粒子群优化算法ppt
粒子群算法简介优缺点及其应用 PPT课件
![粒子群算法简介优缺点及其应用 PPT课件](https://img.taocdn.com/s3/m/ecd57898856a561253d36f61.png)
(3)加速常数c1和 c2:分别调节向Pbest和Gbest方向飞行的最大 步长,决定粒子个体经验和群体经验对粒子运行轨迹的影响,
反映粒子群之间的信息交流。
如果c1=0,则粒子只有群体经验,它的收敛速度较快,但容易 陷入局部最优;
2019/12/14
12
如果c2 = 0,则粒子没有群体共享信息,一个规模为M的群体等 价于运行了M个各行其是的粒子,得到解的几率非常小,因此 一般设置c1 = c2 。这样,个体经验和群体经验就有了相同重要 的影响力,使得最后的最优解更精确。
vmax是一个非常重要的参数,如果该值太大,则粒子们也许会 飞过优秀区域;另一方面如果该值太小,则粒子们可能无法对 局部最优区域以外的区域进行充分的探测。实际上,它们可能 会陷入局部最优,而无法移动足够远的距离跳出局部最优达到 空间中更佳的位置。
(5) rand1和rand2是介于[0,1]之间的随机数,增加了粒子飞行 的随机性。
2019/12/14
4
粒子在搜索空间中以一定的速度飞行,这个速度根据它本身的 飞行经验和同伴的飞行经验来动态调整。所有的粒子都有一个 被目标函数决定的适应值(fitness value),这个适应值用于评价 粒子的“好坏”程度。
每个粒子知道自己到目前为止发现的最好位置(particle best, 记为pbest)和当前的位置,pbest就是粒子本身找到的最优解, 这个可以看作是粒子自己的飞行经验。
(6)迭代终止条件:一般设为最大迭代次数Tmax、计算精度或最 优解的最大停滞步数△t。
2019/12/14
14
算法流程
开始 初始化粒子X、V 计算Pbest、Gbest 粒子位置、速度更新 计算适应函数值 更新Pbest、Gbest
《粒子群优化算法》课件
![《粒子群优化算法》课件](https://img.taocdn.com/s3/m/80d98b94370cba1aa8114431b90d6c85ec3a88bb.png)
粒子群优化算法是基于群体智能思想的优化方法,其思想来源于生物群体中的合作行为。
粒子群优化算法的流程
1
初始化种群
随机生成一定数量的个体,作为种群的起始状态。
2
计算适应度函数
对每个个体,根据适应度函数计算其适应度值。
3
更新速度和位置
根据当前的速度和位置,以及社会经验和个体经验,计算每个个体的新速度和新位置。
《粒子群优化算法》PPT 课件
这是一份关于粒子群优化算法的PPT课件,通过它,你将掌握这种算法的定 义、原理、应用,以及未来的发展方向。
什么是粒子群优化算法?
1 定义
粒子群优化(Particle Swarm Optimization,PSO)算法是一种进化算法,由Kennedy和 Eberhart在1995年提出测种群的状态是否满足结束条件,如果是,输出结果;否则继续更新。
粒子群优化算法在求解函数最小值中的应 用
Rosenbrock函数
粒子群优化算法可以用于求解Rosenbroke函数的全 局最优解。
Rastrigin函数
粒子群优化算法可以用于求解Rastrigin函数的全局 最优解。
粒子群优化算法在机器学习中的应用
粒子群优化算法的未来
1
发展方向
加强算法的智能性和泛化能力。
2
进一步应用
将粒子群优化算法应用到集成优化、无人驾驶、协同控制等领域。
总结
1 通过这份PPT课件,你已经了解了粒子群优化算法的定义、原理、应用和未来的发展方
向。
神经网络优化
粒子群优化算法可以优化神经网络中的连接权重、 偏置值等参数,提高神经网络的精确度。
选取最优超参数
粒子群优化算法可以为机器学习模型选择最优的超 参数,包括学习率、迭代次数、隐藏层数等。
粒子群优化算法PPT上课讲义
![粒子群优化算法PPT上课讲义](https://img.taocdn.com/s3/m/ceb045aabb68a98271fefae8.png)
02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
01 算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。
我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由简 单个体粒子群优化算法PPT
01
ALGORITHM INTRODUCTION
算法简介
粒子群算法
设想这样一个场景:一群鸟在随 机搜索食物。在这个区域里只有 一块食物。所有的鸟都不知道食 物在那里。但是他们知道当前的 位置离食物还有多远。那么找到 食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食 物最近的鸟的周围区域。
01 算法介绍
01 算法介绍
PSO产生背景之一:CAS
我们把系统中的成员称为具有适应性的主体(Adaptive Agent),简称为主体。所谓具有适应性,就是指它能够 与环境以及其它主体进行交流,在这种交流的过程中 “学习”或“积累经验”,并且根据学到的经验改变自 身的结构和行为方式。整个系统的演变或进化,包括新 层次的产生,分化和多样性的出现,新的、聚合而成的、 更大的主体的出现等等,都是在这个基础上出现的。即 CAS(复杂适应系统)理论的最基本思想
量子行为粒子群优化算法-中文版
![量子行为粒子群优化算法-中文版](https://img.taocdn.com/s3/m/050281b6c9d376eeaeaad1f34693daef5ef713d3.png)
量子行为粒子群优化
02
算法的实现过程
初始化阶段
01
02
03
初始化粒子群
在解空间中随机初始化一 组粒子,每个粒子代表一 个潜在的解。
初始化粒子速度
为每个粒子随机分配一个 速度,用于控制其位置的 变化。
初始化粒子位置
根据问题的约束条件和目 标函数,为每个粒子随机 分配一个初始位置。
更新阶段
计算适应度值
量子行为粒子群优化算法的基本原理
• 量子行为粒子群优化算法的基本原理是:每个粒子被视为一 个量子比特,其状态由波函数表示。粒子通过不断更新自己 的位置和速度来搜索解空间,同时通过与其它粒子的信息共 享和协作来不断逼近最优解。在更新过程中,粒子不仅受到 自身经验和群体最佳位置的影响,还受到量子旋转门和量子 测量等量子操作的作用,从而在解空间中实现全局搜索和局 部搜索的平衡。
THANKS.
组合优化问题
组合优化问题是指在一组可行解中寻 找最优解的问题,如旅行商问题、背 包问题、图着色问题等。
量子行为粒子群优化算法能够处理这 类问题,通过粒子间的信息共享和协 作,寻找最优解或近似最优解。
机器学习与数据挖掘
在机器学习和数据挖掘领域,量子行为粒子群优化算法可用 于特征选择、模型参数优化和超参数调整等方面。
算法在实际问题中的应用前景
组合优化问题
量子行为粒子群优化算法在求解组合优化问题方面具有优 势,如旅行商问题、背包问题等,有望在实际生产、物流 等领域得到广泛应用。
机器学习与数据挖掘
量子行为粒子群优化算法可用于特征选择、模型参数优化 等方面,为机器学习和数据挖掘提供新的思路和方法。
控制系统优化
在控制系统的参数优化和控制器设计中,量子行为粒子群 优化算法具有潜在的应用价值,有助于提高控制系统的性 能和稳定性。
粒子群优化算法ppt
![粒子群优化算法ppt](https://img.taocdn.com/s3/m/d74971bb82d049649b6648d7c1c708a1284a0ac7.png)
联合优化
粒子群优化算法可以用于联合优化神经网络的参数和结构,进一步提高神经网络的性能。
粒子群优化算法在神经网络训练中的应用
粒子群优化算法可以用于优化控制系统的控制器参数,以提高控制系统的性能和稳定性。
控制器参数优化
鲁棒性优化
联合优化
粒子群优化算法可以用于提高控制系统的鲁棒性,以应对系统中的不确定性和干扰。
粒子群优化算法可以用于联合优化控制系统的参数和结构,进一步提高控制系统的性能和稳定性。
03
粒子群优化算法在控制系统中的应用
02
01
06
总结与展望
粒子群优化算法是一种高效的全局优化算法,具有速度快、简单易行、易于并行化等优点。它利用群体智慧,通过粒子间的协作与信息共享,可以快速找到全局最优解。
优点
PSO算法的特点包括:简单易懂、易实现、能够处理高维问题、对初始值不敏感、能够处理非线性问题等。
定义与特点
粒子群优化算法的起源与发展
PSO算法的起源可以追溯到1995年,由 Kennedy 和 Eberhart博士提出,受到鸟群觅食行为的启发。
最初的PSO算法主要应用于函数优化问题,后来逐渐发展应用到神经网络训练、模式识别、图像处理、控制等领域。
边界条件的处理
通过对粒子速度进行限制,可以避免粒子在搜索空间中过度震荡,从而更好地逼近最优解。
粒子速度的限制
实例一
针对函数优化问题,通过对粒子速度和位置进行更新时加入随机扰动,可以增加粒子的探索能力,从而寻找到更好的最优解。
实例二
针对多峰函数优化问题,将粒子的个体最佳位置更新策略改为基于聚类的方法,可以使得粒子更好地逼近问题的全局最优解。
粒子的适应度函数用于评估其位置的好坏。
优化算法-粒子群优化算法
![优化算法-粒子群优化算法](https://img.taocdn.com/s3/m/6734d04d14791711cc791784.png)
步骤四:对于粒子的每一维,根据式(1)计算得到一个随机点 的位置。
步骤五:根据式(2)计算粒子的新的位置。
步骤六:判断是否满足终止条件。
粒子群优化算法
PSO算法在组合优化问题中的应用
典型的组合优化问题:TSP
粒子群优化算法
量子行为粒子群优化算法的基本模型
群智能中个体的差异是有限的,不是趋向于无穷大的。群体的聚 集性是由相互学习的特点决定的。
个体的学习有以下特点: 追随性:学习群体中最优的知识
记忆性:受自身经验知识的束缚
创造性:使个体远离现有知识
粒子群优化算法
聚集性在力学中,用粒子的束缚态来描述。产生束缚态的原因是 在粒子运动的中心存在某种吸引势场,为此可以建立一个量子化 的吸引势场来束缚粒子(个体)以使群体具有聚集态。
描述为: 给定n 个城市和两两城市之间的距离, 求一条访问各城市
一次且仅一次的最短路线. TSP 是著名的组合优化问题, 是NP难题, 常被用来验证智能启发式算法的有效性。
vid (t 1) wvid (t) c1r1 pid (t) xid (t) c2r2( pgd (t) xid (t))
xid (t 1) xid (t) vid (t 1)
粒子群优化算法
w 惯性权重 可以是正常数,也可以是以时间为变量的线性或非线性
正数。
粒子群优化算法
通常动态权重可以获得比固定值更好的寻优结果,动态权重可以在 pso搜索过程中呈线性变化,也可以根据pso性能的某个测度函数 而动态改变,目前采用的是shi建议的随时间线性递减权值策略。
粒子群优化算法
基本粒子群优化算法课件
![基本粒子群优化算法课件](https://img.taocdn.com/s3/m/e9584e93185f312b3169a45177232f60ddcce7db.png)
根据粒子的新速度,结合粒子的位置 更新公式,计算粒子的新位置。
终止条件和迭代次数
01
终止条件:当达到预设的迭代次数或满足其他终止条件时,算 法停止迭代。
Байду номын сангаас
02
迭代次数:根据问题规模和复杂度,设定合适的最大迭代次数
。
以上内容仅供参考,具体内容可以根据您的需求进行调整优化
03 。
04 粒子群优化算法的改进
基本粒子群优化算法课 件
目录
Contents
• 基本粒子群优化算法概述 • 粒子群优化算法的数学基础 • 粒子群优化算法的实现 • 粒子群优化算法的改进 • 粒子群优化算法的应用实例 • 总结与展望
01 基本粒子群优化算法概述
起源和背景
起源
粒子群优化算法起源于对鸟群、 鱼群等动物群体行为的研究。
理论分析
深入分析基本粒子群优化算法的数学性质和收敛 性,有助于更好地理解算法的工作原理,为算法 改进提供理论支持。
拓展应用领域
随着技术的发展,基本粒子群优化算法有望在更 多领域得到应用。例如,在人工智能领域,可探 索与其他优化算法的结合,以解决更复杂的机器 学习、深度学习等问题。
与其他智能算法的交叉研究
机器学习问题
机器学习问题
粒子群优化算法还可以应用于机器学习领域,如分类、聚类、特征选择等。
举例
例如,在分类问题中,可以使用粒子群优化算法来训练一个分类器,通过迭代和更新粒子的位置和速度,找到最 优的分类器参数。
06 总结与展望
当前研究进展和挑战
研究进展
基本粒子群优化算法在多个领域得到广泛应 用,如函数优化、神经网络训练、数据挖掘 等。近年来,随着研究的深入,算法的性能 和收敛速度得到了显著提升。
粒子群优化算法课件
![粒子群优化算法课件](https://img.taocdn.com/s3/m/f29e6303b207e87101f69e3143323968001cf457.png)
实验结果对比分析
准确率
01
在多个数据集上,粒子群优化算法的准确率均高于对比算法,
表明其具有较强的全局搜索能力。
收敛速度
02
粒子群优化算法在多数数据集上的收敛速度较快,能够更快地
找到最优解。
鲁棒性
03
在不同参数设置和噪声干扰下,粒子群优化算法的性能表现稳
定,显示出良好的鲁棒性。
结果讨论与改进建议
讨论
其中,V(t+1)表示第t+1次迭代 时粒子的速度,V(t)表示第t次迭 代时粒子的速度,Pbest表示粒 子自身的最优解,Gbest表示全 局最优解,X(t)表示第t次迭代时
粒子的位置,w、c1、c2、 rand()为参数。
算法优缺点分析
优点
简单易实现、参数少、收敛速度快、 能够处理多峰问题等。
03
强化算法的可视化和解释性
发展可视化工具和解释性方法,帮助用户更好地理解粒子群优化算法的
工作原理和结果。
THANKS
感谢观看
粒子群优化算法的改进与扩展
动态调整惯性权重
惯性权重是粒子群优化算法中的一个 重要参数,它决定了粒子的飞行速度 。通过动态调整惯性权重,可以在不 同的搜索阶段采用不同的权重值,从 而更好地平衡全局搜索和局部搜索。
VS
一种常见的动态调整惯性权重的方法 是根据算法的迭代次数或适应度值的 变化来调整权重值。例如,在算法的 初期,为了更好地进行全局搜索,可 以将惯性权重设置得较大;而在算法 的后期,为了更好地进行局部搜索, 可以将惯性权重设置得较小。
并行粒子群优化算法
并行计算技术可以提高粒子群优化算法的计算效率和收敛 速度。通过将粒子群分成多个子群,并在不同的处理器上 同时运行这些子群,可以加快算法的收敛速度。
《粒子群优化算法》课件
![《粒子群优化算法》课件](https://img.taocdn.com/s3/m/2f158df868dc5022aaea998fcc22bcd127ff4266.png)
CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数
粒子群优化算法
![粒子群优化算法](https://img.taocdn.com/s3/m/ebf772e8c0c708a1284ac850ad02de80d4d80681.png)
好地求解各类优化问题。
03
多目标优化
多目标优化是未来粒子群优化算法的一个重要研究方向,可以解决实
际优化问题中多个目标之间的权衡和取舍。
THANKS
谢谢您的观看
粒子群优化算法
xx年xx月xx日
目录
• 粒子群优化算法简介 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进 • 粒子群优化算法的应用案例 • 粒子群优化算法的总结与展望
01
粒子群优化算法简介
什么是粒子群优化算法
粒子群优化算法是一种群体智能优化算法,通过模拟鸟群、 鱼群等动物群体的社会行为,利用群体中个体之间的相互作 用和信息共享,寻找问题的最优解。
动态调整约束参数
通过动态调整约束参数,使算法在不同阶段都能保持较好的优化效果。同时 ,可以设置一些参数的自适应调整策略,如根据迭代次数、最优解的位置和 速度等信息来自适应调整。
04
粒子群优化算法的应用案例
函数优化问题
求解函数最大值
粒子群优化算法可以用于求解各类连续或离散函数的最大值,例如非线性函数、 多峰函数等。通过不断迭代寻优,能够找到函数的局部最大值或全局最大值。
03
粒子群优化算法的参数包括粒子群的规模、惯性权重、加速常数和学习因子等 ,这些参数对算法的性能和收敛速度有着重要影响。
粒子群优化算法的应用领域
粒子群优化算法被广泛应用于各种优化问题中,包括函 数优化、路径规划、电力系统优化、机器学习、图像处 理、控制工程、模式识别、人工智能等领域。
具体应用包括:函数优化问题的求解、神经网络训练的 优化、控制系统参数的优化、机器人路径规划、图像处 理中的特征提取和分类等。
空间搜索的改进
引入高斯分布
通过引入高斯分布,使粒子速度更新过程中更侧重于向当前 最优解方向靠拢,提高算法的局部搜索能力。
粒子群优化算法(详细易懂)
![粒子群优化算法(详细易懂)](https://img.taocdn.com/s3/m/8407a3632b160b4e767fcf83.png)
粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD)
种群所经历过的最好位置:gbest=(g1,g2,…gD)
Xi =Xi1,Xi 2 ,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
“自然界的蚁群、鸟群、鱼群、 大自然对我们的最大恩赐! 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里; 但它们能感受到当前的位置离食物还有多远.
Xi =Xi1,Xi 2 ,...,Xid
Study Factor
區域 最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik 1 +C1*r1*(Pbest i -Xik 1 )+C2 *r2 *(gbest -Xik 1 )
Xik =Xik 1 +Vik 1
Vi =Vi1,Vi 2 ,...,ViN
粒子群优化算法PPT
![粒子群优化算法PPT](https://img.taocdn.com/s3/m/0f5704a00975f46526d3e10a.png)
02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
速度。其实只要恰当的选取 和c1、c2,两种算法是 一样的。因此使用收敛因子的PSO可以看作使用惯性权 重PSO的特例。
恰当的选取算法的参数值可以改善算法的性能。
02 算法原理
基本PSO是用于实值连续空间,然而许多实际问题是组 合优化问题,因而提出离散形式的PSO。速度和位置更 新式为:
V i V i c 1 r a n d ( ) ( p b e s t i x i ) c 2 r a n d ( ) ( g b e s tshi等人在进化计算的国际会议上发表了一 篇论文《A modified particle swarmoptimizer》对前 面的公式(1)进行了修正。引入惯性权重因子。 (3)式
V i V i c 1 r a n d ( ) ( p b e s t i x i ) c 2 r a n d ( ) ( g b e s t i x i )
02 算法原理
从社会学的角度来看,公式(1)的第一部分称为记忆 项,表示上次速度大小和方向的影响;公式第二部分称为 自身认知项,是从当前点指向粒子自身最好点的一个矢量, 表示粒子的动作来源于自己经验的部分;公式的第三部分 称为群体认知项,是一个从当前点指向种群最好点的矢量, 反映了粒子间的协同合作和知识共享。粒子就是 通过自己的经验和同伴中最好的经验来决定下一步的运动。
粒子群算法ppt课件
![粒子群算法ppt课件](https://img.taocdn.com/s3/m/f510b877e55c3b3567ec102de2bd960590c6d9ed.png)
粒子群算法Reynolds,Heppner,Grenader等发现,鸟群在行进过程中会突然同步地改变方向,散开或聚集。
一定有种潜在的规则在起作用,据此他们提出了对鸟群行为的模拟。
在他们的早期模型中,仅仅依赖个体间距的操作,即群体的同步是个体之间努力保持最优距离的结果。
1987年Reynolds对鸟群社会系统的仿真研究,一群鸟在空中飞行,每个鸟遵守以下三条规则:1)避免与相邻的鸟发生碰撞冲突;2)尽量与自己周围的鸟在速度上保持协调和一致;3)尽量试图向自己所认为的群体中靠近。
仅通过使用这三条规则,系统就出现非常逼真的群体聚集行为,鸟成群地在空中飞行,当遇到障碍时它们会分开绕行而过,随后又会重新形成群体。
作为CASKennedy和Eberhart在CAS中加入了一个特定点,定义为食物,鸟根据周围鸟的觅食行为来寻找食物。
他们的初衷是希望通过这种模型来模拟鸟群寻找食源的现象,然而实验结果却揭示这个仿真模型中蕴涵着很强的优化能力,尤其是在多维空间寻优中。
鸟群觅食行为Food Global BestSolutionPast BestSolution车辆路径问题构造一个2L维的空间对应有L个发货点任务的VRP问题,每个发货点任务对应两维:完成该任务车辆的编号k,该任务在k车行驶路径中的次序r为表达和计算方便,将每个粒子对应的2L维向量X分成两个L维向量:Xv(表示各任务对应的车辆)和Xr(表示各任务在对应的车辆路径中的执行次序)。
例如,设VRP问题中发货点任务数为7,车辆数为3,若某粒子的位置向量X为:发货点任务号: 1 2 3 4 5 6 7Xv : 1 2 2 2 2 3 3Xr : 1 4 3 1 2 2 1则该粒子对应解路径为:车1:0 → 1 → 0车2:0 → 4 →5 → 3→ 2→ 0车3:0 → 7→ 6→ 0粒子速度向量V与之对应表示为Vv和Vr。
该表示方法的最大优点是使每个发货点都得到车辆的配送服务,并限制每个发货点的需求仅能由某一车辆来完成,使解的可行化过程计算大大减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01 算法介绍
PSO是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新 的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化 算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭 代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算 法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变 异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全 局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学 术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法 是一种并行算法。
PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。 在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更 新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和 位置。 (1)式
(2)式
在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数
02 算法原理
01 算法介绍
社会组织的全局群行为是由群内个体行为以非线性方式出现的。 个体间的交互作用在构建群行为中起到重要的作用。从不同的群研 究得到不同的应用。最引人注目的是对蚁群和鸟群的研究。
其中粒群优化方法就是模拟鸟群的社会行为发展而来。对鸟群 行为的模拟:Reynolds、Heppner和Grenader提出鸟群行为的 模拟。他们发现,鸟群在行进中会突然同步的改变方向,散开或者 聚集等。那么一定有某种潜在的能力或规则保证了这些同步的行为。 这些科学家都认为上述行为是基于不可预知的鸟类社会行为中的群 体动态学。在这些早期的模型中仅仅依赖个体间距的操作,也就是 说,这种同步是鸟群中个体之间努力保持最优的距离的结果。
最好位置(pbest)和现在的位置Xi.这个可以看作是粒子自己的飞行
经验.除此之外,每个粒子还知道到目前为止整个群体中所有粒子 发现的最好位置(gbest)(gbest是pbest中的最好值).这个可以看 作是粒子同伴的经验.粒子就是通过自己的经验和同伴中最好的经 验来决定下一步的运动。
02 算法原理
PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优 解。在每一次迭代中,粒子通过跟踪两个"极值"来更新自己。第一 个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另 一个极值是整个种群目前找到的最优解,这个极值是全局极值 gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的 邻居,那么在所有邻居中的极值就是局部极值。
01 算法介绍
CAS的四个基本特点: 首先,主体(Adaptive Agent)是主动的、活的实体; 其次,个体与环境(包括个体之间)的相互影响,相互作 用,是系统演变和进化的主要动力; 再次,这种方法不象许多其他的方法那样,把宏观和微 观截然分开,而是把它们有机地联系起来; 最后,这种建模方法还引进了随机因素的作用,使它具 有更强的描述和表达能力。
01 算法介绍
PSO(粒子群优化算法(Particle Swarm Optimization), 缩写为 PSO)从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒 子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后 粒子们就追随当前的最优粒子在解空间中搜索。
Millonas在开发人工生命算法时(1994年),提出群体智能概念 并提出五点原则:
1、接近性原则:群体应能够实现简单的时空计算; 2、优质性原则:群体能够响应环境要素; 3、变化相应原则:群体不应把自己的活动限制在一狭小范围; 4、稳定性原则:群体不应每次随环境改变自己的模式; 5、适应性原则:群体的模式应在计算代价值得的时候改变。
02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
01 算法介绍
PSO产生背景之一:CAS
我们把系统中的成员称为具有适应性的主体(Adaptive Agent),简称为主体。所谓具有适应性,就是指它能够 与环境以及其它主体进行交流,在这种交流的过程中 “学习”或“积累经验”,并且根据学到的经验改变自 身的结构和行为方式。整个系统的演变或进化,包括新 层次的产生,分化和多样性的出现,新的、聚合而成的、 更大的主体的出现等等,都是在这个基础上出现的。即 CAS(复杂适应系统)理论的最基本思想
01 算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。
我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由 简单个体组成的群落和环境及个体之间的相互行为。
01
ALGORITHM INTRODUCTION
算法简介
粒子群算法
设想这样一个场景:一群鸟在随 机搜索食物。在这个区域里只有 一块食物。所有的鸟都不知道食 物在那里。但是他们知道当前的 位置离食物还有多远。那么找到 食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食 物最近的鸟的周围区域。
01 算法介绍
粒子群优化算法
Particle Swarm Optimization
智能控制课题报告
CONTENT
01 算法简介 ALGORITHM INTRODUCTION 02 算法原理 ALGORITHM PRINCIPLE 03 PSO和其他算法 OTHERS 04 程序演示 PROGRAM SHOW
目录