和△APG中,,∴△ABD≌△APG,∴BD=PG,∠B=∠APG=45°,∴∠GPB=∠GPC=90°,∵∠C=30°,∴PG=GC,∴BD=CG.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,在RT△AHC中,∵∠ACH=30°,∴AC=2AH,∴AH=AP,在RT△AHD和RT△APG中,,∴△AHD≌△APG,∴∠DAH=∠GAP,∵GM⊥AC,PA=PC,∴MA=MC,∴∠MAC=∠MCA=∠MAH=30°,∴∠DAM=∠GAM=45°,∴∠DAH=∠GAP=15°,∴∠BAD=∠BAH﹣∠DAH=30°,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,∴==,∵AG=CG=AD,∴=.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、直角三角形30度角性质、线段垂直平分线性质等知识,解题的关键是添加辅助线构造全等三角形,学会设参数解决问题,属于中考压轴题.26.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.【解答】解:(1)△ABC为直角三角形,当y=0时,即﹣x2+x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3,0),∴OA=,OB=3,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)如图,∵B(3,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+a+3),∴G(a,﹣a+3),∴PG=﹣a2+a,设点D的横坐标为x D,C点的横坐标为x C,S△PCD=×(x D﹣x C)×PG=﹣(a﹣)2+,∵0<a<3,∴当a=时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y=x+,当x=0时,y=,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH=,P′H=,AP′=,∴点Q运动得最短路径长为PM+MN+AN=+=;(3)在Rt△AOC中,∵tan∠OAC==,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2,∴A′E′=AE=2,∵直线AE的解析式为y=x+2,设点E′(a,a+2),∴A′(a﹣2,﹣2)∴C1E′2=(a﹣2)2+(+2﹣)2=a2﹣a+7,C1A′2=(a﹣2﹣)2+(﹣2﹣)2=a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7=a2﹣a+49,∴a=,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1=,a2=,∴E′(,7+),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1=,a2=(舍),∴E′(,3+),即,符合条件的点E′(,5),(,7+),或(,7﹣),(,3+).【点评】此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。

2020重庆中考数学18题专题及答案word.doc

2020重庆中考数学18题专题及答案word.doc

中考数学18题专题及答案1.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__ 24____千克设A种饮料的浓度为a,B种饮料的浓度为b,各自倒出和倒入的果蔬质量相同可设为x千克,由于混合后的浓度相同,由题意可得:()() 40604060x a xb x b xa-+-+=去分母()()604060406040x a xb x b xa-+=-+,去括号得:2400606024004040a xa xb b bx xa-+=-+移项得:6060404024002400xa xb bx xa b a-++-=-合并得:()()1002400b a x b a-=-所以:24x=2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 6 千克。

设切下的一块重量是x千克,设10千克和15千克的合金的含铜的百分比为a,b,= ,整理得(b-a)x=6(b-a),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重(24公斤)设含铜量甲为a乙为b,切下重量为x.根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a,乙为b,切下重量为x.由题意,有=,解得x=24.切下的合金重24公斤.1、四川省安岳县,是我国的柠檬生产基地。

超市里有一种柠檬水,由水和柠檬汁混合配制。

购买1吨柠檬汁的钱可以购买20吨的水。

专题18 三角形及全等三角形(40题)(原卷版)--2024年中考数学真题分类汇编

专题18 三角形及全等三角形(40题)(原卷版)--2024年中考数学真题分类汇编

专题18三角形及全等三角形(40题)一、单选题1.(2024·陕西·中考真题)如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有()A .2个B .3个C .4个D .5个2.(2024·河北·中考真题)观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的()A .角平分线B .高线C .中位线D .中线3.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是()A .30︒B .40︒C .50︒D .60︒4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交 AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为()A .50cmB .35cmC .25cmD .20cm5.(2024·云南·中考真题)已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .726.(2024·四川凉山·中考真题)如图,在Rt ABC △中,90ACB DE ∠=, 垂直平分AB 交BC 于点D ,若ACD 的周长为50cm ,则AC BC +=()A .25cmB .45cmC .50cmD .55cm7.(2024·四川眉山·中考真题)如图,在ABC 中,6AB AC ==,4BC =,分别以点A ,点B 为圆心,大于12AB 的长为半径作弧,两弧交于点E ,F ,过点E ,F 作直线交AC 于点D ,连接BD ,则BCD △的周长为()A .7B .8C .10D .128.(2024·湖北·中考真题)平面坐标系xOy 中,点A 的坐标为()4,6-,将线段OA 绕点O 顺时针旋转90︒,则点A 的对应点A '的坐标为()A .()4,6B .()6,4C .()4,6--D .()6,4--9.(2024·北京·中考真题)下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是()A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等10.(2024·广东广州·中考真题)下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A .B .C .D .11.(2024·青海·中考真题)如图,OC 平分AOB ∠,点P 在OC 上,PD OB ⊥,2PD =,则点P 到OA 的距离是()A .4B .3C .2D .112.(2024·四川凉山·中考真题)一副直角三角板按如图所示的方式摆放,点E 在AB 的延长线上,当DF AB 时,EDB ∠的度数为()A .10︒B .15︒C .30︒D .45︒13.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .7514.(2024·四川宜宾·中考真题)如图,在ABC 中,2AB AC ==,以BC 为边作Rt BCD ,BC BD =,点D 与点A 在BC 的两侧,则AD 的最大值为()A .2+B .6+C .5D .815.(2024·山东烟台·中考真题)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有()A .1个B .2个C .3个D .4个16.(2024·安徽·中考真题)在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠17.(2024·浙江·中考真题)如图,正方形ABCD 由四个全等的直角三角形(,,,)ABE BCF CDG DAH △△△△和中间一个小正方形EFGH 组成,连接DE .若4,3AE BE ==,则DE =()A .5B .26C 17D .418.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题19.(2024·四川成都·中考真题)如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为.20.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是.21.(2024·黑龙江牡丹江·中考真题)如图,ABC 中,D 是AB 上一点,CF AB ∥,D 、E 、F 三点共线,请添加一个条件,使得AE CE =.(只添一种情况即可)22.(2024·四川凉山·中考真题)如图,ABC 中,3080BCD ACB CD ∠∠=︒=︒,,是边AB 上的高,AE 是CAB ∠的平分线,则AEB ∠的度数是.23.(2024·江苏连云港·中考真题)如图,直线a b ,直线l a ⊥,1120∠=︒,则2∠=︒.24.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=︒.25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=.26.(2024·四川广元·中考真题)点F 是正五边形ABCDE 边DE 的中点,连接BF 并延长与CD 延长线交于点G ,则BGC ∠的度数为.27.(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.28.(2024·重庆·中考真题)如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =.29.(2024·陕西·中考真题)如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为.30.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴正半轴于点M ,交y 轴正半轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第一象限交于点H ,画射线OH ,若()21,1H a a -+,则=a .31.(2024·四川内江·中考真题)如图,在ABC 中,40DCE ∠=︒,AE AC =,BC BD =,则ACB ∠的度数为;三、解答题32.(2024·四川乐山·中考真题)知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.33.(2024·四川内江·中考真题)如图,点A 、D 、B 、E 在同一条直线上,AD BE =,AC DF =,BC EF=(1)求证:ABC DEF ≌△△;(2)若55A ∠=︒,45E ∠=︒,求F ∠的度数.34.(2024·江苏盐城·中考真题)已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.35.(2024·广西·中考真题)如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.36.(2024·四川南充·中考真题)如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE=37.(2024·云南·中考真题)如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.38.(2024·江苏苏州·中考真题)如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.39.(2024·黑龙江绥化·中考真题)已知:ABC .(1)尺规作图:画出ABC 的重心G .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG ,BG .已知ABG 的面积等于25cm ,则ABC 的面积是______2cm .40.(2024·福建·中考真题)如图,已知直线1l 2l .(1)在12,l l 所在的平面内求作直线l ,使得l 1l 2l ,且l 与1l 间的距离恰好等于l 与2l 间的距离;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若1l 与2l 间的距离为2,点,,A B C 分别在12,,l l l 上,且ABC 为等腰直角三角形,求ABC 的面积.。

重庆中考数学第18题专题1(几何部分)汇编

重庆中考数学第18题专题1(几何部分)汇编

重庆中考数学第18题专题1(几何部分)1. 如图,在正方形ABCD和正方形DEFG中,点G在AD上,连接AC,BF交于点H,连接DH,若BC=4,DG=1,那么DH的长是.2.如图,在正方形ABCD中, E为AD中点,AH⊥BE于点H,连接CH并延长交AD于点F, CP ⊥CF交AD的延长线于点P,若EF=1,则DP的长为_________.3、如图,以RtABC△的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO,若CA = 2,CO=22,那么CB的长为______________.4.如图,正方形ABCD的边长为3,延长CB至点M,使BM=1,连接AM,过点B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.5.如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG 交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为_____________.6、如图,正方形ABCD中,点E、F、G分别为AB、BC、CD边上的点,EB=3cm,GC=4cm,连接EF、FG、GE恰好构成一个等边三角形,则正方形的边长为cm。

7.如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是.8、如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为.9、如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=62,则另一直角边BC的长为.10、.如图,等腰Rt△ABC中,O为斜边AC的中点,∠CAB的平分线分别交BO,BC于点E,F,BP⊥AF于H,PC⊥BC,AE=1,PG= .11、如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于点F,若BE=1,AB=3,则PF的长为。

(完整版)重庆中考数学第18题专题训练(含答案),推荐文档

(完整版)重庆中考数学第18题专题训练(含答案),推荐文档

重庆中考18题专题训练1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa-+-+=去分母,()()604060406040x a xb x b xa -+=-+去括号得:2400606024004040a xa xb b bx xa-+=-+移项得:6060404024002400xa xb bx xa b a-++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。

解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨., =, 解得x=240.故答案为:240.,由①得,则有:,两式相除得:,商品的销售利润率变成了 .(2)某商品现在的进价便宜20% ,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为 。

2020重庆中考复习数学第18题《七类最值问题的求解策略》

2020重庆中考复习数学第18题《七类最值问题的求解策略》

2020重庆中考复习第18题《七类最值问题的求解策略》类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段.EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.2、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .A类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG,则 CG 的最小值为.3、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .A例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.例5、如图,在△ABC 中,∠BAC =120°,AB =AC =6,D 为边AB 上一动点(不与B 点重合),连接CD ,将线段CD 绕着点D 逆时针旋转90°得到DE ,连接BE ,则S △BDE 的最大值为 .练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.练习如图,在四边形ABCD 中,AB =6,BC =4,若AC =AD ,且∠ACD =60°,则对角线BD 的长的最大值为 .类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为 .练习:如图,在矩形ABCD 中,AB =,1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为 .类型七:利用基本不等式求最值参考答案类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为.解:如图,取AB的中点N.连接EN,EC,GN,(即将△EAF绕点E逆时针旋转60°得△ENG)作EH ⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH=,在Rt△ECH中,EC==2,∴GB+GC≥2,∴GB+GC的最小值为2.练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC ==22、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .AA解:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB +GC的最小值;在Rt△EBC中,EB=3,BC=6,∴EC=3,∴GB+GC的最小值3.类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .解析:如图,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE,∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD∵∠ABC=30°=∠ABP∠+PBC,∴∠DBE∠+PBC=30°,∴∠DBC=90°,∴CD==.练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是.解:由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,CG的最小值为.练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC ==,故答案为:.2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG,则 CG 的最小值为.F解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转45°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等腰直角三角形,点G在垂直于HE的直线HG上,作CM⊥HG,则CM即为CG的最小值,作EN⊥CM,可知四边形HENM为矩形,则CM=MN+CN=HE EC=123、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB 上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A∠+B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS ) ∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =4,HM ⊥AD , ∴EM =2,MH =EM =2,∴线段GD 长度的最小值为2,类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .AA解:过E 作EF ⊥AC 于点F . 则∠EFD =90°,∵090ACB ∠=,∴∠EFD=∠C ,∵ED=DB ,∠FED =∠CDB ,∴△EFH ≌△EDC , ∴DF =CB =2,EF CD =,设AD x =,则2AF x =+,5EF CD x==-, ∴AE ===32x =时,AE 有最小值2. 例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.解:过A 作AM ⊥BC 于M ,EN ⊥AM 于N ,如图,∵线段AD 绕点A 逆时针旋转90°得到AE ,∴∠DAE =90°,AD =AE ,∴∠NAE =∠ADM , 易证得Rt △AMD ≌Rt △ENA ,∴NE =AM ,∵∠ACB =45°,∴△AMC 为等腰直角三角形,∴AM =MC ,∴MC =NE ,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵∠ACB=45°,,∴AM=CM=3,MD=3﹣x,∴=,∴CF=﹣x2+x,∴当x=1.5时有最大值,最大值为0.75.例5、如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE==(9﹣x)=﹣(x﹣4.5)2+,∴当BD=4,5时,S△BDE有最大值为.练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .解:过F作FH⊥ED,∵正方形CEFG,∴EF=EC,∠FEC=∠FED+∠DEC=90°,∵FH⊥ED,∴∠FED+∠EFH=90°,∴∠DEC=∠EFH,且EF=EC,∠FHE=∠EDC=90°,∴△EFH≌△EDC(AAS),∴EH=DC=2,FH=ED,∴AF===∴当AE=1时,AF的最小值为3 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中,∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=2=1,∴BM=AB+AM=2+1=3,设BD=x,则EN=DM=3﹣x,∴S△BDE==(3﹣x)=﹣(x﹣1.5)2+,∴当BD=1.5时,S△BDE有最大值为,类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.CA解析:如图,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF ⊥BC,∴BF =BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF ,∴DF =BC=×4=2,∴AC =DE ≤DF+EF=2+2,即AC的最大值为2+2.练习如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为 .解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为 .解法一:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =CD =1,∠ABD =30°, ∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,A ′B ′∥AB ,∵四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,∴∠BAD =120°,∴A ′B ′=CD ,A ′B ′∥CD , ∴四边形A ′B ′CD 是平行四边形,∴A ′D =B ′C ,∴A 'C +B 'C 的最小值=A ′C +A ′D 的最小值,∵点A ′在过点A 且平行于BD 的定直线上, ∴作点D 关于定直线的对称点E ,连接CE 交定直线于A ′,则CE 的长度即为A 'C +B 'C 的最小值,∵∠A ′AD =∠ADB =30°,AD =1,∴∠ADE =60°,DH =EH =AD =,∴DE =1,∴DE =CD ,∵∠CDE =∠EDB ′+∠CDB =90°+30°=120°,∴∠E =∠DCE =30°,∴CE =2×CD =.解法二:练习:如图,在矩形ABCD 中,AB =,1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为 .解法一: 解法一:解法三: 解法四:类型七:利用基本不等式求最值解:原式=1111+12a a++⨯=11+12a a a ++=2222+32a a a a +++=2232+32a a a a a ++-+=21+32aa a -+=112+3a a -+12a a +≥ ,1+35a a ∴+≥,1513a a ∴≤++,1513a a ∴-≥-++, 1142+3a a∴-≥-+.当2a a =,即a =时有最小值4-,此时2b =.。

重庆中考数学第18题专题训练(含答案)

重庆中考数学第18题专题训练(含答案)

重庆中考18题专题训练 1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa -+-+= 去分母()()604060406040x a xb x b xa -+=-+,去括号得:2400606024004040a xa xb b bx xa -+=-+移项得:6060404024002400xa xb bx xa b a -++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。

解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨. , =, 解得x=240.故答案为:240.5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.5.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟.考点:三元一次方程组的应用.解:设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,则有:,两式相除得:,解得:x=40,即出水管比进水管晚开40分钟.故答案为:40.6.(1)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了.(2)某商品现在的进价便宜20%,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为。

重庆中考数学18题不定方程

重庆中考数学18题不定方程

果小汽车在 AB 段正常行驶需 10 分钟,大卡车在 AB 段正常行驶需 20 分钟,小汽车在 AB 段倒车的速度是它正常
行驶速度的 1 ,大卡车在 AB 段倒车的速度是它正常行驶速度的 1 ,小汽车需倒车的路程是大卡车需倒车的路程的
5
8
4 倍.问两车都通过 AB 这段狭窄路面的最短时间是________分钟.
汽车?
9、小王骑自行车在环城公路上匀速行驶,每隔 6 分钟有一辆公共汽车从对面想后开过,每隔 30 分钟又有一辆公共
汽车从后面向前开过,若公共汽车也是匀速行驶,且不计乘客上、下车的时间,那么公交站每隔多少分钟开出一辆
公交车?
10、某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销
5、甲、乙两厂生产同一种产品,都计划把全年的产品销往重庆,这样两厂的产品就能占有重庆市场同类产品的 3 . 4
然而实际情况并不理想,甲厂仅有 1 的产品、乙厂仅有 1 的产品销到了重庆,两厂的产品仅占了重庆市场同类产品
2
3
的 1 .则甲厂该产品的年产量与乙厂该产品的年产量的比为__________. 3
的件数少 50%时,这个商人得到的总利润率是________
35、某商场销售一批电视机,一月份每台毛利润是售出价的 20%(毛利润=售出价-买入价),二月份该商场将每台
售出价调低 10%(买入价不变),结果销售台数比一月份增加 120%,那么二月份的毛利润总额与一月份毛利润总额
的比是________
37、某公司生产一种饮料是由 A, B 两种原料液按一定比例配制而成,其中 A 原料液的成本价为 15 元/千克, B 原 料液的成本价为 10 元/千克,按现行价格销售每千克获得 70%的利润率.由于市场竞争,物价上涨, A 原料液上涨 20%, B 原料液上涨 10%,配制后的总成本增加了 12%,公司为了拓展市场,打算再投入现总成本的 25%做广告宣

最新重庆中考数学第18题专题1(几何部分)

最新重庆中考数学第18题专题1(几何部分)

重庆中考数学第18题专题1(几何部分)1. 如图,在正方形ABCD和正方形DEFG中,点G在AD上,连接AC,BF交于点H,连接DH,若BC=4,DG=1,那么DH的长是.2.如图,在正方形ABCD中, E为AD中点,AH⊥BE于点H,连接CH并延长交AD于点F, CP ⊥CF交AD的延长线于点P,若EF=1,则DP的长为_________.3、如图,以RtABC△的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO,若CA = 2,CO=22,那么CB的长为______________.4.如图,正方形ABCD的边长为3,延长CB至点M,使BM=1,连接AM,过点 B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.5.如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG 交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为_____________.6、如图,正方形ABCD中,点E、F、G分别为AB、BC、CD边上的点,EB=3cm,GC=4cm,连接EF、FG、GE恰好构成一个等边三角形,则正方形的边长为cm。

7.如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是.8、如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为.9、如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=62,则另一直角边BC的长为.10、.如图,等腰Rt△ABC中,O为斜边AC的中点,∠CAB的平分线分别交BO,BC于点E,F,BP⊥AF于H,PC⊥BC,AE=1,PG= .11、如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于点F,若BE=1,AB=3,则PF的长为。

2019重庆中考数学第18题专题练习(精选)

2019重庆中考数学第18题专题练习(精选)

24 万元.已知甲型和乙型机器人每台每小时分拣快递分别是 1200 件和 1000 件,该公司计
划购买这两种型号的机器人共 8 台,总费用不超过 41 万元0 件,则该公司最低购买费用是
万元。
1/3
4.经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速 销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:
2/3
8.某超市销售水果时,将 A,B,C 三种水果采用甲、乙、丙三种方式搭配装箱进行销售, 每箱的成本分别为箱中 A,B,C 三种水果的成本之和,箱子成本忽略不计,甲种方式每箱分别 装 A,B,C 三种水果 6kg,3kg,1kg,乙种方式每箱分别装 A,B,C 三种水果 2kg,6kg,2kg,甲每 箱的总成本是每千克 A 成本的 12.5 倍,每箱甲的销售利润为 20%,每箱甲比乙的售价低 25%, 丙每箱在成本上提高 40%标价后打八折销售获利为每千克 A 成本的 1.2 倍,当销售甲、乙、 丙三种方式的水果数量之比为 2:3:3 时,则销售的总利润为______.
3/3
9.小明暑假外出旅行时,准备给朋友们些土特产作为礼物,预先了解到当地最富盛名的 A、B 两种特产的价格之和为 140 元,小明计划购买 B 特产的数量比 A 特产的数量多 5 盒, 但一共不超过 60 盒,小明在土特产商店发现 A 正打九折销售,而 B 的价格提高了 10%,小 明决定将 A、B 特产的购买数量对调,这样,实际花费只比计划多 20 元,已知价格和购买数 量均为整数,则小明购买土特产实际花费为_____元.
元.
5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景。甲种盆景由 15 朵红花、24 朵黄
花和 25 朵紫花搭配而成,乙种盆景由 10 朵红花和 12 朵黄花搭配而成,丙种盆景由 10 朵红

专题18 三平行相似模型--2024年中考数学核心几何模型重点突破(解析版)

专题18 三平行相似模型--2024年中考数学核心几何模型重点突破(解析版)

专题18三平行相似模型【理论基础】如图,CD EF AB ////,若,则证明:∵AB EF //,∴△DEF ∽△DAB ,∴,即①同理△BEF ∽△BCD ,∴,即②①+②,得,.【例1】如图,ABCD 的对角线AC ,BD 相交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②4AOD OCF S S = ;③::7AC BD =;④2FB OF DF =⋅.其中正确的有()个A .1B .2C .3D .4【答案】C 【分析】①根据已知的条件首先证明ECB 是等边三角形,因此可得EA EB EC ==,所以可得90ACB ∠=︒,再根据O 、E 均为AC 和AB 的中点,故可得90AOE ACB ∠=∠=︒,便可证明EO AC ⊥;②首先证明OEF BCF ∽,因此可得12OE OF BC FB ==,故可得AOD S 和OCF S 的比.③根据勾股定理可计算的AC :BD ;④根据③分别表示FB 、OF 、DF ,代入证明即可.【解析】解:∵四边形ABCD 是平行四边形,∴,,CD AB OD OB OA OC ==∥,∴180DCB ABC ∠+∠=︒,∵60ABC ∠=︒,∴120DCB ∠=︒,∵EC 平分DCB ∠,∴1602ECB DCB ∠=∠=︒,∴60EBC BCE CEB ∠=∠=∠=︒,∴ECB 是等边三角形,∴EB BC =,∵2AB BC =,∴EA EB EC ==,∴90ACB ∠=︒,∵,OA OC EA EB ==,∴OE BC ∥,∴90AOE ACB ∠=∠=︒,∴EO AC ⊥,故①正确,∵OE BC ∥,∴OEF BCF ∽,∴12OE OF BC FB ==,∴13OF OB =,∴3AOD BOC OCF S S S == ,故②错误,设BC BE EC a ===,则2AB a =,AC =,2OD OB a ===,∴BD =,∴:7AC BD ==,故③正确,∵13OF OB a =,∴BF a =,∴22277,96269BF a OF DF a a a ⎛⎫=⋅=⋅+= ⎪ ⎪⎝⎭,∴2BF OF DF =⋅,故④正确,综上所述:正确的是①③④,共3个.故选C .【例2】如图,AC EF DB ,若AC =8,BD =12,则EF =___________.【答案】245【分析】根据 AC EF DB ∥∥,可得△BEF ∽△BCA ,△AEF ∽△ADB ,从而得到EF DB EF CA DB-=,即可求解.【解析】解:∵ AC EF ∥,∴△BEF ∽△BCA ,∴EF BF CA AB=,∵ EF DB ∥,∴△AEF ∽△ADB ,∴EF AF DB AB =,∴DB EF AB AF DB AB --=,即DB EF BF DB AB -=,∴EF DB EF CA DB-=,∵AC =8,BD =12,∴12812EF EF -=,解得:245EF =.故答案为:245【例3】如图:AD EG BC ∥∥,EG 分别交AB 、DB 、AC 于点E 、F 、G ,已知AD =6,BC =10,AE =3,AB =5,求EG 、FG 的长.【答案】186,5EG FG ==【分析】在△ABC 中,先证明,AEG ABC ∽利用相似三角形的性质求解EG ,在△BAD 中,证明BEF BAD △△∽,利用相似三角形的性质求解EF ,即可求出FG =EG -EF .【解析】解:∵△ABC 中,EG BC ∥,∴,AEG ABC ∽∴EG AE BC AB=,∵BC =10,AE =3,AB =5,∴3105EG =,∴EG =6,∵△BAD 中,EF AD ∥,∴BEF BAD△△∽∴EF BE AD AB=,∵AD =6,AE =3,AB =5,∴5365EF -=,∴EF =125.∴FG =EG -EF =185.一、单选题1.如图,AB 和CD 表示两根直立于地面的柱子,AC 和BD 表示起固定作用的两根钢筋,AC 与BD 相交于点M ,已知12m,15m AB CD ==,则点M 离地面的高度MH 为()A .20m 3B .25m 5C .5mD .16m 3【答案】A【分析】根据已知易得△ABM ∽△CDM ,可得对应高BH 与HC 之比,易得MH ∥AB ,可得△MCH ∽△ACB ,利用对应边成比例可得比例式,把相关数值代入求解即可.【解析】∵AB 和CD 表示两根直立于地面的柱子,∴AB ⊥BC ,CD ⊥BC ,MH ⊥BC ,∴AB ∥CD ∥MH ,∴∠A =∠MCD ,∠ABM =∠D∴△ABM ∽△CDM ,∴BH CH =AB CD =1215=45(相似三角形对应高的比等于相似比),∴BH CH CH +=455+∴BC CH =95,即CH BC =59,∵MH ∥AB ,∴∠A =∠CMH ,∠ABC =∠MHC ,∴△MDH ∽△ADB ,∴MH AB =CH CB =59,,∴12MH =59,解得MH =203.∴点M 离地面的高度MH 为203m .故选:A .2.如图,树AB 在路灯O 的照射下形成投影AC ,已知树的高度3m AB =,树影4m AC =,树AB 与路灯O 的水平距离6m AP =,则路灯高PO 的长是()A .2mB .4.5mC .7.5mD .12m【答案】C 【分析】根据相似三角形的判定与性质直接求解即可.【解析】解: 根据题意可知AB PO ∥,C C ∴∠=∠,CAB CPO ∠=∠,CAB CPO ∴∆∆∽,AB PO AC PC ∴=,即3446PO =+,解得30157.542PO ===m ,∴路灯高PO 的长是7.5m ,故选:C .3.如图1,小明在路灯下笔直的向远离路灯方向行走,将其抽象成如图2所示的几何图形.已知路灯灯泡距地面的距离AB 等于4米,小明CD 身高1.5米,小明距离路灯灯泡的正下方距离BC 等于4米,当小明走到E 点时,发现影子长度增加2米,则小明走过的距离CE 等于()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间【答案】A【分析】根据题意证明△DCM∽△АВМ,得到CM DCBM AB=,代入数值求出CM=2.4,再证△FEN∽△ABN,得到EN FEBN AB=,即4.4 1.54BN=,求出BN=17615,计算CE=BN-BC-EN=17615-4-4.4=103,判断即可.【解析】由图可知小明在点C处时,其影长为CM,在点E处时,其影长为EN,由题意可得AB⊥BN,CD⊥BN,EF⊥BN,EF=CD=1.5米,EN=(CM+2)米,∴∠DCM=∠АВM=90︒,∵∠CMD=∠BMA,∴△DCM∽△АВМ,∴CM DC BM AB=,∵BM=BC+CM=4+CM,∴1.5 44 CMCM=+,解答CM=2.4,∴EN=CM+2=2.4+2=4.4,∵∠FEN=∠ABN=90︒,∠ENF=∠BNA,∴△FEN∽△ABN,∴EN FEBN AB=,即4.4 1.54BN=,解得BN=176 15,∴CE=BN-BC-EN=17615-4-4.4=103,∵3<103<4,∴小明走过的距离CE在3和4之间,故选A .4.如图,已知AB ⊥BC 、DC ⊥BC ,AC 与BD 相交于点O ,作OM ⊥BC 于点M ,点E 是BD 的中点,EF ⊥BC 于点G ,交AC 于点F ,若AB =4,CD =6,则OM -EF 值为()A .75B .125C .35D .25【答案】A【分析】利用三角形中位线定理分别求得FG =12AB =2,EG =12CD =3,得到EF =1,再证明△AOB ∽△COD 和△BOM ∽△BDC ,利用相似三角形的性质求得OM =125,据此即可求解.【解析】解:∵AB =4,CD =6,AB ⊥BC ,CD ⊥BC ,OM ⊥BC ,EF ⊥BC ,∴AB ∥OM ∥FG ∥DC ,又∵点E 是BD 的中点,∴点G 是BC 的中点,点F 是AC 的中点,∴FG =12AB =2,EG =12CD =3,∴EF =EG -FG =1,∵CD ∥AB ,∴△AOB ∽△COD ,∴BO AB OD CD =即4263BO OD ==,∴25BO BD =,∵OM ∥CD ,∴△BOM ∽△BDC ,∴25MO BO CD BD ==,∴OM =125,∴OM -EF =125-1=75.故选:A .5.如图,EF 是一个杠杆,可绕支点O 自由转动,若动力F 动和阻力F 阻的施力方向都始终保持竖直向下,当阻力F 阻不变时,则杠杆向下运动时F 动的大小变化情况是()A .越来越小B .不变C .越来越大D .无法确定【答案】B 【分析】由图证明MOE NOF △∽△,从而得到ME MO NF NO=,即ME NO NF MO ⋅=⋅,再根据题意得出答案.【解析】解:∵MOE NOF ∠=∠,M ONF ∠=∠,∴MOE NOF △∽△,∴ME MO NF NO=,即ME NO NF MO ⋅=⋅,∵阻力F 阻不变,即ME 不变,又∵OM ,ON 不变,∴由ME NO NF MO ⋅=⋅得,NF 不变,即F 动的大小不变.故选:B .6.如图,ABC 和DCB 中,90ABC DCB ∠=∠=︒,斜边AC 、BD 交于点E ,过点E 作EF BC ⊥,垂足为F ,若2AB =,3CD =,则EF 的长度为()A .32B .53C .54D .65【答案】D【分析】通过证明△BEF ∽△BDC ,△CEF ∽△CAB ,可得,,EF BF CF EF CD BC BC AB==即可求解.【解析】解:∵EF BC ⊥,∴∠ABC =∠DCB =90°=∠EFC ,∴AB EF CD ∥∥,∴△BEF ∽△BDC ,△CEF ∽△CAB ,∴,EF BF CF EF CD BC BC AB ==,∵2AB =,3CD =,∴1,32EF EF BF CF BC++==∴65=EF .故选:D .二、填空题7.如图,已如矩形ABCD ,将△BCD 绕点B 顺时针旋转90°至△BEF ,连接AC ,BF ,若点A ,C ,F 恰好在同一条直线上,则AB BC=______.【分析】设AB a =,BC b =,由矩形和旋转的性质可知EF a =,BE b =.易证ABC AEF ,即得出AB BC AB BE EF =+,即a b a b a =+,将b 看作已知数,根据公式法即可求出a =根据a >0,可知2b a +=,最后代入AB BC 即可.【解析】设AB a =,BC b =,由矩形和旋转的性质可知EF a =,BE b =,90E BCD ABC ∠=∠=∠=︒,∴BC EF ∥,∴ABC AEF ,∴AB BC AE EF =,即AB BC AB BE EF =+,∴a b a b a=+,整理,得:220a ab b --=,∴22b b a ±==.∵0a >,∴a =∴122b AB BC b ==.故答案为:12.8.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x 轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =11OA B S = ,再根据题意可得112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【解析】解:当x =1时,y∴点(1B ,∴11A B =∴111122OA B S =⨯ ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S =OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴2202224041202222S ⨯-=⨯故答案为:2三、解答题9.如图,一教学楼AB 的高为20m ,教学楼后面水塔CD 的高为30m ,已知BC =30m ,小张的身高EF 为1.6m .当小张站在教学楼前E 处时,刚好看到教学楼顶端A 与水塔顶端D 在一条直线上,求此时他与教学楼的距离BE .【答案】55.2m【分析】如图,过点F 作FN ⊥CD ,交CD 于点N ,交AB 于点M ,构造相似三角形:△AMF ∽△DNF ,由该相似三角形的对应边成比例求得答案.【解析】解:如图,过点F 作FN ⊥CD ,交CD 于点N ,交AB 于点M ,∵AM ∥DN ,∴△AMF ∽△DNF .∴FM AM FN DN=.由题意知,BE =FM ,BC =MN =30m ,EF =BM =CN =1.6m ,FN =FM +MN =BE +BC =(BE +30)m .∴DN =CD -CN =30-1.6=28.4m ,AM =AB -BM =20-1.6=18.4m .∴18.43028.4BE BE =+.解得BE =55.2m .故此时他与教学楼的距离BE 为55.2m .10.如图,////AB EF CD ,E 为AD 与BC 的交点,F 在BD 上,求证:111AB CD EF+=.【答案】见解析【分析】根据已知条件可得,DEF DAB BEF BCD ∽∽,根据相似三角形的性质列出比例式,即可证明结论【解析】//,//AB EF EF DC,DEF DAB BEF BCD∴ ∽∽,EF FD EF BF AB BD CD BD ∴==1EF EF FD BF BD AB CD BD BD BD ∴+=+==EF EF EF AB CD EF∴+=∴111AB CD EF +=11.如图,AB =4,CD =6,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF .(1)若AE =3,求ED 的长.(2)求EF 的长.【答案】(1)92;(2)125【分析】(1)证明AEB DEC ∆∆∽,得到AE AB DE CD =,把已知数据代入计算即可;(2)根据BEF BCD ∆∆∽,得到EF BF CD BD =,同理得到EF DF AB BD=,两个比例式相加再代入计算,得到答案.【解析】(1)解://AB CD ,AEB DEC ∴∆∆∽,∴AE AB DE CD=,4AB =Q ,6CD =,3AE =,∴346DE =,解得:92DE =;(2)//CD EF ,BEF BCD ∴∆∆∽,∴EF BF CD BD=,同理:EF DF AB BD =,∴1EF EF BF DF CD AB BD BD +=+=,∴164EF EF +=,解得:125EF =.12.如图,圆A 、圆C 为两个不相交的圆,记圆A 的半径为r ,圆C 的半径为R ,有r R <,E 是两圆连心线上的一点,满足关系式EA r EC R =,点F 、G 为圆A 上任意的动点,作直线EF 、EG 分别与圆C 交于H 、I 、J 、K 四点,连接IK(1)设圆A 、圆C 的两条外的公切线分别为12l l 、,证明12l l 、总是在点E 处相交;(2)若固定F 点,让G 点在圆A 上移动,证明:此时EG EJ 的值与G 的位置无关;(3)当IK AC ⊥时,连接FJ 、HG ,设FJ 与HG 交于T ,证明T 在AC 上,且满足··.AT EC CT EA =【答案】(1)证明过程见详解(2)证明过程见详解(3)证明过程见详解【分析】(1)根据公切线的性质,证明三角形相似,利用相似三角形对应边成比例即可求证结果;(2)利用对应边成比例证明两个三角形相似,利用比例的性质即可求证结果;(3)根据两个三角形全等,对应边也相等,证明等腰三角形性,利用等腰三角形的三线合一即可求证结果.【解析】(1)证明:如图所示,EH 是公切线1l ,EK 是公切线2l ,∵12l l 、是A ,C 的公切线,点F ,点G ,点H ,点k 是切点,∴AF EF ⊥,AG EG ⊥,CH EH ⊥,CK EK ⊥,且点E ,点F ,点H 在公切线1l 上,点E ,点G ,点K 在公切线2l 上,∴AF CH ∥,AG CK ∥,AF AG r ==,CH CK R ==,∴EAF ECH ∆∆ ,EAG ECK ∆∆ ,∴EA AF AG r EC CH CK R===,∴A ,C 的公切线12l l 、总是在点E 处相交.(2)证明:如图所示,连接AG ,CJ ,点G ,点J 在圆上,∴AG r =,CJ R =,∵EA r EC R=,∴EAG EJC ∆∆ ,∴EA EJ EG EC=,∴EG EJ EA EC = ,∴EG EJ 的值与G 的位置无关.(3)证明:如图所示,连接FG ,HJ ,AC 所在直线是A ,C 的直径,∵IK AC ⊥,垂足为点M ,∴直线AC 平分IK ,190∠=︒,IM KM =,∴IEM KEM EM EM EMI EMK ∠=∠⎧⎪=⎨⎪∠=⎩,∴()ΔΔEIM EKM ASA ≅,∴EI EK =,EF EG =,EH EJ =,在EFT ∆,EGT ∆中,∵EF EG FET GET ET ET =⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔEFT EGT SAS ≅,∴FT GT =,∴点T 在FEG ∠的角平分线AC 上.如图所示,连接AF ,CH ,且AF r =,CH R =,由等腰三角形EFG ,等腰三角形EHJ 得,FAT HCT ∆∆∽,∴AT AF r CT CH R==,又∵EA r EC R =,∴AT EA CT EC=,即AT EC CT EA = .13.如图,在矩形ABCD 中,点E 在边BC 上,将线段AE 绕点E 顺时针旋转90°,此时点A 落在点F 处,线段EF 交CD 于点M .过点F 作FG ⊥BC ,交BC 的延长线于点G.(1)求证:BE =FG ;(2)如果AB •DM =EC •AE ,连接AM 、DE ,求证:AM 垂直平分DE .【答案】(1)见解析;(2)见解析【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到△ABE与△EFG全等,据此即可证明BE=FG;(2)证明△ABE∽△ECM,可得EM=DM,再利用HL证明△AEM≌△ADM即可解决问题.【解析】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,ABE EGF BAE GEFAE EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△EGF(AAS);∴BE=FG;(2)证明:连接AM、DE,∵∠GEF=∠BAE,∠ABE=∠ECM=90°,∴△ABE∽△ECM,∴AB AEEC EM=,即AB•EM=EC•AE,∵AB•DM=EC•AE,∴DM=EM,∵EF⊥AE,∴∠AEM=90°,∴∠AEM=∠ADM=90°,∵DM=EM,AM=AM,∴△AEM≌△ADM(HL),∴AE=AD,∴AM垂直平分DE.14.某天晚上,小明看到人民广场的人行横道两侧都有路灯,想起老师数学课上学习身高与影长的相关知识,于是自己也想实际探究一下.为了探究自己在两路灯下的影长和在两路灯之间的位置关系,小明在网上从有关部门查得左侧路灯(AB )的高度为4.8米,右侧路灯(CD )的高度为6.4米,两路灯之间的距离(BD )为12米,已知小明的身高(EF )为1.6米,然后小明在两路灯之间的线段上行走(如图所示),测量相关数据.(1)若小明站在人行横道的中央(点F 是BD 的中点)时,小明测得自己在两路灯下的影长FP =米,FQ =米;(2)小明在移动过程中,发现在某一点时,两路灯产生的影长相等(FP =FQ ),请问时小明站在什么位置,为什么?【答案】(1)3,2(2)离B 地24m 5(或离D 地36m 5),理由见解析【分析】(1)通过证明CDQ EFQ ,ABP EFP ,再根据相似三角形的性质进行求解即可;(2)由(1)得,EF QF CD QD =,EF PF AB BP=,设FP FQ x ==,可求出512BD x ==,求出x 的值,即可求解.【解析】(1)解:由题意得,,CDQ EFQ CQD EQF ∠=∠∠=∠,CDQ EFQ ∴ ,EF QF CD QD ∴=,4.8, 6.4,12, 1.6AB CD BD EF ==== ,点F 是BD 的中点,6BF DF ∴==,1.66.46QF QF∴=+,解得2QF =;,ABP EFP APB EPF ∠=∠∠=∠,ABP EFP ∴ ,EF PF AB BP∴=4.8, 6.4,12, 1.6AB CD BD EF ==== ,点F 是BD 的中点,6BF ∴=,1.64.86PF PF∴=+,解得3PF =;故答案为:3;2;(2)小明站在离B 点245米处的位置,理由如下:由(1)得,EF QF CD QD =,EF PF AB BP=,4.8, 6.4,12, 1.6AB CD BD EF ==== ,设FP FQ x ==,1.6 1.6,6.4 4.8x x QD BP∴==,4,3QD x BP x ∴==,,2BQ x DP x ∴==,512BD x ∴==,解得125x =,2425BF x ∴==,所以,小明站在离B 点245米处的位置.15.如图1,在四边形ABCD 中,90ABC ∠=︒,16AB DC ==,12AD =,点E 是CD 边的中点,连接AE 交对角线BD 于点F ,EDF FBA ∠=∠,连接CF .(1)求证:四边形ABCD 是矩形;(2)求CFD △的面积;(3)如图2,连接AC 交BD 于点O ,点P 为EC 上一动点,连接OE 、OP .将OPD △沿OP 折叠得到OPM ,PM 交OC 于点N ,当PCN △为直角三角形时,求CP 的长.【答案】(1)见解析(2)32(3)2或5【分析】(1)先证明四边形ABCD 是平行四边形,再由90ABC ∠=︒得四边形ABCD 是矩形;(2)过点F 作FG CD ⊥于点G ,先证DFE BFA ∽,得到12EF DE AF AB ==,再证EGF EDA ∽△△,求得GF 的长,再得出CFD △的面积;(3)先根据勾股定理求出AC 的长,再根据中位线定理求出OE 的长,再由PCN △为直角三角形分两种情况讨论,分别求出CP 的长即可.【解析】(1)证明:EDF FBA ∠=∠ ,AB CD ∴∥,16AB CD == ,∴四边形ABCD 是平行四边形,90ABC ∠=︒ ,∴四边形ABCD 是矩形;(2)如图1,过点F 作FG CD ⊥于点G ,ABCD 是矩形,AD CD ∴⊥,AB CD ,DFE BFA ∴△∽△,12EF DE AF AB ∴==,13EF AE ∴=,易知FG AD ∥,EGF EDA ∴∽△△,13GF EF AD AE ∴==,143GF AD ∴=⨯=,CFD ∴△的面积为111643222CD GF ⨯⨯=⨯⨯=;(3)ABCD 是矩形,E 是CD 中点90ADC ∴∠=︒,点O 是AC 中点,8CE =,20AC ∴==,OE 是ADC 的中位线,162OE AD ∴==,10OC =,90ADC ∠<︒ ,PCN ∴△为直角三角形分两种情况讨论:①如图2,当90CPN ∠=︒时,90DPM ∠=︒,∴由折叠的性质,知45DOP MPO ∠=∠=︒,6PE OE ∴==,2CP CE EP ∴=-=;②如图3,当90PNC ∠=︒时,同理可得OP 平分DPM ∠,OE PD ⊥ ,ON PM ⊥,6OE ON ∴==,4CN OC ON ∴=-=,PCN OCE ∠=∠ ,90PNC OEC ∠=∠=︒,PNC OEC ∴△△∽,PC CN OC CE ∴=,即4108PC =,5PC ∴=,综上所述,CP 的长为2或5。

2021年重庆中考数学第18题不定方程专题训练

2021年重庆中考数学第18题不定方程专题训练

2021年重庆中考数学第18题不定方程专题训练1. 从百日誓师大会以来,初三年级同学的学习热情高涨,每个同学都在努力的提升各个学科的成绩,初三某班的很多同学到学校附近甲、乙两个书店购买语文、数学、英语、物理资料书,甲书店售出语文资料书的数量和数学相同,英语数量是物理的2倍,英语资料书一本的单价是语文的2倍,数学与物理价格之比是3:4,乙书店语文资料书售出的数量是甲书店语文资料书售出数量的3倍,乙书店数学资料书的价格是甲书店数学资料书价格的13,乙书店英语资料书数量比甲书店少13,乙书店物理资料书的价格是甲书店物理资料书价格的一半,这样乙书店物理资料书售出的数量和英语相同,乙其余书的数量和售价和甲相同,已知甲书店4本语文资料书的价格与甲书店一本物理资料书的价格差大于120元但不超过130元,且甲书店售出的语文资料书的数量多于26本少于34本,且两个书店共售出语文和英语的销售额比两个书店售出数学和物理的销售额多6820元,且所有的单价与数量均为整数,则两个书店共售出的语文资料书的销售额比共售出的数学资料书销售额多______ 元.2. 某运输公司有核定载重量之比为4:5:6的甲、乙、丙三种货车,该运输公司接到为武汉运输抗疫的医药物资任务,迅速按照各车型核定载重量将抗疫物资运往武汉,承担本次运输的三种货车数量相同.当这批物资送达武汉后,发现还需要一部分医药物资才能满足需要,于是该运输公司又安排部分甲、乙、丙三种货车进行第二次运输,其中乙型车第二次运送的物资量是还需要运送物资总量的38,丙型车两次运送的物资总量是两次运往武汉物资总量的17,甲型车两次运输的物资总量与乙型车两次运输的物资总量之比为3:2,则甲型车第一次与第二次运输的物资量之比是______ .3. 假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过______小时车库恰好停满.4.重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量.如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有______名工人.5.一驴友分三次从M地出发沿着不同线路(A线、B线、C线)去N地,在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种,他涉水行走4小时的路程与攀登6小时的路程相等;B线、C线路程相等,都比A线路程多32%;A线总时间等于C线总时间的一半;他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线;在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了20%、50%、50%.若他用了x 小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且x、y、z都为正整数,则x+z=______y6.清明小长假,重庆迎来了很多游客.除了解放碑,磁器口,洪崖洞等景点以外,美味的火锅底料,陈麻花和合川桃片也成为了炙手可热的伴手礼.根据游客的喜好,现推出踏青福袋和平安福袋两种包装,踏青福袋中有2袋火锅底料,2袋陈麻花;平安福袋中有1袋火锅底料,2袋陈麻花,3盒合川桃片,两种福袋的成本价分别为袋中物品的成本价之和,已知踏青福袋每袋的售价为96元,利润率为20%,每袋陈麻花的成本是每盒合川桃片的成本价的3倍.小长假期间,由于客流量较大,一天就卖出两种福袋共计156袋,工作人员在核算当日卖出福袋总成本的时候把火锅底料和麻花的成本看反了,后面发现如果不看反,那么当日卖出福袋的实际总成本比核算时的总成本少了1000元,则当日卖出福袋的实际总成本为______ 元.7.为了抵抗病毒的侵袭,某学校组织教师到社区卫生服务中心接种新冠病毒疫苗,由于疫苗数量有限,所以要分批进行接种.初中三个年级都有教师参加第一批疫苗接种,其中初一年级和初三年级参加疫苗接种的教师人数之比是3:4.第二批疫苗到货后,三个年级新增接种人数之比是5:6:2.增加后,初二年级接种总人数占这三个年级接种总人数,并且增加后,初二和初三年级新增接种人数之和是这两个年级接种总人数之之和的47和的4,则这三个年级第一批接种总人数与第二批接种总人数之比为______ .198.四月下旬,世界卫生组织称中国已进入缓疫阶段,各地陆续发布开学通知,虽然疫悄有所控制,但防控仍不可掉以轻心.重庆一中的教职工们在学校逐一检查、落实各项防疫措施,为迎接即将返校的初三学生做足准备.王老师用现金6820元为年级采购了额温枪和免洗洗手液两种防疫物品,额温枪每个125元,免洗洗手液每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于洗手液的数量),若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买额温枪的数量为______ 个.9.重庆市某服装厂配套生产一批校服,有领带、衬衫、T恤三种.3月份,该厂家生产的领带、衬衫、T恤的数量比是4:5:6,马上进入4月份,春暖花开,气温骤升,该厂家,此时衬衫的总数立刻又生产了一批三种服装,其中衬衫增加的数量占总增加数量的25量将达到三种服装总数量的11,此时领带与T恤的数量比是6:13,已知领带、衬衫、30T恤这三种服装的成本价格分别是15元,60元,50元,厂家决定领带有1作为促销礼物6赠送,领带剩余部分按成本价格卖出,其余产品全部售出,最后三种服装的总利润率是50%,衬衫、T恤的销售价格均为正整数且均盈利,那么衬衫的售价最高是______ 元.10.元旦节前,某商店购进了一批A、B款式的大灯笼和若干小灯笼,其中小灯笼个数占灯笼总个数的80%,它们的进价之比为10:20:1,店主将三种灯笼分别加价50%、40%、100%进行销售,全部售完后利润率为54%.年关将至,该商店又购进了这三种灯笼,且进货量和之前分别相同,但是A、B款式的大灯笼进价分别上涨了50%、25%,小灯笼进价不变,于是店主将这两种大灯笼的价格分别在现在的进价基础上加价60%、40%进行销售,且购买一个A款式的大灯笼赠送两个小灯笼,购买一个B款式的大灯笼赠送4个小灯笼,余下的小灯笼售价与之前相同,那么这批灯笼卖完后,利润率为______ .11.疫情防控期间,苏老师用6820元现金为年级采购了额温枪和免洗手液两种防疫物品,额温枪每个125元,免洗手液每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于洗手液的数量),若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买额温枪的数量为______ 个.12. 我国新疆棉花以绒长、产量高、品质好而著称于世.来自国家统计局消息,2020年新疆棉花的播种量比2019年播种量有所下降,但棉花产量却大幅增长,又到棉花播种的季节,棉农老李与老张计划租用播种机进行播种,租用公司有A ,B 、C 三种类型的棉花播种机.它们的租金分别为每天每台A 型500元,B 型850元,C 型1300元.已知A 、B 、C 每台播种机每小时播种亩数之比为1:2:4,A 、B 类型播种机每天工作时间相同,C 类型播种机每天工作时间是它们的34.老李准备三类机器均租用,总共租用8台机器,刚好6天能完成播种.棉农老张的种植面积比老李家多13,他同样租用了8台机器,但是他将A 型和C 型的数量进行交换,B 型的数量不变,老张也刚好整数天数完成插种,则老张完成播种至少需付______ 元租金.13. 为迎接“五一节”的到来,某水果店推出了A 、B 、C 三类礼包,已知这三类礼包均由苹果、芒果、草莓三种水果搭配而成,每袋礼包的成本均为苹果、芒果、草莓三种水果成本之和.每袋A 类礼包有5斤苹果、2斤芒果、8斤草莓;每袋C 类礼包有7斤苹果、1斤芒果、4斤草莓.已知每袋A 的成本是该袋中苹果成本的3倍,利润率为30%,每袋B 的成本是其售价的56,利润是每袋A 利润的49;每袋C 礼包利润率为25%.若该网店12月12日当天销售A 、B 、C 三种礼包袋数之比为4:6:5,则当天该水果店销售总利润率为______ .14. 某超市根据消费者的喜爱,推出了A 、B 、C 三种糖果礼盒,A 礼盒装有甲种糖果1颗,乙种糖果2颗,丙种糖果2颗;B 礼盒装有甲种糖果2颗,乙种糖果1颗,丙种糖果1颗;C 礼盒装有甲种糖果2颗,乙种糖果2颗,丙种糖果2颗;每个礼盒的成本为盒中三种糖果成本之和,已知A 礼盒的成本是1颗甲种糖果的5倍,三种礼盒销售时,A 、B 、C 礼盒分别在成本价的基础上提高了20%、25%、50%,第一天销售后发现,B 种礼盒销售数量占总销量的40%,当天销售三种礼盒的利润率为36%.第二天销售时,A 、B 、C 礼盒原来售价的基础上都打九折销售,这样三种礼盒的销量都比第一天上升了50%,第二天销售三种礼盒的利润率是______ .15.传播正能量,树立新方向.“泌园”糕点店准备开发出A、B两款礼盒为奋斗的人们鼓劲、两款礼盒均由“加油打气”饼,“奋发图强”酥,“超越自我”糕三行糕点搭配而成.其中A礼盒一共有18块糕点、B礼盒一共有24块糕点.A礼盒中的“加油打气”饼的数量和B礼盒中的“超越自我”糕的数量一致、A礼盒中的“奋发图强”酥的数量和B礼盒中的“加油打气”饼的数量一致.每块“加油打气”饼、“奋发图强”酥、“超越自我”糕的成本分别是5元,2元,3元.A,B两种礼盒的包装盒成本之比为9:8.经测算、A 礼盒的总成本比B礼盒多12.5%(每种礼盒总成本=礼盒中糕点成本+包装盒成本).后因原材料成本上涨、每块“加油打气”饼,“奋发图强”酥,“超越自我”糕的成本分别上涨20%,50%,50%,包装盒成本不变,结果A礼盒比B礼盒的总成本多1元.则上涨后每个B礼盒的的总成本是______ 元.16.我校学生社团开展以来全校师生积极参与,为了了解同学们参与的意向,卢老师在全年级进行了随机抽样调查(被抽到的同学都填了意向表,且只选择了一个意向社团),统计后发现共A、B、C、D四个社团榜上有名.其中选C的人数比选D的少6人;选A的人数是选D的人数的整数倍;选A与选D的人数之和是选B与选C的人数之和的9倍;选A与选B的人数之和比选C与选D的人数之和多56人.则本参加调查问卷的学生有______ 人.17.端午将至,吃粽子是中华民族的传统.粽子馅料有很多品种,比如素馅,肉馅,甜味馅.去年某商人抓住商机,购进素馅,肉馅,甜味馅三种粽子.已知销售每袋素馅粽子的利润率为10%,每袋肉馅粽子的利润率为20%,每袋甜味馅粽子的利润率为30%,当售出的三种馅料粽子的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的三种馅料粽子的袋数之比为3:2:1时,商人得到的总利润率为20%,那么当售出的三种馅料粽子的袋数之比为2:3:4时,这个商人得到的总利润率为______ .18. 为了锻炼身体,小洋请健身教练为自己制定了A ,B ,C 三套运动组合,三种运动组合同时进行.已知A 组合比B 组合每分钟多消耗2卡路里,三种组合每分钟消耗的卡路里与运动时间均为整数.第一天,B 组合比A 组合运多运动12min ,C 组合比A 组合少运动8min ,且A 组合当天运动的时间大于15min 且不超过20min ,当天消耗卡路里的总量为1068.小洋想增加运动量,在第二天,增加了D 组合(每分钟消耗的卡路里也为整数),四种运动组合同时进行.已知第二天A 组合运动时间比第一天增加了13,B 组合运动减少的时间比A 组合增加的时间多8min ,C 组合运动时间不变.经统计,两天运动时间相同,则D 组合比B 组合每分钟多消耗______ 卡路里时,才能使第二天的运动消耗1136卡路里.19. 磁器口古镇正在创建国家5A 级景区,某门店积极响应号召,将A 、B 、C 三种茶具以甲、乙、丙三种礼盒方式进行销售宣传.甲礼盒含有A 茶具1个,B 茶具2个,C 茶具5个,乙礼盒含有A 茶具1个,B 茶具1个,C 茶具2个,丙礼盒含有A 茶具1个,B 茶具3个,C 茶具4个,甲、乙、丙三种礼盒均需相同的礼盒包装费用,且每个C 茶具成本是每个B 茶具成本的13,甲、乙两种礼盒总成本之比是3:2,并将甲、乙、丙三种礼盒均以利润率50%进行定价销售.在今年元旦节当天,甲、乙两种礼盒均打8折销售且销量相同,丙礼盒打9折销售,甲、乙、丙三种礼盒总利润率达到23%,则今年元旦节当天丙礼盒销量与总销量之比为______ .(利润率=售价−成本成本×100%)20.“手中有粮,心中不慌”.为优选品种,提高农作物产量,某农业科技小组对A ,B ,C 三个小麦品种进行种植对比研究.去年A ,B ,C 三个品种各种植了相同的面积,但产量不同.收获后A ,B ,C 三个品种的售价之比为2:3:5,全部售出后,三个品种的总销售额是其中C 品种销售额的3倍.今年,科技小组加大了小麦种植的科研力度,在A ,B ,C 种植亩数不变的情况下,预计A ,B ,C 三个品种平均亩产量将在去年的基础上分别增加15、16和14、由于B 品种深受市场的欢迎,预计每千克售价将在去年的基础上上涨50%,A 、C 两个品种的售价不变.若B ,C 两个品种今年全部售出后销售额之比是7:6.则今年A ,C 两个品种的产量之比是______ .。

2020重庆中考复习数学第18题专题训练二(含答案解析)

2020重庆中考复习数学第18题专题训练二(含答案解析)

2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为例2、如图,正方形ABCD的边长为2,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为练习:如图,正方形ABCD的边长为4,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为例3、(2018•杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= .练习:1、(2019•济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于 .2、(2016•新县校级模拟)如图,将矩形纸片ABCD沿直线AE折叠,点B恰好落在线段CD的中点F上,点G是线段AF上一动点(不与A,F重合),点G过GH⊥AB,垂足为H,将矩形沿直线GH翻折,点A恰好落在线段BH上点A′处.若AB长为8,则当△A′GE为直角三角形时,AH的长.为例4、(2014•锦江区校级自主招生)如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D 是BC边上异于B、C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .练习:(2018秋•锦江区校级期末)如图,在△ABC,∠ABC=45°,∠ACB=60°,BC=4+4,D是BC边上异于点B,C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .例5、(2019秋•宿迁期末)如图,在矩形ABCD中,AD=3AB=6.点P是AD的中点,点E在BC 上,CE=2BE,点M、N在线段BD上,若△PMN是等腰三角形且底角与∠DEC相等,则MN= .练习:1、(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN= .2、在矩形ABCD中,AD=3CD=6,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则PN= .例6、如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是 .练习:如图,在矩形ABCD中,AB=4,BC=3,点E为对角线AC上一动点(不与点A、C重合),过点E作直线MN∥BC,分别交AB、CD于点M、N,将矩形ADNM沿MN折叠,使得点A、D的对应点P、Q分别落在AB、CD所在的直线上,若△ACP为等腰三角形,则BM的长为 .2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .解:延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD,∴∠D=180°﹣∠A=120°,根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°﹣∠A′D′F=60°,∵D′F⊥CD,∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,∵∠BCM=180°﹣∠BCD=120°,∴∠CBM=180°﹣∠BCM﹣∠M=30°,∴∠CBM=∠M,∴BC=CM,设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y,∴FM=CM+CF=2x+y,在Rt△D′FM中,tan∠M=tan30°===,∴x=y,∴==.故答案为:.练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为( )A.4﹣2 B.2﹣2 C.﹣1 D.解:延长FC 、A ′D ′交于M ,设CF =x ,FD =2﹣x ,∵四边形ABCD 为菱形,∠A =60°,∴AB ∥CD ,∠DCB =∠A =60°,∴∠A +∠D =180°, ∴∠D =120°,由折叠得:∠BD ′F =∠D =120°,∴∠FD ′M =180°﹣120°=60°, ∵D ′F ⊥CD ,∴∠D ′FC =90°,∴∠M =90°﹣60°=30°,在Rt △FOC 中,∠DCB =60°,∵∠DCB =∠CBM +∠M ,∴∠CBM =60°﹣30°=30°, ∵∠BCD =∠CBM +∠M =60°,∴∠CBM =∠M =30°,∴CB =CM =2,由折叠得:D ′F =DF =2﹣x ,tan M =tan30°===,∴x =4﹣2,∴CF =4﹣2,故选:A .例2、如图,正方形ABCD 的边长为2,点M 、P 、N 分别在CD 为直径的半圆上、边BC 、边AB 上运动,并且保持PM ⊥PN ,PM :PN=2:3则线段PM 长的最小值为K解:取CD 中点O ,NP 中点K ,连接BK 、BO 、MO 、KM 。

最新重庆中考数学18题专练

最新重庆中考数学18题专练

最新重庆中考数学18题专练1.某服装店老板经营销售A、B两种款式的服装,其中每件A种款式的利润率为50%,每件B种款式的利润率为20%,当售出的A种款式的件数比B种款式的件数少70%时,这个老板得到的总利润率为25%;当售出的A种款式的件数比B种款式的件数多50%时,这个老板得到的总利润率为.2.某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为.3.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A原料液上涨20%,B原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是.4.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的原成本价为10元每千克,B原料液的原成本价为5元每千克,按原售价销售可以获得50%的利润率. 由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高元/千克.5.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮,其中,甲种袋装粗粮每袋装3千克A粗粮,1千克B 粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本之和,已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率为20%.当销售这两种袋装粗粮的销售利润率为24%,该电商销售甲、乙两种袋装租粮的数量之比是 .6.双十一”来临,为促进销售,某面包店将A、B、C三种面包以甲、乙两种方式进行搭配销售,两种方式均配成本价为5元的包装箱. 甲方式每箱含A面包1千克,B面包1千克,C面包3千克,乙方式每箱含A面包3千克,B面包1千克,C面包1千克已知每千克C面包比每千克A面包成本价高2.5元甲种方式(含包装箱)每箱成本为55元,现甲、乙两种方式分别在成本价(含包装箱)基础上提价20%和35%进行销售,两种方式销售完毕后利润率达到30%,则甲、乙两种方式的销量之比.7.某超市将A,B,C三种水果采用甲、乙、丙三种方式混合后装进礼盒进行销售.每盒的总成本为盒中A,B,C三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A,B,C三种水果6kg,3kg,1kg;乙种方式每盒分别装A,B,C三种水果2kg,6kg,2kg;甲每盒的总成本是每千克A 水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%作为标价,再打八折出售,获利为每千克A水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为2:2:5时,销售利润率为.1.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A 和B. 已知A和B的单价和为25元,小明计划购入A的数量比B的数量多3件,但一共不超过30件. 现商店将A的单价提高20%,B打8折出售,小明决定将A、B的原定数量对调,这样实际花费比原计划少7元. 已知调整前后的价格和数量均为整数,求小明原计划购买费用为.2.冬至节快到了,李老师和杨老师都准备绐班级同学买饺子吃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.如图,正方形ABCD中,E为BC上一点,BE=2CE,连接DE,F为DE中点,以DF为直角边作等腰Rt△DFG,连接BG,将△DFG绕点D顺时针旋转得△DF′G′,点G′恰好落在BG的
2,则S△GF′G′= . 延长线上,连接F′G,若BG=5
18、如图,在正方形ABCD中,E为AB的中点,连接CE,过点D作DF^CE于点F,连接AF,过点E作EH^AF于点H交CD的延长线于点M,EM交AD于点G,连接FG并延长交AM于点N,已知HF=12,则D GMN的面积等于▲.
18.正方形ABCD中,AB=4,点E为AD边上一点,点F为AB边上一点且∠DEC=∠AEF=60°,将顶点为D点的∠NDM绕着D点进行旋转,∠NDM=60°,若射线DM交线段EF于点H,若射线DN交线段EC于K点,交线段CB于G点,当HG平分∠DHF时,四边形EHGK的面积是。

18、如图,正方形ABCD 中,AD=4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将EFG ∆沿EF 翻折,得到EFM ∆,连接DM ,交EF 于点N ,若点F 是AB 的中点,则EMN ∆的周长是 。

相关文档
最新文档