导数与三次函数问题有答案

合集下载

导数专题(含答案

导数专题(含答案
是曲线 上点〔 〕处的切线的斜率
说明:导数的几何意义
可以简记为"k= ",
强化这一句话"斜率导数,导数斜率"
导数的物理意义:s=s<t>是物体运动的位移函数,物体在t= 时刻的瞬时速度是 .可以简记为 =
例1、已知函数 的图象在点 处的切线方程是 ,则 .
2、若函数 的导函数在区间[a,b]上是增函数,则函数 在区间[a,b]上的图像可能是〔〕
〔2〕设函数 则 〔〕
A.有最大值B.有最小值C.是增函数D.是减函数
3〕设 分别是定义在R上的奇函数和偶函数,当 时,
的解集为▲.
3>已知函数的单调性求参数范围
方法:常利用导数与函数单调性关系:即
"若函数单调递增,则 ;若函数单调递减,则 "来求解,注意此时公式中的等号不能省略,否则漏解.从而转化为不等式恒成立问题或利用数形结合来求参数〔 是二次型〕
[例]1函数y = f < x > = x3+ax2+bx+a2,在x = 1时,有极值10,则a = ,b =.
15.已知函数f<x>=-x3+3x2+9x+a.
〔I〕求f<x>的单调递减区间;
〔II〕若f<x>在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
解:〔I〕f’<x>=-3x2+6x+9.令f‘<x><0,解得x<-1或x>3,
综上,
4某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x〔x 10〕层,则每平方米的平均建筑费用为560+48x〔单位:元〕.为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

导数应用精选50题(含有答案)

导数应用精选50题(含有答案)

)
99
A. a b c
B. c > b > a
C. c > a > b
D. a > c > b
10. f (x)是函数f (x)的导函数, 将y f (x)和y f (x) 的图象画在同一直角坐标系中,不
可能正确的是
()
11.已知函数 y xf (x) 的图象如图 3 所示(其中 f (x) 是函数 f (x) 的导函数).下面四个图 象中, y f (x) 的图象大致是( )
30.(本大题满分 14 分) 设 x=3 是函数 f(x)=(x2+a+b)e3-x(x∈R)的一个极值点. (1)求 a 与 b 的关系式(用 a 表示 b),并求 f(x)的单调区间;(2)a>0,g(x)=( a+ 25 ) ex.若
4 存在 x1、x2∈[0,4]使得| f(x1)- g(x2)|<1 成立,求 a 的取值范围.
(3)若函数 y=f(x)+g(x)有两个不同的极值点 x1,x2(xl <x2),且 x2 -xl >1n2,求实数 a 的取值范围.
28.(本题满分 14 分)
5
已知函数 f x a ln x 1 a x 1 x2, a R
2
(1)当 0 a 1时,求函数 f x 的单调区间;
(2)已知 f x 0 对定义域内的任意 x 恒成立,求实数 a 的范围.
(1)求 a, b 的值;(2)求函数 f (x) 的极小值.
26.(本小题满分 13 分)已知定义在正实数集上的函数 f (x) 1 x2 2ex , g(x) 3e2 ln x b (其中 e 为常数, e 2.71828 ),若这两个函数

(完整版)专题三导数与三次函数

(完整版)专题三导数与三次函数
9 32002310xx 2001210xx 01x或012x 所求的切线方程为2y或9410xy 3、已知函数32fxxaxbxc在23x与1x时都取得极值。 ⑴求a、b的值及函数fx的单调区间; ⑵若对1,2x,不等式2fxc恒成立,求c的取值范围。(2006江西) 解:⑴232fxxaxb,依题意,得 212403931320fabfab,解得122ab ∴232321fxxxxx x变化时,fx、fx的变化情况如下表 x 2,3 23 2,13 1 1, fx + 0 - 0 + fx 极大值 极小值 所以fx的递增区间为2,3与1,,递减区间为2,13 ⑵32122fxxxxc,1,2x 当23x时,2227fxc为极大值,而22fc ∴22fc为最大值
7 ∴33332222mamambbmmccm 由155fabc ∴32532mmm 6m ∴23ma,39,2122mbcm 2、若函数32111132fxxaxax在区域1,4内为减函数,在区间6,上为增函数,试求实数a的取值范围。(2004全国卷) 解:21fxxaxa 令0fx解得11x,21xa ①当11a即2a时,fx在1,上为增函数,不合题意 ②当11a即2a时,函数fx在,1上为增函数,在1,1a内为减函数,在1,a上为增函数,依题意应有: 当1,4x时,0fx,当6,x时,0fx 所以416a,解得 57a 综上,a的取值范围是5,7 3、已知函数323fxaxbxx在1x处取得极值, ⑴讨论1f和1f是函数fx的极大值还是极小值; ⑵过点0,16A作曲线yfx的切线,求此切线方程。(2004天津)
3 x ,1 -1 (-1,1) 1 1, fx + 0 - 0 + ()fx 极大值 极小值 ∴()fx的单调递增区间是,1和1, ()fx的单调递减区间是1,1 当1x时,fx有极大值311312faa 当1x时,fx有极小值311312faa 要使()fx有一个零点,需且只需2020aa,解得2a 要使()fx有二个零点,需且只需2020aa,解得2a 要使()fx有三个零点,需且只需2020aa,解得22a 变式五、已知函数33,0fxxxa,如果过点,2Aa可作曲线yfx的三条切线,求a的取值范围 解:设切点为00,xy,则233fxx ∴切线方程000yyfxxx 即 2300332yxxx ∵切线过点A,2a ∴23002332xax 即 320023320xaxa ∵过点,2Aa可作yfx的三条切线 ∴方程有三个相异的实数根

导数复习题(含答案)

导数复习题(含答案)
所以函数 在 上是增函数,
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()

导数解答题:求取值范围(1)基础(题目含详细答案)

导数解答题:求取值范围(1)基础(题目含详细答案)

《导数解答题:求取值范围》1、已知三次函数)(x f =b x ax x +-+623,a 、b 为实数,1)0(=f ,曲线=y )(x f 在点(1,)1(f )处切线的斜率为-6。

(1)求函数)(x f 的解析式;(2)若)(x f |12|-≤m 对任意的2(-∈x ,2)恒成立,求实数m 的取值范围。

【解】(1)623)(2-+='ax x x f 由导数的几何意义,6)1(-='f ∴ 23-=a ∵ 1)0(=f ∴ 1=b ∴ )(x f =162323+--x x x (2))2)(1(3633)(2-+=--='x x x x x f , 令)(x f '=0得11-=x ,22=x当∈x (-2,-1)时,0)(>'x f ,)(x f 递增; 当∈x (-1,2)时,0)(<'x f ,)(x f 递减。

∴ 在区间(-2,2)内,函数)(x f 的最大值为29)1(=-f ∵ )(x f |12|-≤m 对任意的2(-∈x ,2)恒成立∴ 29|12|≥-m ∴ 2912≥-m 或2912-≤-m ∴ 411≥m 或47-≤m2、已知()()R c b a c bx x ax x f ∈++-=,,23在()0,∞-上是增函数,在[0,3]上是减函数,且方程()0=x f 有三个实根.(Ⅰ)求b 的值;(Ⅱ) 求实数a 的取值范围。

【解】 (Ⅰ)∵()b x ax x f +-='232()x f 在()0,∞-上是增函数,在[0,3]上是减函数.∴ 当x=0时()x f 取得极小值.∴()00='f . ∴b=0∵方程()0=x f 有三个实根, ∴a≠0∴()b x ax x f +-='232=0的两根分别为.32,021ax x == 又()x f 在()0,∞-上是增函数,在[0,3]上是减函数.∴()0>'x f 在()0,∞-∈x 时恒成立,()0≤'x f 在[]3,0∈x 时恒成立 由二次函数的性质可知3320≥>a a 且∴920≤<a . 故实数a 的取值范围为2(0,]9. 3、已知函数x e x f =)(,曲线)(x f y =在点),(00y x 处的切线方程为)(x g y = (1)证明:对R x ∈∀,)()(x g x f ≥;(2)当0≥x 时,xaxx f ++≥11)(恒成立,求实数a 的取值范围 【解】(1)由x e x f =)(得x e x f =')(由题意知00)()(0x x e x x e x g +-=令)1()()()()(00000+--=---=-=x x e e e x x e e x g x f x h x x x x x 则0)(x x e e x h -=' 当0x x <时,0)(<'x h ,故)(x h 在),(0x -∞单调递减当0x x >时,0)(>'x h ,故)(x h 在),(0+∞x 单调递增 所以0)()(0=≥x h x h ,即)()(x g x f ≥ (2)ⅰ)当1≤a 时,由(1)知,当00=x 得1+≥x e x 故01)1(11111)(≥+-+=+-≥+--=+--xa x x x ax x x ax e x ax x f x ⅱ)当1>a 时,令ax x e ax x x f x H x -+-=-+-=)1)(1()1)(1)(()( 则a x e x H x --+='1)2()( 令a x e x H x M x --+='=1)2()()(,则0)3()(>+='x e x M x , 故)(x H '在),0[+∞上单调递增,而011)02()0(0<-=--+='a a e H 故存在区间),0(0x 使得0)(<'x H ,即存在区间),0(0x 使)(x H 单调递减,所以存在区间),0(0x 使得0)0()(=<H x H ,即xaxx f ++<11)( 这与xaxx f ++≥11)(在),0[+∞上恒成立矛盾 综上可得1≤a4、已知f (x )=ln ()ax x x a R +∈。

函数导数三角函数客观试题及答案

函数导数三角函数客观试题及答案

1、(理)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,f (x -3),x >0,则f (2012)等于( )A .-1B .1C .-3D .3[答案] A[解析] f (2012)=f (2009)=f (2006)=……=f (2)=f (-1)=2×(-1)+1=-1.2、(文)设函数f (x )=⎩⎪⎨⎪⎧21-x -1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由条件知,⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎨⎧x 0≥1lg x 0>1,∴x 0<0或x 0>10.3、函数f (x )=ln(4+3x -x 2)的单调递减区间是( ) A .(-∞,32]B .[32,+∞)C .(-1,32]D .[32,4)[答案] D[解析] 由4+3x -x 2>0得,函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-(x -32)2+254的减区间为[32,4),∵e >1,∴函数f (x )的单调减区间为[32,4).4、如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是________.[答案] [-14,0][解析] (1)当a =0时,f (x )=2x -3,在定义域R 上单调递增,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述-14≤a ≤0.5、(文)若函数f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.[答案] (0,1][解析] 由f (x )=-x 2+2ax 得函数对称轴为x =a , 又在区间[1,2]上是减函数,所以a ≤1, 又g (x )=ax +1在[1,2]上减函数,所以a >0, 综上a 的取值范围为(0,1].6、(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( )A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x+a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x)为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.7、(2010·山东)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .3B .1C .-1D .-3[答案] D[解析] 由条件知f (0)=0,∴b =-1, ∴f (-1)=-f (1)=-(21+2×1-1)=-3.8、(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝ ⎛⎭⎪⎫-π3,0∪⎝ ⎛⎭⎪⎫π3,π[解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎨⎧ f (x )<0g (x )>0,或⎩⎨⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.9、(理)(2010·北京崇文区)设a =⎝ ⎛⎭⎪⎫120.5,b =0.30.5,c =log 0.30.2,则a 、b 、c 的大小关系是( )A .a >b >cB .a <b <cC .b <a <cD .a <c <b[答案] C[解析] y =x 0.5在(0,+∞)上是增函数,1>12>0.3,∴1>a >b ,又y =log 0.3x 在(0,+∞)上为减函数, ∴log 0.30.2>log 0.30.3=1,即c >1,∴b <a <c .10、(文)已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0)2x (x ≤0),若f (a )=12,则实数a=( )A .-1 B. 2 C .-1或 2 D .1或- 2[答案] C[解析] 当a >0时,log 2a =12,∴a =2;当a <0时,2a=12,∴a=-1,选C.11、(文)若关于x 的方程4x +(1-a )·2x +4=0有实数解,则实数a 的取值范围是( )A.(-∞,5] B.[5,+∞) C.[4,+∞) D.(-5,5] [答案] B[解析]a-1=2x+42x≥22x·42x=4等号在2x=42x,即x=1时成立,∴a≥5.12、(理)(2011·重庆文,6)设a=log1312,b=log1323,c=log343,则a、b、c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.b<c<a [答案] B[解析]∵a=log1312,b=log1323,∵log13x单调递减而12<23∴a>b且a>0,b>0,又c<0.故c<b<a. 13、(文)函数f(x)=|log12x|的图象是()[答案] A[解析]f(x)=|log12x|=|log2x|=⎩⎪⎨⎪⎧log 2x (x ≥1)-log 2x (0<x <1),故选A. 14、(2011·四川文,4)函数y =(12)x +1的图象关于直线y =x 对称的图象大致是( )[答案] A [解析]解法一:作y =(12)x 的图象,然后向上平移1个单位,得y =(12)x+1的图象,再把图象关于y =x 对称即可.15、函数y =log 12(x 2-5x +6)的单调增区间为( )A .(52,+∞)B .(3,+∞)C .(-∞,52)D .(-∞,2)[答案] D[解析] 由x 2-5x +6>0得x >3或x <2,由s =x 2-5x +6=(x -52)2-14知s =x 2-5x +6在区间(3,+∞)上是增函数,在区间(-∞,2)上是减函数,因此函数y =log 12(x 2-5x +6)的单调增区间是(-∞,2),选D.16、设正数x 、y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的取值范围是( )A .(0,6]B .[6,+∞)C .[1+7,+∞)D .(0,1+7][答案] B[解析] ∵log 2(x +y +3)=log 2x +log 2y =log 2(xy ), ∴x +y +3=xy .由x 、y ∈R +知xy ≤(x +y 2)2,∴x +y +3≤(x +y 2)2.令x +y =A ,∴A +3≤A 24,∴A ≥6或A ≤-2(舍去),故选B.17、(理)函数y =x 35在[-1,1]上是( ) A .增函数且是奇函数 B .增函数且是偶函数 C .减函数且是奇函数 D .减函数且是偶函数[答案] A[解析] ∵35的分子分母都是奇数,∴f (-x )=(-x ) 35=-x 35=-f (x ),∴f (x )为奇函数,又35>0,∴f (x )在第一象限内是增函数,又f (x )为奇函数,∴f (x )在[-1,1]上是增函数.18、(理)若幂函数f (x )的图象经过点A ⎝ ⎛⎭⎪⎫14,12,则它在A 点处的切线方程为________.[答案] 4x -4y +1=0[解析] 设f (x )=x α,∵f (x )图象过点A ,∴⎝ ⎛⎭⎪⎫14α=12,∴α=12.∴f (x )=x12,∴f ′(x )=12x,∴f ′⎝ ⎛⎭⎪⎫14=1,故切线方程为y -12=1×⎝ ⎛⎭⎪⎫x -14, 即4x -4y +1=0.19、(2011·汕头一检)若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(-∞,-52)B .(52,+∞)C .(-∞,-2)∪(2,+∞)D .(-52,+∞)[答案] B[解析] 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0⇒m >52,故选B.20、(理)若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围为( )A .a <-1B .a >1C .-1<a <1D .0≤a <1[答案] B[解析] 令f (x )=2ax 2-x -1,当a =0时显然不适合题意. ∵f (0)=-1<0 f (1)=2a -2∴由f (1)>0得a >1,又当f (1)=0,即a =1时,2x 2-x -1=0两根x 1=1,x 2=-12不合题意,故选B.21、(理)(2010·吉林市质检)函数f (x )=⎝ ⎛⎭⎪⎫12x -sin x 在区间[0,2π]上的零点个数为( )A .1个B .2个C .3个D .4个[答案] B[解析] 在同一坐标系中作出函数y =⎝ ⎛⎭⎪⎫12x与y =sin x 的图象,易知两函数图象在[0,2π]内有两个交点.22、(文)(2011·舟山月考)函数f (x )=⎩⎪⎨⎪⎧ln x +2x -6 (x >0)-x (x +1) (x ≤0)的零点个数是( )A .0B .1C .2D .3[答案] D[解析] 令-x (x +1)=0得x =0或-1,满足x ≤0; 当x >0时,∵ln x 与2x -6都是增函数, ∴f (x )=ln x +2x -6(x >0)为增函数, ∵f (1)=-4<0,f (3)=ln3>0,∴f (x )在(0,+∞)上有且仅有一个零点, 故f (x )共有3个零点.23、(2010·宁夏石嘴山一模)函数y =2x 3-3x 2-12x +5在[0,3]上的最大值,最小值分别是()A.5,-15 B.5,-4C.-4,-15 D.5,-16[答案] A[解析]∵y′=6x2-6x-12=0,得x=-1(舍去)或x=2,故函数y=f(x)=2x3-3x2-12x+5在[0,3]上的最值可能是x取0,2,3时的函数值,而f(0)=5,f(2)=-15,f(3)=-4,故最大值为5,最小值为-15,故选A.24、若a>2,则函数f(x)=13x3-ax2+1在区间(0,2)上恰好有() A.0个零点B.1个零点C.2个零点D.3个零点[答案] B[解析]f′(x)=x2-2ax=x(x-2a)=0⇒x1=0,x2=2a>4.易知f(x)在(0,2)上为减函数,且f(0)=1>0,f(2)=113-4a<0,由零点判定定理知,函数f(x)=13x3-ax2+1在区间(0,2)上恰好有一个零点.25、(2011·北京模拟)若函数f(x)=ln x-12ax2-2x存在单调递减区间,则实数a的取值范围是________.[答案][-1,+∞)[分析]函数f(x)存在单调减区间,就是不等式f′(x)<0有实数解,考虑到函数的定义域为(0,+∞),所以本题就是求f′(x)<0在(0,+∞)上有实数解时a的取值范围.[解析]解法1:f′(x)=1x-ax-2=1-ax2-2xx,由题意知f ′(x )<0有实数解,∵x >0,∴ax 2+2x -1>0有实数解.当a ≥0时,显然满足;当a <0时,只要Δ=4+4a >0,∴-1<a <0,综上知a >-1.解法2:f ′(x )=1x -ax -2=1-ax 2-2x x , 由题意可知f ′(x )<0在(0,+∞)内有实数解. 即1-ax 2-2x <0在(0,+∞)内有实数解. 即a >1x2-2x 在(0,+∞)内有实数解.∵x ∈(0,+∞)时,1x 2-2x =(1x -1)2-1≥-1,∴a >-1.26、(文)如图,过函数y =x sin x +cos x 图象上点(x ,y )的切线的斜率为k ,若k =g (x ),则函数k =g (x )的图象大致为()[答案] A[解析] ∵y ′=sin x +x cos x -sin x =x cos x , ∴k =g (x )=x cos x ,易知其图象为A.27、(2011·汕头模拟)设f (x )=⎩⎪⎨⎪⎧x 2 x ∈[0,1]2-x x ∈(1,2],则⎠⎛02f (x )d x 等于( )A.34B.45C.56 D .不存在[答案] C[解析] ⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3|10+⎪⎪⎪⎝ ⎛⎭⎪⎫2x -12x 221=56. 28、(2010·德州阶段检测) ⎠⎜⎜⎛-π2π2 (sin x +cos x )d x 的值是( )A .0 B.π4 C .2 D .4[答案] C[解析]⎠⎜⎜⎛-π2π2 (sin x +cos x )d x =(-cos x +sin x )|⎪⎪⎪⎪π2-π2=2.29、(2011·武汉调研)若cos α=35,-π2<α<0,则tan α=( )A.43B.34 C .-43 D .-34 [答案] C[解析] 依题意得,sin α=-45,tan α=sin αcos α=-43,选C.30、(文)(2010·四川文)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π10 B .y =sin ⎝ ⎛⎭⎪⎫2x -π5C .y =sin ⎝ ⎛⎭⎪⎫12x -π10D .y =sin ⎝ ⎛⎭⎪⎫12x -π20 [答案] C[解析] ∵向右平移π10个单位,∴用x -π10代替y =sin x 中的x ;∵各点横坐标伸长到原来的2倍,∴用12x 代替y =sin ⎝ ⎛⎭⎪⎫x -π10中的x ,∴得y =sin ⎝ ⎛⎭⎪⎫12x -π10. 31、(理)(2011·吉林一中月考)函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图,则( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π4[答案] C[解析] ∵T4=3-1=2,∴T =8,∴ω=2πT =π4.令π4×1+φ=π2,得φ=π4,∴选C. 32.在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665 D .-1665 [答案] A[解析] 在△ABC 中,0<A <π,0<B <π,cos A =45,cos B =513,∴sin A =35,sin B =1213,所以cos C =cos[π-(A +B )]=-cos(A +B ) =sin A ·sin B -cos A ·cos B =35×1213-45×513=1665,故选A. 33、(文)(2010·北京东城区)在△ABC 中,如果sin A =3sin C ,B =30°,那么角A 等于( )A .30°B .45°C .60°D .120° [答案] D[解析] ∵△ABC 中,B =30°,∴C =150°-A , ∴sin A =3sin(150°-A )=32cos A +32sin A ,∴tan A =-3,∴A =120°.34、(理)已知tan α=-2,则14sin 2α+25cos 2α的值是( )A.257B.725 C.1625 D.925 [答案] B[解析] 14sin 2α+25cos 2α=14sin 2α+25cos 2αsin 2α+cos 2α=14tan 2α+25tan 2α+1=725. 35、已知cos(α-β)=35,sin β=-513,且α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫-π2,0,则sin α=( )A.3365B.6365 C .-3365 D .- 6365[答案] A[解析]∵⎩⎪⎨⎪⎧0<α<π2-π2<β<0,∴0<α-β<π,又cos(α-β)=35,∴sin(α-β)=1-cos 2(α-β)=45;∵-π2<β<0,且sin β=-513,∴cos β=1213.从而sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365.36、(2011·重庆理,6)若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B .8-4 3C .1 D.23[答案] A[解析] 在△ABC 中,C =60°, ∴a 2+b 2-c 2=2ab cos C =ab ,∴(a +b )2-c 2=a 2+b 2-c 2+2ab =3ab =4, ∴ab =43,选A.37、(2011·深圳二调)在△ABC 中,已知a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,且a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°[答案] D[解析] 由正弦定理得a sin A =bsin B ,所以4sin30°=43sin B ,sin B =32.又0°<B <180°,因此有B =60°或B =120°,选D.6.(文)(2010·天津理)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°[答案] A[解析] 由余弦定理得:cos A =b 2+c 2-a 22bc ,由题知b 2-a 2=-3bc ,c 2=23bc ,则cos A =32, 又A ∈(0°,180°),∴A =30°,故选A.38、2011·皖南八校第二次联考)已知向量a =(3,4),b =(2,-1),如果向量a +λb 与b 垂直,则λ的值为( )A.52 B .-52C.25 D .-25 [答案] D[解析] ∵a =(3,4),b =(2,-1),∴a +λb =(3+2λ,4-λ),故2(3+2λ)-(4-λ)=0,∴λ=-25,故选D.39、(2011·宁波十校联考)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10) [答案] C[解析] 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8).40、已知△ABC 中,AB →=a ,AC →=b ,a ·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于( )A .30°B .120°C .150°D .30°或150° [答案] C[解析] S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a ·b <0,∴∠BAC 为钝角,∴∠BAC =150°,选C.41、(2011·唐山联考)已知c 、d 为非零向量,且c =a +b ,d =a -b ,则|a |=|b |是c ⊥d 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] 因为c ,d 为非零向量,所以c ⊥d ⇔c ·d =0⇔a 2-b 2=0⇔|a |2-|b |2=0⇔|a |=|b |.因此,|a |=|b |是c ⊥d 的充要条件,选C.42、(2011·河南质量调研)直线ax +by +c =0与圆x 2+y 2=9相交于两点M 、N ,若c 2=a 2+b 2,则OM →·ON →(O 为坐标原点)等于( )A .-7B .-14C .7D .14 [答案] A[解析] 记OM →、ON →的夹角为2θ.依题意得,圆心(0,0)到直线ax +by +c =0的距离等于|c |a 2+b 2=1,∴cos θ=13,∴cos2θ=2cos 2θ-1=2×(13)2-1=-79,∴OM →·ON →=3×3cos2θ=-7,选A.。

导数复习导数大题练习(含详解答案)

导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。

〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。

利用导数处理三次多项式函数中的问题

利用导数处理三次多项式函数中的问题
①当a=0时,g(x)=-(x-1)2,此时g(x)与x轴只有一个交点.
②当a<0时, >0 <x<1; <0 或x>1,
∴g(x)极大值为g(1)=- >0,
g(x)极小值为g( )= Байду номын сангаас0.
∴当a<0时,g(x)的图像与x轴有三个不同的交点.
如图3.4—21.
③当0<a 1时, <0 <x<1; >0 或x>1,
(注: =0在x M是否有解,应由 的具体的解析式而定)
例3.已知函数f(x)=x3-ax2+(3-2a)x+b在为增函数,求a的最大整数值.
解:∵f(x)为(0,+ )上的增函数,∴ =3x2-2ax+3-2a 0,对x>0恒成立,
只需a min.∵ =
.当且仅当x= 时取等号.∴ min= .
则a 1.242.∴满足条件的a的最大整数值为1.
说明:
(1)当函数f(x)在x=x0处的导数值等于零,则称x=x0f(x)的一个驻点.
(2)当a<0时,可类似研究f(x)=ax3+bx2+cx+d与其导函数 =3ax2+2bx+c的关系.
例1.已知函数f(x)=ax3+2x2+ax+1(a 0)的图像上存在极值点,则a的取值范围.
解:由 =3ax2+4x+a与f(x)的图像的关系知,f(x)的图像上存在极值点对应着 的判别式
g(x)的极大值为g(1)=- <0,
g(x)极小值为g( )= >0.
∴当0<a≤1时,g(x)的图像与x轴只有一个交点图3.4—22.

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析1.已知函数 ().(1)若,求函数的极值;(2)设.①当时,对任意,都有成立,求的最大值;②设的导函数.若存在,使成立,求的取值范围.【答案】(1)参考解析;(2)①-1-e-1,②(-1,+∞)【解析】(1)由函数 (),且,所以对函数求导,根据导函数的正负性可得到结论(2)①当时,对任意,都有成立,即时,恒成立. 由此可以通过分离变量或直接求函数的最值求得结果,有分离变量可得b≤x2-2x-在x∈(0,+∞)上恒成立.通过求函数h(x)=x2-2x- (x>0)的最小值即可得到结论.②若存在,使.通过表示即可得到=,所以求出函数u(x)=(x>1)的单调性即可得到结论.(1)当a=2,b=1时,f (x)=(2+)e x,定义域为(-∞,0)∪(0,+∞).所以f ′(x)=e x. 2分令f ′(x)=0,得x1=-1,x2=,列表(0,)(,+∞)-↗极大值极小值↗由表知f (x)的极大值是f (-1)=e-1,f (x)的极小值是f ()=4. 4分(2)①因为g (x)=(ax-a)e x-f (x)=(ax--2a)e x,当a=1时,g (x)=(x--2)e x.因为g (x)≥1在x∈(0,+∞)上恒成立,所以b≤x2-2x-在x∈(0,+∞)上恒成立. 7分记h(x)=x2-2x- (x>0),则h′(x)=.当0<x<1时,h′(x)<0,h(x)在(0,1)上是减函数;当x>1时,h′(x)>0,h(x)在(1,+∞)上是增函数;所以h(x)min=h(1)=-1-e-1;所以b的最大值为-1-e-1. 9分解法二:因为g (x)=(ax-a)e x-f (x)=(ax--2a)e x,当a=1时,g (x)=(x--2)e x.因为g (x)≥1在x∈(0,+∞)上恒成立,所以g(2)=-e2>0,因此b<0. 5分g′(x)=(1+)e x+(x--2)e x=.因为b<0,所以:当0<x<1时,g′(x)<0,g(x)在(0,1)上是减函数;当x>1时,g′(x)>0,g(x)在(1,+∞)上是增函数.所以g(x)min=g(1)=(-1-b)e-1 7分因为g (x)≥1在x∈(0,+∞)上恒成立,所以(-1-b)e-1≥1,解得b≤-1-e-1因此b的最大值为-1-e-1. 9分②解法一:因为g (x)=(ax--2a)e x,所以g ′(x)=(+ax--a)e x.由g (x)+g ′(x)=0,得(ax--2a)e x+(+ax--a)e x=0,整理得2ax3-3ax2-2bx+b=0.存在x>1,使g (x)+g ′(x)=0成立.等价于存在x>1,2ax3-3ax2-2bx+b=0成立. 11分因为a>0,所以=.设u(x)=(x>1),则u′(x)=.因为x>1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以>-1,即的取值范围为(-1,+∞). 14分解法二:因为g (x)=(ax--2a)e x,所以g ′(x)=(+ax--a)e x.由g (x)+g ′(x)=0,得(ax--2a)e x+(+ax--a)e x=0,整理得2ax3-3ax2-2bx+b=0.存在x>1,使g (x)+g ′(x)=0成立.等价于存在x>1,2ax3-3ax2-2bx+b=0成立. 11分设u(x)=2ax3-3ax2-2bx+b(x≥1)u′(x)=6ax2-6ax-2b=6ax(x-1)-2b≥-2b 当b≤0时,u′(x)≥0此时u(x)在[1,+∞)上单调递增,因此u(x)≥u(1)=-a-b因为存在x>1,2ax3-3ax2-2bx+b=0成立所以只要-a-b<0即可,此时-1<≤0 12分当b>0时,令x0=>=>1,得u(x)=b>0,又u(1)=-a-b<0于是u(x)=0,在(1,x)上必有零点即存在x>1,2ax3-3ax2-2bx+b=0成立,此时>0 13分综上有的取值范围为(-1,+∞)------14分【考点】1.函数的极值.2.函数最值.3.函数恒成立问题.4.存在性的问题.5.运算能力.2.将一个边长分别为a、b(0<a<b)的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子.若这个长方体的外接球的体积存在最小值,则的取值范围是________.【答案】【解析】设减去的正方形边长为x,其外接球直径的平方R2=(a-2x)2+(b-2x)2+x2,由R′=0,∴x=(a+b).∵a<b,∴x∈,∴0<(a+b)< ,∴1<<.3.对于三次函数,给出定义:是函数的导函数,是的导函数,若方程有实数解,则称点为函数的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若,请你根据这一发现,求:(1)函数的对称中心为__________;(2)=________.【答案】(1);(2)2013.【解析】,,令,∴,∴∴对称中心为,∴,∴.【考点】1.新定义题;2.导数.4.已知,函数.(1)当时,写出函数的单调递增区间;(2)当时,求函数在区间[1,2]上的最小值;(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).【答案】(1);(2);(3)详见解析.【解析】(1)对于含绝对值的函数一般可通过讨论去掉绝对值化为分段函数再解答,本题当时,函数去掉绝对值后可发现它的图象是由两段抛物线的各自一部分组成,画出其图象,容易判断函数的单调递增区间;(2)时,所以,这是二次函数,求其在闭区间上的最小值,一般要分类讨论,考虑对称轴和区间的相对位置关系,从而判断其单调性,从而求出最小值;(3)函数在开区间上有最大值和最小值,必然要使开区间上有极大值和极小值,且使极值为最值,由于函数是与二次函数相关,可考虑用数形结合的方法解答.试题解析:(1)当时,, 2分由图象可知,的单调递增区间为. 4分(2)因为,所以. 6分当,即时,; 7分当,即时,. 8分. 9分(3), 10分①当时,图象如图1所示.图1由得. 12分②当时,图象如图2所示.图2由得. 14分【考点】含绝对值的函数、二次函数.5.设,当时,恒成立,则实数的取值范围为。

三次函数图像与性质(解析版)

三次函数图像与性质(解析版)

专题2-2三次函数图像与性质【题型1】求三次函数的解析式【题型2】三次函数的单调性问题【题型3】三次函数的图像【题型4】三次函数的最值、极值问题【题型5】三次函数的零点问题【题型6】三次函数图像,单调性,极值,最值综合问题【题型7】三次函数对称中心【题型8】三次函数的切线问题【题型9】三次函数根与系数的关系1/342/34【题型1】求三次函数的解析式(1)一般式:()³²f x ax bx cx d =+++(a ≠0)(2)交点式:()123()()()f x a x x x x x x =---(a ≠0)1.若三次函数()f x 满足()()()()00,11,03,19f f f f ''====,则()3f =()A .38B .171C .460D .965【解析】待定系数法,求函数解析式设()³²f x ax bx cx d =+++,则()232f x ax bx c '=++,由题意可得:()()()()0011031329f d f a b c d f c f a b c ⎧==⎪=+++=⎪⎨==⎪⎪=+'=⎩'+,解得101230a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,则()3210123f x x x x =-+,所以()32310312333171f =⨯-⨯+⨯=.【题型2】三次函数的单调性问题三次函数是高中数学中的一个重要内容,其考点广泛且深入,主要涉及函数的性质、图像、最值、零点以及与其他函数的综合应用等方面。

以下是对三次函数常见考点的详细分析:1.三次函数的定义与形式∙定义:形如f (x )=ax 3+bx 2+cx +d (其中a ≠=0)的函数称为三次函数。

∙形式:注意系数a ,b ,c ,d 的作用,特别是a 的正负决定了函数的开口方向(a >0开口向上,a <0开口向下)。

高考数学导数专项练习之三次函数

高考数学导数专项练习之三次函数

专题6: 三次函数1.已知322()3f x x ax bx a =+++在1x =-时有极值0,则(a b -= ) A .7- B .2-C .7-和2-D .以上答案都不对【解析】函数322()3f x x ax bx a =+++,2()36f x x ax b '∴=++,又函数322()3f x x ax bx a =+++在1x =-处有极值0,∴2360130a b a b a -+=⎧⎨-+-+=⎩, ∴13a b =⎧⎨=⎩或29a b =⎧⎨=⎩, 当13a b =⎧⎨=⎩时,22()363(1)0f x x ax b x '=++=+=,方程有两个相等的实数根,不满足题意; 当29a b =⎧⎨=⎩时,2()363(1)(3)0f x x ax b x x '=++=++=,方程有两个不等的实数根,满足题意;7a b ∴-=-故选:A .2.已知函数32()35f x x x =-+,()(1)()g x m x m R =+∈,若存在唯一的正整数0x ,使得00()()f x g x <,则实数m 的取值范围是( ) A .5[0,]4B .15[,]34C .15(,]34D .1(0,)3【解析】函数的导数2()363(2)f x x x x x '=-=-, 由()0f x '>得2x >或0x <,此时为增函数,由()0f x '<得02x <<,此时函数为减函数, 即当0x =时,函数取得极大值, 当2x =时函数取得极小值, 当0m 时,不满足条件.,当0m >时,f (2)1=,f (1)3=,f (3)5=, 若存在唯一的正整数0x ,使得00()()f x g x <, 则唯一的正整数02x =,则满足(2)(2)1(3)(3)5(1)(1)3g f g f g f >=⎧⎪=⎨⎪=⎩,即314523m m m >⎧⎪⎨⎪⎩,得135432m mm ⎧>⎪⎪⎪⎨⎪⎪⎪⎩,得1534m <, 则实数m 的取值范围是1(3,5]4.故选:C .3.设函数32()35f x x x ax a =--+-,若存在唯一的正整数0x ,使得0()0f x <,则a 的取值范围是( ) A .1(0,)3B .1(3,5]4C .1(3,3]2D .5(4,3]2【解析】设32()35g x xx =-+,()(1)h x a x =+,两个函数图象如图:要使存在唯一的正整数0x , 使得0()0f x <,只要(1)(1)(2)(2)(3)(3)g h g h g h ⎧⎪<⎨⎪⎩,即135281253272754a a a -+⎧⎪-+<⎨⎪-+⎩,解得1534a<; 故选:B .4.已知函数32()1f x x ax x =-+--在(,)-∞+∞上是单调函数,则实数a的取值范围是()A .(,[3,)-∞+∞B.[C .(,(3,)-∞+∞D.(【解析】由32()1f x x ax x =-+--,得到2()321f x x ax '=-+-,因为函数在(,)-∞+∞上是单调函数, 所以2()3210f x x ax '=-+-在(,)-∞+∞恒成立, 则△2412033a a=-⇒-,所以实数a 的取值范围是:[.故选:B . 5.若函数32()132x a f x x x =-++在区间1(2,3)上有极值点,则实数a 的取值范围是( )A .5(2,)2B .[2,5)2C .10(2,)3D .[2,10)3【解析】函数32()132x a f x x x =-++,2()1f x x ax ∴'=-+,若函数32()132x a f x x x =-++在区间1(2,3)上有极值点,则2()1f x x ax '=-+在区间1(2,3)内有零点 由210x ax -+=可得1a x x=+1(2x ∈,3), 1023a ∴<, 当2a =时,函数()f x 的导函数等于零时值只有1,可是两边的单调性相同,所以a 不能等于2. 故选:C . 6.若322()7f x x ax bx a a =++--在1x =处取得极大值10,则b a的值为()A .32-或12-B .32-或12C .32-D .12-【解析】322()7f x x ax bx a a =++--,2()32f x x ax b ∴'=++,又322()7f x x ax bx a a =++--在1x =处取得极大值10,f ∴'(1)320a b =++=,f (1)21710a b a a =++--=,28120a a ∴++=,2a ∴=-,1b =或6a =-,9b =.当2a =-,1b =时,2()341(31)(1)f x x x x x '=-+=--, 当113x <<时,()0f x '<,当1x >时,()0f x '>,()f x ∴在1x =处取得极小值,与题意不符;当6a =-,9b =时,2()31293(1)(3)f x x x x x '=-+=-- 当1x <时,()0f x '>,当3x <<时,()0f x '<,()f x ∴在1x =处取得极大值,符合题意;则9362b a =-=--, 故选:C .7.如果函数3211()(1)132f x x ax a x =-+-+在区间(1,4)上为减函数,在(6,)+∞上为增函数,则实数a 的取值范围是( ) A .5aB .57aC .7aD .5a 或7a【解析】函数3211()(1)132f x x ax a x =-+-+2()(1)(1)[(1)]f x x ax a x x a ∴'=-+-=---又函数()f x 区间(1,4)上为减函数,在(6,)+∞上为增函数,416a ∴- 57a ∴故选:B .8.已知函数3211()32f x x ax x =-+在区间1(2,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .5(2,)2D .10(2,)3【解析】函数3211()32f x x ax x =-+,求导2()1f x x ax '=-+,由()f x 在1(2,3)上既有极大值又有极小值,则()0f x '=在1(2,3)内应有两个不同实数根.1()02(3)011321()0f f a f a⎧'>⎪⎪'>⎪⎪⎨<<⎪⎪⎪'<⎪⎩,解得:522a <<, 实数a 的取值范围5(2,)2,故选:C .9.已知函数321()(0)32a f x x x x a=--在区间(0,1)上不是单调函数,则实数a 的取值范围是() A .(0,2) B .[0,1)C .(0,)+∞D .(2,)+∞【解析】321()32a f x x x x =-- 2()1f x ax x '∴=--函数321()(0)32a f x x x x a=--在区间(0,1)上不是单调函数2()10f x ax x '∴=--=在区间(0,1)上有根∴当0a =时,1x =-不满足条件当0a >时,(0)10f '=-<,f '∴(1)20a =->,2a ∴>故选:D .10.函数3211()(1)2(1)32f x x m x m x =-++-在(0,4)上无极值,则m = 3 .【解析】函数()f x 在(0,4)上无极值即导函数()f x '在(0,4)上无根.2()(1)2(1)f x x m x m '=-++-在(0,4)上恒有()0f x '△;当12m ->时,△式解为2x 或1x m -;显然(0,4)x ∈时,△式不成立;当12m -<时,△式解为1xm -或2x >;显然(0,4)x ∈时,△式不成立;当12m -=时,△式解为2x =,3m =. 故答案为:3.11.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +恒成立,则实数a 的取值范围是122a 或1a - .【解析】因12()()0f x f x +,故得不等式3322121212(1)()()0x x a x x a x x ++++++. 即22121212121212()[()3](1)[()2]()0x x x x x x a x x x x a x x ++-+++-++.由于2()32(1)f x x a x a '=+++. 令()0f x '=得方程232(1)0x a x a +++=. △24(1)40a a a =-+>,122(1)3x x a +=-+,123ax x =,代入前面不等式,并化简得2(1)(252)0a a a +-+.解不等式得122a 或1a -,因此,实数a 的取值范围是122a 或1a -.故答案为:122a 或1a -.12.若函数32()132x a f x x x =-++在区间1[,3]2上单调递减,则实数a 的取值范围是10[3,)+∞ .【解析】函数32()132x a f x x x =-++,2()1f x x ax ∴'=-+,若函数()f x 在区间1[,3]2上递减,故210x ax -+在区间1[,3]2恒成立,即1ax x+在区间1[,3]2恒成立,令1()g x x x=+,1(2x ∈,3),2(1)(1)()x x g x x +-'=, 令()0g x '>,解得:1x >,令()0g x '<,解得:1x <,()g x ∴在1(2,1)递减,在(1,3)递增, 而13()22g =,g (3)103=,故103a故答案为:10[3,)+∞.13.若函数3212()33f x x x =+-在区间(,5)a a +上存在最小值,则实数a 的取值范围是 [3-,0) .【解析】由题意,2()2(2)f x x x x x '=+=+, 故()f x 在(,2)-∞-,(0,)+∞上是增函数, 在(2,0)-上是减函数, 作其图象如右图, 令32122333x x +-=-得,0x =或3x =-;则结合图象可知,3050a a -<⎧⎨+>⎩; 解得,[3a ∈-,0); 故答案为:[3-,0).14.已知函数3211()(1)132f x x a x ax =-+++,a R ∈.若函数()f x 在区间(1,1)-内是减函数,则实数a 的取值范围是1a - .【解析】函数3211()(1)132f x x a x ax =-+++,2()(1)(1)()f x x a x a x x a ∴'=-++=--,若函数()f x 在区间(1,1)-内是减函数, 则此时()0f x '<恒成立, 则(1)0(1)0f f '⎧⎨'-⎩, 则002(1)0a ⎧⎨---⎩,即10a +,1a -,故答案为:1a -;。

导数公式的练习题及答案

导数公式的练习题及答案

导数公式的练习题及答案1. 导数的物理意义:瞬时速率。

一般的,函数y?f在x?x0处的瞬时变化率是?x?0limf?f,?x我们称它为函数y?f在x?x0处的导数,记作f?或y?|x?x0,即f?=lim?x?0f?f?x2. 导数的几何意义: 当点Pn趋近于P时,函数y?f 在x?x0处的导数就是切线PT的斜率k,即k?lim3. 导函数二.导数的计算1. 基本初等函数的导数公式. 导数的运算法则. 复合函数求导?x?0f?f?f?xn?x0y?f和u?g,称则y可以表示成为x的函数,即y?f)为一个复合函数 y??f?)?g?三.导数在研究函数中的应用 1.函数的单调性与导数:.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数y?f的极值的方法是:如果在x0附近的左侧f??0,右侧f??0,那么f是极大值; 如果在x0附近的左侧f??0,右侧f??0,那么f是极小值;.函数的最大值与导数函数极大值与最大值之间的关系.求函数y?f在[a,b]上的最大值与最小值的步骤求函数y?f在内的极值;将函数y?f的各极值与端点处的函数值f,f比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题1、已知函数f?2x?1的图象上一点及邻近一点,则2?y等于?xA.4B.4?xC.4?2?xD.4?2?x2、如果质点M按规律S?3?t2运动,则在一小段时间[2,2.1]中相应的平均速度为A.4B.4.1C.0.41D.33、如果质点A按规律S?2t3运动,则在t?3秒的瞬时速度为A.B.18C.54D.8111在点处的切线斜率为_________,切线方程为__________________. x225、已知函数f?ax?2,若f??1,则a?__________.4、曲线y??6、计算:f?5x?7,求f?;f?y?221x?2,求f?;21,求y?|x?0 x?17、在自行车比赛中,运动员的位移与比赛时间t存在函数关系S?10t?5t2,t?20,?t?0.1时的求t?20的速度. 1、函数y??S; ?t的导数是1?4?141323A.xB.xC.x5D.?x55555112、曲线y?x2在点处切线的倾斜角为225???A.1B.?C.D.4443、已知曲线y?x?2x?2在点M处的切线与x轴平行,则点M的坐标是A.B. C.D.2x在点处的切线方程为____________________.x?135、曲线y?x在点处的切线与x轴、直线x?2所围成的三角形面积为__________.4、曲线y?6、求下列函数的导数:y?x?log3x;y??2x?1.13?;y?cos2x.sinx?cosx求f在点处的切线方程;求过点的切线方程.、函数y?的导数是A.6x5?12x B.4?2x C.2 D.2?3x、已知y?333321sin2x?sinx,那么y?是A.仅有最小值的奇函数B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数D.非奇非偶函数 10、曲线y?e1x2在点处的切线与坐标轴所围三角形的面积为2C.2e D.e22211、已知f?ln,若f??1,则实数a的值为__________. A.e2B.4e12、y?sin3x在处的切线斜率为__________________.1?x,?1?x?1. 1?x13、求下列函数的导数:f?f?e?x2?2x?3;y?lncos2x??14、已知f? ,求f.1?sin2x41、函数f?e的单调递增区间是A. B.C. D.2、设函数y?f在定义域内可导,y?f的图象如图1所示,则导函数y?f?可能为A2xB C D3、若函数f?x?ax?x?6在内单调递减,则实数a的取值范围是A.a?1B.a?13C.a?1D.0?a?14、函数f?ax?x在R上为减函数,则实数a的取值范围是______________.、求函数f?2x?lnx的单调区间.、设函数f?xe.kx2求曲线y?f在点)处的切线方程;求函数f的单调区间;若函数f在区间内单调递增,求k的取值范围.、函数y?4x2?1的单调递增区间是 x11A. B. C.D.8、若函数y?x3?x2?mx?1是R上的单调函数,则实数m 的取值范围是A. B.D..函数f?lnx?1313131312x的图象大致是10、如果函数y?f的导函数的图象如下图所示,给出下列判断:①函数y?f在区间内单调递增;②函数y?f在区间内单调递减;③函数y?f在区间内单调递增;④当x?2时,函数y?f有极小值;⑤当x??12121时,函数y?f有极大值.32则上述判断中正确的是____________.11、已知函数f?x?ax?bx?c,g?12x?4,若f?0,且f 的图象在点)处的切线方程为y?g.求实数a,b,c的值;求函数h?f?g的单调区间 12、已知函数f?13、已知函数f?12x?lnx?x在上是增函数,求实数a的取值范围.x?1?alnx,f的单调区间.1.C .B3.C4.4;y?4x?4.?7.210.5;2101?1?381x111.C.C .B4.y??x?2.6.;?;ln?233xln3?sinx?cosx7.y?4x?3;y?e;1?x814.?9111.D.D .A4.a?0.增区间,减区间22116.y?x;k?0时,增区间,减区间kk11k?0时,增区间,减区间;[?1,0)?和,减区间12.a?213.a?0时,增区间为a?0时,在基本初等函数的导数公式及导数运算法则练习姓名班级713?1.曲线y=x-2在点?-1,-处切线的倾斜角为?3?A.30°B.45° C.135°D.60°.设f=31A641-1x2xf′等于57B.C.-667D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为A.4x-y-3=032B.x+4y-5=0C.4x-y+3=0 D.x+4y+3=04.已知f=ax+9x+6x-7,若f′=4,则a的值等于A.193B.16101 D.3314325.已知物体的运动方程是st-4t+16t,则瞬时速度为0的时刻是A.0秒、2秒或4秒B.0秒、2秒或16秒C.2秒、8秒或16秒 D.0秒、4秒或8秒6.曲线y=x-2x+1在点处的切线方程为A.y=x-1B.y=-x-1 D.y=-2x-23C.y=2x-2x7.若函数f=esinx,则此函数图象在点)处的切线的倾斜角为A.π2B.0C.钝角D.锐角?ππ8.曲线y=xsinx在点?-,处的切线与x轴、直线x=π所围成的三角形的面积为 ?22?πA.21222B.π C.2πD.+π)29.设f0=sinx,f1=f0′,f2=f1′,…,fn+1=fn′,n∈N,则f2011等于A.sinxB.-sinx C.cosxD.-cosx10.f与g是定义在R上的两个可导函数,若f、g满足f′=g′,则f与g满足A.f=g B.f-g为常数C.f=g=0 11.函数y=在x=1处的导数等于A.1 B.2C.D.412.若对任意x∈R,f′=4x,f=-1,则f=第 - 1 - 页共 1页32D.f+g为常数A.x34mB.x-D.x+21*}的前n项和是 f44C.4x-513.设函数f=x+ax的导数为f′=2x+1,则数列{ A.n+2nn+1B. C.D.n+1n+1n-1nn14.二次函数y=f的图象过原点,且它的导函数y=f′的图象是过第一、二、三象限的一条直线,则函数y=f的图象的顶点在A.第一象限32B.第二象限C.第三象限D.第四象限15.函数y=的导数为A.6x+12xB.4+2xC.24252332D.2·3x316.若函数f=ax+bx+c满足f′=2,则f′=A.-1B.- C.2D.031017.设函数f=,则f′=A.0B.-1 C.-60D.6018.函数y=sin2x-cos2x的导数是π??A.2cos?2x-?4??π??B.cos2x-sin2xC.sin2x+cos2x D.22cos?2x +?4??119.已知曲线y=-3lnx的一条切线的斜率为,则切点的横坐标为42A.3B. C.11D.x220.设函数f是R上以5为周期的可导偶函数,则曲线y=f在x=5处的切线的斜率为1A51B.5D.5?π1221.设f=ax-bsinx,且f′=1,f′?=a=________,b=________.?3?222.设f=x-3x-9x+1,则不等式f′<0的解集为________.3.曲线y=cosx在点P?32?π,1处的切线的斜率为______.?32?x24.已知函数f=ax+be图象上在点P处的切线与直线y=-3x平行,则函数f的解析式是____________.25.若f=x,φ=1+sin2x,则f[φ]=_______,φ[f]=________.6.设函数f=cos,若f+f′是奇函数,则φ=________.7.函数y=的导数为________.8.函数y=x1+x的导数为________.三、解答题第 - - 页共 1页22829.求下列函数的导数:1111+x1x24x4xy=x;y=;y=sin+cosy=xx44x1-x1x30.求下列函数的导数:e+1x+cosxy=xsinx; y=ln;yx y=.e-1x+sinx22x.31.求下列函数的导数:y=cos;y=cosx·sin3x; y=xloga; y=log2 2sinx232.设f=f′=·g,求g.1+x33.求下列函数的导数:是可导函数)第 - - 页共 1页222x-1. x+1?1?2y=f??;y=fx+1).?x?34.已知两条曲线y=sinx、y=cosx,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.17.已知曲线C1:y=x与C2:y=-.直线l与C1、C2都相切,求直线l的方程.18.求满足下列条件的函数f:f是三次函数,且f=3,f′=0,f′=-3,f′=0;f′是一次函数,xf′-f=1.222第 - - 页共 1页基本初等函数的导数公式及导数运算法则答案一、选择题7?13?1.曲线yx-2在点?-1,-?处切线的倾斜角为?3?A.30° C.135° [答案] B[解析] y′|x=-1=1,∴倾斜角为45°..设f31A67C6[答案] B1-1B.45° D.60°x2xx,则f′等于5B.67D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为 A.4x-y-3=0C.4x-y+3=0[答案] A [解析] ∵直线l的斜率为4,而y′=4x,由y′=4得x=1而x=1时,y=x=1,故直线l的方程为:y-1=4即4x-y-3=0.4.已知f=ax+9x+6x-7,若f′=4,则a的值等于 A.C.193103B.D.16313332344B.x+4y-5=0 D.x+4y+3=0[答案] B[解析] ∵f′=3ax+18x+6,16∴由f′=4得,3a-18+6=4,即a=.3∴选B.第 - - 页共 1页2基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?x2lnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?xlnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=。

用导数法解三次函数问题

用导数法解三次函数问题

导数法解“三次”函数问题新教材中导数内容的介入,为研究函数的性质提供了新的活力,通过求导可以研究函数的单调性和极值,其操作的步骤学生易掌握,判别的方法也不难。

特别地,当f(x)为三次函数时,通过求导得到的f /(x)为二次函数,且原函数的极值点就是二次函数的零点;同时利用导数的几何意义:曲线在某一点P (00,y x )处的切线的斜率)(0/x f k =,可得到斜率 k 为关于0x 的二次函数。

根据这些特点,一般三次函数问题,往往可通过求导,转化为二次函数或二次方程问题,然后结合导数的基本知识及二次函数的性质来解决。

下面笔者从课堂或试卷上出现的这一类型题目中选择几例,同时结合学生产生的问题,略作说明。

例1:已知f(x)=d cx bx x +++23在(—∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α、2、β.(1) 求c 的值;(2) 求证:f(1)≥2(3) 求|α-β|的取值范围。

解:(1),23)(2/c bx x x f ++=由题意可得:x=0为f(x)的极值点,∴0,0)0(/=∴=c f(2)令023)(2/=+=bx x x f ,得32,021b x x -== ∵f(x)在(—∞,0)上是增函数,在[0,2]上是减函数, ∴232≥-b ,即3-≤b 又∵b d d b f 48,048,0)2(--=∴=++∴=∴.2371)1(≥--=++=b d b f(3)∵方程f(x)=0有三个根α、2、β.∴设),)(2()(223n mx x x d cx bx x x f ++-=+++= 由待定系数法得2,2d n b m -=+= ∴α、β为方程02)2(2=-++d x b x 的两根, ∴ α+β=-(b+2),αβ=-d/2;∴|α-β|2=16)2(1242)2(222--=--=++b b b d b∵3-≤b ,∴|α-β|2≥9,∴|α-β| ≥3一般地,若已知三次函数f(x)=)0(23>+++a d cx bx ax 在(—∞,m )上是增函数,在[m ,n]上是减函数,在(n,+∞)上是增函数,则二次方程f /(x)=0即0232=++c bx ax 的两个根为m ,n ;且当),(),(+∞⋃-∞∈n m x 时f /(x)>0,当),(n m x ∈时f /(x)<0,反之亦然。

三次函数的导数问题

三次函数的导数问题

三次函数的导数问题在微积分学中,导数被用于研究函数的变化率。

在下面的文章中,我们将研究三次函数的导数问题。

三次函数的定义三次函数是指具有一次、二次和三次项的函数,可以表示为:f(x) = ax^3 + bx^2 + cx + d其中a、b、c和d是常数。

三次函数的图像通常是一个“S”形的曲线,其形状取决于函数的系数。

具体来说,当a>0时,曲线呈现“下凸”,当a<0时,曲线则呈现“上凸”。

三次函数的导数三次函数的导数通常表示为f'(x),它是指在某个点x处的切线斜率,也是函数在该点处的变化率。

为了求出三次函数的导数,我们可以使用微积分理论中的求导法则。

具体来说,我们需要求出三次函数的每一项的导数,然后将它们相加。

因此,三次函数的导数可以表示为:f'(x) = 3ax^2 + 2bx + c其中3a、2b和c是三次函数的一次导数项的系数。

三次函数的导数图像三次函数的导数图像通常是一个二次函数,并且其形状与三次函数本身的形状有很大的关系。

当三次函数的a>0时,它的导数图像呈现“上凸”的U形;当a<0时,导数图像则呈现“下凸”的n形。

如果三次函数有其导数为0的点,则该点是函数的临界点,也是函数的最值点之一。

应用三次函数的导数在实际应用中有着广泛的应用。

例如,在物理学中,三次函数可以用来描述物体的加速度变化;在经济学中,三次函数可以用来描述收入和消费之间的关系;在工程学中,三次函数可以用来描述材料的强度和韧性之间的关系等等。

结论通过本文,我们学习了三次函数的导数问题。

我们发现,三次函数的导数是函数变化率的表示,它可以帮助我们更好地理解和使用这些函数。

同时,我们也了解到了三次函数和导数图像的形状及其应用。

数学导数的综合运用试题

数学导数的综合运用试题

数学导数的综合运用试题1.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),(2)【解析】(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵,∴在上是增函数,又,∴,∴在上无实数根.综上,的值为. 12分2.(本题满分15分)已知函数(),且函数图象过原点.(Ⅰ)求函数的单调区间;(Ⅱ)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由.【答案】见解析【解析】(Ⅰ)由题意可知故,则.当时,对,有,所以函数在区间上单调递增;当时,由,得;由,得,此时函数的单调增区间为,单调减区间为.综上所述,当时,函数的单调增区间为;当时,函数的单调增区间为,单调减区间为.(Ⅱ)函数的定义域为,由,得(),令(),则,由于,,可知当,;当时,,故函数在上单调递减,在上单调递增,故.又由(Ⅰ)知当时,对,有,即,(随着的增长,的增长速度越来越快,会超过并远远大于的增长速度,而的增长速度则会越来越慢.则当且无限接近于0时,趋向于正无穷大.)当时,函数有两个不同的零点;当时,函数有且仅有一个零点;当时,函数没有零点.3.若曲线在点处的切线与直线互相垂直,则实数的值为________.【答案】2.【解析】由已知得.【考点】导数的几何意义、两条直线的位置关系等知识,意在考查运算求解能力.4.(本小题满分13分)已知函数 (t∈R) .(Ⅰ)若曲线在处的切线与直线平行,求实数的值;(Ⅱ)若对任意的,恒成立,求实数的取值范围.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ) 由题意得,,且,即,解得; 3分(Ⅱ)由(Ⅰ) ,时,.当时,,函数在上单调递增.此时由,解得; 6分(2)当时,,函数在上单调递减.此时由,解得; 9分(3)当时,函数在上递减,在上递增,.此时恒成立,而,所以,. 12分综上,当实数的取值范围为时,对任意的,恒成立. 13分【考点】本题主要考查导数的计算、导数的几何意义及应用导数研究函数的单调性、极值,考查简单不等式恒成立问题的处理方法,意在考查考生的运算能力、分析问题、解决问题的能力及转化与化归思想的应用意识.5.广东理)设函数(其中).(1) 当时,求函数的单调区间;(2) 当时,求函数在上的最大值.【答案】(1) 函数的递减区间为,递增区间为,(2)【解析】(1)根据k的取值化简函数的表达式,明确函数的定义域,然后利用求导研究函数的单调区间,中规中矩;(2)借助构造函数的技巧进行求解,如构造达到证明的目的,构造达到证明的目的.(1) 当时,,令,得,当变化时,的变化如下表:(2),令,得,,令,则,所以在上递增,所以,从而,所以所以当时,;当时,;所以令,则,令,则所以在上递减,而所以存在使得,且当时,,当时,,所以在上单调递增,在上单调递减.因为,,所以在上恒成立,当且仅当时取得“”.综上,函数在上的最大值.【考点】本题考查函数的单调性和函数的最值问题,考查学生的分类讨论思想和构造函数的解题能力.6.天津理)已知函数.(1) 求函数f(x)的单调区间;(2) 证明: 对任意的t>0, 存在唯一的s, 使.(3) 设(2)中所确定的s关于t的函数为, 证明: 当时, 有.【答案】(1)函数的单调递减区间是,单调递增区间是(2)见解析(3)见解析【解析】(1) 函数f(x)的定义域为,,令,得,当变化时,、的变化情况如下表:所以函数的单调递减区间是,单调递增区间是.(2)证明:当时,,令,由(1)知在区间内单调递增,,故存在唯一的,使得成立.(3)证明:因为,由(2)知,,且,从而===,其中,要使成立,只需,当时,若,则由的单调性,有,矛盾,所以即,从而成立;另一方面,令,令,得.当时,;当时,,故对,,因此成立.综上,当时,有.【解题思路与技巧】本题第(1)问,求的单调区间,先求出定义域,然后解导数方程的根,判断根两侧的导数的正负即可;第(2)问,证明时,可构造函数;第(3))问,讨论.【易错点】对第(1)问,求单调区间时,注意定义域优先的原则;第(2)、(3))问,证明时要注意讨论.【考点】本小题主要考查函数的概念、函数的零点、导数的运算、利用导数研究函数的单调性、不等式等基础知识,考查函数思想、化归思想,考查抽象概括能力、综合分析问题和解决问题的能力.7.浙江理)已知,函数(1)求曲线在点处的切线方程;(2)当时,求的最大值.【答案】(1)(2)【解析】此题第(1)问根据导数的加减法运算法则和幂函数的求导公式求出,然后求出和,然后利用直线方程的点斜式即可求出;第(2)求函数区间上的最值,但是函数中含有参数,要对参数进行讨论,而且是求区间上的最值,所有应该对函数在上的最值取绝对值后进行讨论,即讨论和在区间中的函数的极值;所以应对和零的关系进讨论,根据判别式在讨论和1的关系,在此过程中由于出现,所以又要讨论和的关系,然后得到是大于零还是小于零不确定,所以又要讨论和的关系,这也是这个题目的难点所在,此题注意讨论不漏不重;(1)由已知得:,且,所以所求切线方程为:,即为:;(2)由已知得到:,其中,当时,,(1)当时,,所以在上递减,所以,因为;(2)当,即时,恒成立,所以在上递增,所以,因为;(3)当,即时,,且,即+00所以,所以;由,所以(ⅰ)当时,,所以时,递增,时,递减,所以,因为,又因为,所以,所以,所以(ⅱ)当时,,所以,因为,此时,当时,是大于零还是小于零不确定,所以当时,,所以,所以此时当时,,所以,所以此时。

导数典型例题(含答案)

导数典型例题(含答案)

导数典型例题导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.【例2】 已知函数f (x )=nn n k k n n n n x c nx c k x c x c c 1121221++++++ ,n ∈N *,则 x x f x f x ∆∆--∆+→∆)2()22(lim= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k k n n n x c x c x c c ,∴f '(2)=21(2nn n k n k n n c c c c 222221+++++ )=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim,也可以是00)()(limx x x f x f x --→∆(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是A.⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.故选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值.解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最(极)值有关的问题【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在区间(-3,7)上函数y =f (x )的极小值个数是2个.点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).(1)证明:a n >α,n ∈N *;(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根)即当n =k +1时,原式成立.故对于任意自然数N *,原式均成立.(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比较A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),则f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,则当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A (x =0时等号成立).点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.(1)求y =f (x )的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a ·42a ,∴k =8,则f (x )=8-(a -x )x 2.∵0<)(2x a x-≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at .(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),32ax =,当0<x <32a 时,f '(x )>0,此时f (x )在(0,32a)上单调递增;当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a .点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数与三次函数问题★ 知识梳理★一、定义:、形如32(0)y ax bx cx d a =+++≠的函数,称为“三次函数”三次函数的导数232(0)y ax bx c a '=++≠, 2412b ac ∆=-叫做三次函数导函数的判别式。

二、三次函数图象与性质1.三次函数32()(0)f x ax bx cx d a =+++≠图象2.函数()(0)f x ax bx cx d a =+++≠单调性、极值点个数情况。

()f x =32ax bx c ++,记∆=224124(3)b ac b ac -=-,(其中x 1,x 2是方程'()f x =0的根,且x 1<x 2)3、三次函数最值问题。

函数若,且,则:()()()(){}max 0,,f x f m f x f n =; 。

4、三次方程根的问题。

(三次函数的零点问题)三次函数)0()(23≠+++=a d cx bx ax x f(1) 若032≤-ac b ,则0)(=x f 恰有一个实根;(2) 若032>-ac b ,且0)()(21>⋅x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=⋅x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21<⋅x f x f ,则0)(=x f 有三个不相等的实根.5、对称中心。

三次函数)0()(23≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点))3(,3(abf a b --,此点的横坐标是其导函数极值点的横坐标。

★典型考题★1.已知函数f(x)=ax 3+bx 2+cx+d 的图象如图所示,则( A ) A .b ∈(-∞,0) ∈(0,1)C .b ∈(1,2) D. b ∈(2,+∞)2.如图,函数y =f (x )的图象如下,则函数f (x )的解析式可以为( A )A)f (x )=(x -a )2(b -x )B)f (x )=(x -a )2(x +b ) C)f (x )=-(x -a )2(x +b ) D)f (x )=(x -b )2(x -a ) 3.设<b,函数的图像可能是( C )4.已知函数,当(,0)(5,)k ∈-∞⋃+∞时,只有一个实数根;当(0,5),()0k f x k ∈-=时有3个相异实根,现给出下列4个命题: ①函数有2个极值点; ②函数()f x 有3个极值点;③方程()5f x =-的根小于()0f x '=的任意实根; ④()0f x =和()0f x '=有一个相同的实根.其中正确命题的个数是( C )。

A .1 B .2 C .3 D .4 5、函数在闭区间[-3,0]上的最大值、最小值分别是( C ) A. 1,-1B. 1,-17C. 3,-17D. 9,-196.函数f (x )=x 3/3+ax 2/2+ax-2 (a ∈R)在(-∞,+∞)上为单调增函数,求实数a 的取值范围是——————。

a ∈[0,4]7.已知函数f (x )=x 3/3-(4m -1)x 2+(15m 2-2m -7)x +2在实数集R上是增函数,求实数m 的取值范围。

解:∵y =f (x )在R上是单调增函数∴f ´(x )=x 2-2(4m -1)x +15m 2-2m -7≥0在R上恒成立,Δ=… =m 2-6m +8≤0得2≤m ≤48.已知曲线y = x 3/3+4/3,求曲线在点(2,4)处的切线方程 解:f ´(x )=x 2,f ´(2)=4,曲线在点(2,4)处的切线斜率为k =f ´(2)=4∴代入直线方程的斜截式,得切线方程为:y -4=4(x -2), 即 y =4x -4变式:已知曲线y =x 3/3+4/3,则曲线过点(2,4)的切线方程——————。

错解:依上题,直接填上答案4x -y -4=0错因剖析:如下图所示,在曲线上的点A 处的切线与该曲线还有一个交点。

这与圆的切线是有不同的。

点(2,4)在曲线y =x 3/3+4/3上,它可以是切点也可以不是。

正确解法:设过点(2,4)的切线对应的切点为(x 0,x 03/3+4/3),斜率为k=x 02,切线方程为y -(x 03/3+4/3 )=x 02(x-x 0) 即y=x 02x- 2x 03/3+4/3点(2,4)的坐标代入,得4=2x 02- 2x 03/3+ 4/3, 2 x 03-6 x 02+8=0 , ∴x 03-3x 02+4=0, 又∵x 03+1-(3x 02-3)=0 (x 0+1)(x 02-x 0+1)-3(x 0-1)(x 0+1)=0∴(x 0+1)(x 02-4x 0+4)=0 ∴x 0=-1或x 0=2 ∴切线的方程为4x-4-y=0或x-y+2=0 点评:一个是“在点(2,4)”、一个是“过点(2,4)”,一字之差所得结果截然不同。

9、已知函数()33f x x x =-⑴求函数()f x 的单调区间及极值;⑵求()f x 在[]0,3上的最值。

解:令()2123301,1f x x x x '=-=⇒==- x 、()f x '、()f x 的变化情况如下表∴()f x 的单调递增区间是(),1-∞-和()1,+∞ ()f x 的单调递减区间是()1,1-当1x =-时,()f x 有极大值()()()311312f -=--⨯-=当1x =时,()f x 有极小值()311312f =-⨯=- ⑵()00f =,()3333318f =-⨯=∵()f x 在[]0,3上只有一个极值点()12f =- ∴()f x 在[]0,3上的最小值为-2,最大值为18 变式一、已知函数()3233f x x x x =++,其他不变解:()()22363310f x x x x '=++=+≥∴()f x 在(),-∞+∞单调递增,()f x 没有极值()f x 在[]0,3上的最小值为()00f =,最大值为()363f = 变式二、已知函数()323f x x x x =++;其他不变 解:()2323f x x x '=++△22433200=-⨯⨯=-<∴()0f x '=没有实数根 ∴()0f x '>在R 上恒成立 ∴()f x 在(),-∞+∞上单调递增,()f x 没有极值()f x 在[]0,3上的最小值为()00f =,最大值为()345f =变式三、已知函数1y t =,323y x x =-,实数t 为何值时,函数1y 与2y 的图象的交点有一个、二个、三个解:由例1画出函数2y 的大致图象如图,观察图象,可得当2t >或2t <-时,函数1y 与2y 只有一个交点。

当2t =-或2t =时,函数1y 与2y 有二个交点。

当22t -<<时,函数1y 与2y变式四、a 为何值时,函数3()3f x x x a =-+有一个零点两个零点三个零点解:令()2123301,1f x x x x '=-=⇒==-x 、()f x '、()f x 的变化情况如下表∴()f x 的单调递增区间是(),1-∞-和()1,+∞ ()f x 的单调递减区间是()1,1-当1x =-时,()f x 有极大值()()()311312f a a -=--⨯-+=+当1x =时,()f x 有极小值()311312f a a =-⨯+=-要使()f x 有一个零点,需且只需2020a a +<⎧⎨-<⎩,解得2a <-要使()f x 有二个零点,需且只需2020a a +=⎧⎨-<⎩,解得2a =-要使()f x 有三个零点,需且只需2020a a +>⎧⎨-<⎩,解得22a -<<变式五、已知函数()33,0f x x x a =->,如果过点(),2A a 可作曲线()y f x =的三条切线,求a 的取值范围解:设切点为()00,x y ,则()233f x x '=-∴切线方程()()000y y f x x x '-=- 即 ()2300332y x x x =-- ∵切线过点A (),2a ∴()23002332x a x =-- 即 ()320023320x ax a -++=*∵过点(),2A a 可作()y f x =的三条切线 ∴方程()*有三个相异的实数根设()320002332g x x ax a =-++,则()()200000666g x x ax x x a '=-=-当0x 变化时,()0g x '、()0g x 的变化情况如下表0x(),0-∞0 ()0,aa(),a +∞()0g x ' + 0 - 0 + ()0g x极大值32a +极小值332a a -++由单调性知:①若极大值320a +<或极小值3320a a -++>,方程()00g x =只有一个实数根;②若320a +=或3320a a -++=,方程()00g x =只有两个相异的实数根,综上,要使方程()00g x =有三个相异的实根,须且只须32320233202a a a a a a ⎧+>⎧>-⎪⇔⇔>⎨⎨-++<⎩⎪>⎩,所以,所求的a 的取值范围是()2,+∞。

变式六、已知函数()3213f x x x ax a =-+- ()a R ∈,若函数()f x 的图象与x 轴有且只有一个交点,求a 的取值范围。

解:∵()22f x x x a '=-+ ∴()4441a a ∆=-=- ①若1a ≥,则0∆≤∴()0f x '≥在R 上恒成立 ∴()f x 在R 上单调递增 ∵()00f a =-< ()320f a =>∴当1a ≥时,函数()f x 的图象与x 有且只有一个交点。

②若1a <,则0∆>∴()0f x '=有两个不相等的实根,不妨设为1x 、2x 且12x x <, 则12122x x x x a +=⎧⎨=⎩当x 变化时,()f x '、()f x 的取值变化情况如下表∵21120x x a -+= ∴2112a x x =-+∴()32111113f x x x ax a =-+-32211111123x x ax x x =-++-()311123x a x =+- ()2111323x x a ⎡⎤=+-⎣⎦ 同理 ()()22221323f x x x a ⎡⎤=+-⎣⎦ ∴()()()()22121212132329f x f x x x x a x a ⎡⎤⎡⎤=+-+-⎣⎦⎣⎦g()()()()2222121212132929x x x x a x x a ⎡⎤=+-++-⎣⎦ ()()(){}22212121322929a a a x x x x a ⎡⎤=+-+-+-⎣⎦g()224433339924a a a a a ⎡⎤⎛⎫=-+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦令()()120f x f x >g ,解得0a >当01a <<时,()00f a =-<,()320f a => ∴当01a <<时,函数()f x 的图象与x 轴 有且只有一个交点∴()f x 的大致图象如图所示: 综上所述,a 的取值范围是()0,+∞综 合 练 习 题1、已知函数()32f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点()1,0,()2,0;如图所示, 求:⑴0x 的值;⑵a 、b 、c 的值。

相关文档
最新文档