高次多项式因式分解的几种方法

高次多项式因式分解的几种方法
高次多项式因式分解的几种方法

高次多项式因式分解的几种方法

广东顺德勒流职业中学 廖列宏

因式分解在中学数学中占有一个比较重

要的位置,但大部分同学对高次多项式的因式分解却比较陌生.这里,我们对一些高次多项式的因式分解的方法作分析介绍. 1 高次多项式因式分解的一般方法

首先,先介绍下面两个定理. 定理1 设111()n n n n f x a x a x a x ??=+++L 0a +是一个整系数多项式,如果有理数/v u 是它的一个根,其中u 与v 互素,则|n u a ,0|v a .特别地,当1n a =时,()f x 的有理根都是整数,且为常数项0a 的因数.

证明 因为/v u 是()f x 的根,故ux v ?整除()f x ,设

1110()()()n n f x ux v b x b x b ??=?+++L ,① 则比较两端n 次项系数和常数项,得: 100,()n n a ub a v b ?==?. ② 由于()f x 与ux v ?都是整系数多项式,而ux v ?又是本原的,故可知11n n b x ??++L 1b x +0b 是一个整系数多项式,因此1n b ?与0b 都是整数,于是由②知:|n u a ,0|v a .

这个定理说明,欲求整系数多项式()f x 的有理根,可先求其常数项0a 的全部因数(包括负因数),设为12,,,s v v v L ;再求出首项系数n a 的全部因数(也包括负因数),设为12,,,u u L t u ,则如果()f x 有有理根,它的有理根必在所有有理数/(1,2,,;1,i j v u i s j ==L 2,,)t L 之中.但是这些有理数中究竟哪些是()f x 的根,还需要通过综合除法来逐个进行检验.但这样太麻烦,会浪费太多的时间,为了更简便地判断它的根,我们再引出下面一个定理.

定理2 若既约分数/v u 是整系数多项式()f x 的根,则|(1),|(1)u v f u v f ?+?.

证明 因为/v u 是()f x 的根,由定理1中的①知有:

110(1)()()n f u v b b b ?=?+++L , (1)f ?

11110()[(1)(1))]n n u v b b b ??=?+?++?+L . 但由于()f x 是整系数,(1)f 与(1)f ?都是整数,又110,,,n b b b ?L 也是整数,故:

|(1)u v f ?,|(1)u v f +?.

下面,我们用上面两个定理来对一些多项式进行因式分解.

例1 把326552x x x ?+?因式分解.

解 我们先把它转化为求32()65f x x x =? 52x +?的有理根.由定理1知:()f x 的常数项2?的全部因数是:1,2±±;其中首项系数6的全部因数是:1,2,3,6±±±±.因此要进行检验的有理数为:1,2,1/2,1/3,2/3,1/6±±±±±±.

但易知(1)4f =,(1)18f ?=,故1±都不是()f x 的根,再由定理2,由于:

12|??(1),f 31|+(1),f ?32|+(1),f ? 32|??(1),f 16|+(1),f ?61|??(1),f 故2,1/3,2/3,1/6?±±都不是()f x 的根, 因此剩下只需检验2,1/2,1/3?这三个数了.由综合除法易知,只有1/2是它的根.

∴326552x x x ?+? 2(1/2)(624)x x x =??+

2(21)(32)x x x =??+.

例2 把432471052x x x x +++?因式分 解.

解 先把它转化成求43()47f x x x =++ 21052x x +?的有理根.

∵()f x 的常数项和首项系数的全部因数分别为:1,2±±与1,2,4±±±.需要检验的有理数为:1,2,1/2,1/4±±±±.

由于(1)0f ?=故1?是()f x 的根,且易知, 32()(1)(4372)f x x x x x =+++?

按照同样方法可求43()4372g x x x x =++?的有理根,易知()g x 的有理根为:1/4,由综合整除法:

1

4 4 3 7 2?

1 1 2

4 4 8 0

?15?

∴432471052x x x x +++? 2(1)(1/4)(448)x x x x =+?++

2(1)(41)(2)x x x x =+?++.

下面介绍两种特殊的高次多项式因式分解.

2与首末两项等距离的项的系数相等的高次多项式的因式分解的方法 2.1 最高次数是偶次的多项式

例3 分解多项式432231632x x x x +?++. 解 把多项式的各项除以中间项2x ,经整理,转化为方程得:

222(1/)3(1/)160x x x x +++?=. 用换元法:

令1/x x y +=有,2221/2x x y +=?,

代入得22(2)3160y y ?+?=, 即223200y y +?=. 解之得:15/2y =,24y =?. 于是确定x 的两个方程: ∴1/5/2x x +=, 1/4x x +=?. 解之得

122,1/2x x ==

,32x =?+

42x =??.

∴432231632x x x x +?++

2(2)(1/2)(22x x x x =??+++

(2)(21)(22x x x x =??+?++ 2.2 最高次数是奇数的多项式

例4分解多项式

543222x x x x x +?+?1?.

分析 这是与首末两项等距离的项的系数成相反数,必然有系数和等于0,所以1是54322210x x x x x +?+??=的根,所以多项式可以化为:

432(1)(3231)x x x x x ?++++ 而4323231x x x x ++++又是与例3同样的解法.

例5 分解多项式

5432251313x x x x +??52x ++.

分析 这是与首末两项等距离的项的系

数相等而最高次数为奇数,所以1x =?是5432251313520x x x x x +??++=的根,从而原多项式可以化为:

432(1)(231632)x x x x x ++?++, 而432231632x x x x +?++又同例3同样的解法.

3 各项系数和等于零的高次多项式

例6 分解多项式:

43225412x x x x +++?. 解 多项式的各项系数和: 1254120+++?=,

因此1x =必为432254120x x x x +++?=的根,因此由综合除法可得:

所以多项式可化为:

32(1)(3812)x x x x ?+++, 接着对323812x x x +++进行因式分解,按1中的方法可以求出:

3223812(2)(6)x x x x x x +++=?++,

∴43225412x x x x +++? 2(1)(2)(6)x x x x =??++.

数列求和中难点突破的策略

江苏省苏州大学附中 房之华

在数列求和的问题中,常常会碰到一些难以解决的问题,困扰着学生不能将问题得以解决.怎样突破这些难点,开拓学生的解题思路,发展学生的能力,是值得深入探讨的课题.本文就此问题谈谈笔者的教学策略. 1 解剖麻雀,以点窥面

对于某些数列的求和,无须从整体出发.可以抓住通项,从通项入手进行解剖,探索规律,然后以点窥面,寻找难点的突破口.

例1 求数列

111,,,1212312(1)

n +++++++L L 1 1 2 5 4 12? 1 3 8 12 1 3 8 12 0 ?16?

因式分解16种方法

因式分解的16种方法 因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又 有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1分解要彻底2最后结果只有小括号 3最后结果中多项式首项系数为正(例如:—3x2? x=-x3x —1) 分解因式技巧 1?分解因式与整式乘法是互为逆变形。 2. 分解因式技巧掌握: ①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“ ”号时,多项式的各项都要变号。 提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的 一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 1 1 注意:把2a2+ —变成2(a2+-)不叫提公因式 2 4 ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a2「b2 =(a+b)(a-b);完全平方公式:a2± 2ab+ b2= a-b2 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的

因式分解常用的六种方法详解

因式分解常用的六种方法详解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

因式分解的十二种方法及多项式因式分解的一般步骤

因式分解的十二种方法及多项式因式分解的一般步骤 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5)

=(m-5)(m-n) 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

因式分解的方法与技巧

因式分解应具有四种意识 一、优先意识 按因式分解的一般步骤和思考程序,要树立优先提多项式公因式的意识 例1.分解因式:21222 x y xy y -+ 解: 二、换元意识 通过换元,可以达到化繁为简、化难为易的目的 例2.分解因式:2 5()7()6x y x y ---- 解: 三、完整意识 依分解因式的步骤,因式分解必须分解到每个因式都不能再分解为止 例3.分解因式:22222()4+-a b a b 解: 四、应用意识 例4.生产一批高为200 mm 的圆柱形容器,底面半径的合格尺寸为(501±)mm ,任取两个这样的产品,它们的容积最多相差多少(π取3.14)? 解: 因式分解中的数学思想 众所周知,数学思想是我们数学解题的灵魂,因式分解也不例外,在因式分解过程中也蕴含着许多的数学思想,如果能灵活的加以运用,往往能更好地解决因式分解问题,下面就因式分解中的常见的思想方法举例说明: 一、整体思想 所谓用整体思想来分解因式,就是将要分解的多项式中的某些项看成一个整体而加以分解. 例1 把多项式(x 2-1)2+6(1-x 2)+9分解因式. 分析 把(x 2-1)看成一个整体利用完全平方公式进行分解,最后再利用平方差公式达到 分解彻底的目的 解 二、类比思想 类比思想地因式分解中的运用很广泛,具体地表现在:一是因式分解与整式乘法的对比;二是因式分解与乘法的分配律的对比;三是因式分解与乘法公式的对比. 例2 分解因式:(1)x 3y -xy 3;(2)abx 2-2abxy +aby 2. 分析(1)对比平方差公式可先提取xy 后,(2)对比完全平方公式可先提取ab ,.

因式分解的十二种方法

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下: 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式. 例2、分解因式a +4ab+4b (2003南通市中考题) a +4ab+4 b =(a+2b) 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析:1 -3 7 2 2-21=-19 7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解. 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解. 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a)

常用的因式分解公式

常用的因式分解公式: 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下. 例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有 由bd=7,先考虑b=1,d=7有 所以 原式=(x2-7x+1)(x2+5x+7).

因式分解的常用方法(目前最牛最全的教案)

因式分解的常方法 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学 之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 用方法 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2 =(a+b)(a -b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2 ; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2 ); (4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2 ). 下面再补充两个常用的公式: (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2 ; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2 -ab -bc -ca); 例.已知a b c ,,是ABC ?的三边,且222 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=)()(bn bm an am +++ =)()(n m b n m a +++ 每组之间还有公因式!

多项式的因式分解

1.1 多项式的因式分解 教学目标 1.了解分解因式的意义,以及它与整式乘法的相互关系. 2.感受因式分解在解决相关问题中的作用. 3.通过因式分解培养学生逆向思维的能力。 重点与难点 重点:理解分解因式的意义,准确地辨析整式乘法与分解因式这两种变形。 难点:对分解因式与整式关系的理解 教学过程 一、创设情境,导入新课 1 回顾整式乘法和乘法公式 填空:计算:(1)2ab(3a+4b-1)=_________, (2)(a+2b)(2a-b)=__________ (3)(x-2y)(x+2y)=__________;(4)错误!未找到引用源。=_____________ (5) 错误!未找到引用源。=________ 2 你会解方程:错误!未找到引用源。吗? 估计学生会想到两种做法:(1)一是用平方根的定义,(2)二是:解:(x+1)(x-1)=0,根据两个因式相乘等于0,必有一个因式等于0,得到:x+1=0或者x-1=0,因此:得x=1或-1 指出:把错误!未找到引用源。叫因式分解,为什么要把一个多项式因式分解呢?这节课我们来学习这个问题。 二合作交流,探究新知 1 因式的概念 (1)说一说:6=2×___, 错误!未找到引用源。, (2)指出:对于6与2,有整数3使得6=2×3,我们把2叫6的一个因数,同理,3也是6的一个因数。 类似的:对于整式错误!未找到引用源。与x+2,有整式x-1使得错误!未找到引用源。,我们把x+2叫多项式错误!未找到引用源。的一个因式,同理,x-2也叫多项式错误!未找到引用源。的一个因式。 你能说说什么叫因式吗? 一般地,对于两个多项式f与g,如果有多项式h使得f=gh,那么我们把g叫f 的一个因式,同样,h也是f的一个因式。 (3)考考你:你能说出下面多项式有什么因式吗? A ab+ac, B 错误!未找到引用源。 C 错误!未找到引用源。 D 错误!未找到引用源。 2 因式分解的概念 (1)指出;一般地,把一个含字母的多项式表示成若干个均含字母的多项式的乘积的形式,称为把这个多项式因式分解。

因式分解常用方法(方法最全最详细)

因式分解的常用方法 第一部分:方法介绍 因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主 要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。 即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤 都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数 法、试除法、拆项(添项)等方法;。 注意:将一个多项式进行因式分解应分解到不能再分解为止。 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法? 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因

F 面再补充两个常用的公式: ⑸a 2 +b 2 +c 2 +2ab+2bc+2ca=(a+b+c) 2 ; (6)a 3 +b 3 +c 3 -3abc=(a+b+c)(a 2 +b 2 +c 2 -ab-bc-ca); 例.已知a, b, c 是 ABC 的三边,且a 2 b 2 c 2 则ABC 的形状是() A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 2 2 2 2 2 2 解:a b c ab bc ca 2a 2b 2c 2ab 2bc 2ca (a b)2 (b c)2 (c a)2 0 a b c 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:am an bm bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用 公式分解,但从“局部”看,这个多项式前两项都含有 a ,后两项都含有 b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考 虑两组之 间的联系。 式分解中常用的公式,例如: (1)(a+b)(a-b) = a 2 -b 2 ------- a (2)(a ±b)2 = a 2 ±2ab+b 2 ------- a ⑶(a+b)(a 2 -ab+b 2) =a 3+b 3 ⑷(a-b)(a 2+ab+b 2 ) = a 3 -b 3 2 -b 2 =(a+b)(a-b) ; 2 ±2ab+b 2 =(a ±b)2 ; a 3 +b 3 =(a+b)(a 2 -ab+b 2 ); a 3 _b 3 =(a-b)(a 2 +ab+b 2 ). ab bc ca ,

多项式因式分解的一般步骤

①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。” 几道例题 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2. 解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y). 2.求证:对于任何实数x,y,下式的值都不会为33: x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y). (分解因式的过程也可以参看右图。) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y 互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。 3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形。 4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。 解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)

二元二次多项式的因式分解

形如F Ey Dx Cy Bxy Ax +++++22的二元二次多项式的因式分解 分解形如F Ey Dx Cy Bxy Ax +++++22的多项式,常用的方法有:求根法、待定系数法、双十字相乘法和双零分解法。当然结合多项式的特点可以采用灵活的方法,如若已知它的一个因式,可用分析二次项和常数项的方法,较容易的求得。现举例说明: 方法一、求根法 利用求根法因式分解,形如F Ey Dx Cy Bxy Ax +++++22的二元二次多项式可看成关于x (或y )的一元二次多项式。用求根公式求出两根21,x x ,则原式=()()21x x x x A --。在实数范围内,原多项式分解成两个一次因式,必须是关于x 的方程的判别式是y 的一次式的完全平方式,为此这个判别式的判别式必须是0。 例1、a 为何值时,62622-+--ay y xy x 能分解成两个一次式的乘积,并进行分解。 分析:把上面的多项式看成x 的一元二次式,令这个一元二次式为0,解出x 的两个值21,x x ,则原式=6()()21x x x x --,这里只须研究a 何值时,21,x x 是y 的一次式即可。 解:设62622-+--ay y xy x =0,把此式看成关于x 的一元二次方程,则该方程的判别式:()14424496224222+-=-+--=?ay y ay y y , 要使方程的解为y 的一次式,?必须为完全平方式,那么判别式的判别式1?必须是零。 1? =()() 0492414424424222=-=??-a a ,∴7±=a (1)、当7=a 时,由0672622=-+--y y xy x 解得12 1,13221+-=-=y x y x 则原式=?? ? ??-+??? ??+-1211326y x y x =()()22323++--y x y x (2)、当7-=a 时,由0672622=----y y xy x 解得12 1,13221--=+=y x y x 则原式=()()22323++--y x y x 练习: 把822615822++-+-y x y xy x 分解因式 答案:原式=()()4523----y x y x 方法二:待定系数法 用待定系数法因式分解的一般步骤: 1、根据多项式的特点,确定所能分解成的形式。要尽量减少待定系数的个数,以利求解。 2、利用多项式恒等定理,列出以待定系数为未知数的方程或方程组。 3、解方程组,如方程或方程组有解,则原式可以分解为所设的形式;如果无解,则原方程组不能分解为所设的形式。 如果方程组有解,把解得的待定系数的数值代入所设的分解式中。 例2、k 为何值时,多项式253222--++y y kxy x 可分解为两个一次因式的积。 分析:先设可分解成两个一次式,原式中的k 是xy 的项未知系数。为使待定系数尽量少,可先考虑()()1322532+-=--y y y y ,所以可设:原式=()().132++-+y bx y ax ,也可以先考虑()()122222-+=-x x x ,所以可设:原式=()()122-+++ny x my x ,这里只解前者。 解:设253222--++y y kxy x =()()132++-+y bx y ax ∵()()132++-+y bx y ax =()()2523322---++++y x b a y xy b a abx ∴253222--++y y kxy x =()()2523322---++++y x b a y xy b a abx 由两边对应项系数相等得:?????=-=+=0232b a k a b ab ,解此方程组得?????===712k b a 或?? ???-=-=-=712k b a ∴当7=k 时,原式可分解为253222--++y y kxy x =()()1322++-+y x y x ;

因式分解的方法与技巧

因式分解的方法与技巧Prepared on 21 November 2021

因式分解应具有四种意识 一、优先意识 按因式分解的一般步骤和思考程序,要树立优先提多项式公因式的意识 例1.分解因式:21222 x y xy y -+ 解: 二、换元意识 通过换元,可以达到化繁为简、化难为易的目的 例2.分解因式:25()7()6x y x y ---- 解: 三、完整意识 依分解因式的步骤,因式分解必须分解到每个因式都不能再分解为止 例3.分解因式:22222()4+-a b a b 解: 四、应用意识 例4.生产一批高为200mm 的圆柱形容器,底面半径的合格尺寸为(501±)mm ,任取两个这样的产品,它们的容积最多相差多少(π取3.14) 解: 因式分解中的数学思想 众所周知,数学思想是我们数学解题的灵魂,因式分解也不例外,在因式分解过程中也蕴含着许多的数学思想,如果能灵活的加以运用,往往能更好地解决因式分解问题,下面就因式分解中的常见的思想方法举例说明: 一、整体思想 所谓用整体思想来分解因式,就是将要分解的多项式中的某些项看成一个整体而加以分解. 例1 把多项式(x 2-1)2+6(1-x 2)+9分解因式. 分析 把(x 2-1)看成一个整体利用完全平方公式进行分解,最后再利用平方差公式达到分解彻底的目的 解 二、类比思想 类比思想地因式分解中的运用很广泛,具体地表现在:一是因式分解与整式乘法的对比;二是因式分解与乘法的分配律的对比;三是因式分解与乘法公式的对比. 例2 分解因式:(1)x 3y -xy 3;(2)abx 2-2abxy +aby 2.

因式分解的十二种方法 因式分解的方法顺口溜

因式分解的十二种方法因式分解的方法顺 口溜 因式分解的十二种方法 : 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x3-2x2-x (2003淮安市中考题) x3 -2x2 -x=x(x2 -2x -1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2 + 4ab + 4b2 (2003南通市中考题) 解:a 2 + 4ab +4b2 =(a+2b)2 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a ,把它后两项分成一组,并提出公因式b ,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m 2 + 5n - mn - 5m 解:m 2 + 5n - mn - 5m= m2 - 5m - mn + 5n = (m2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n)

4、十字相乘法 对于mx 2 +px+q形式的多项式,如果a ×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x 2 -19x-6 分析: 1 - 3 7 2 2 - 21=-19 解:7x 2 -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x 2 +3x-40 33解 x 2 +3x - 40=x 2 + 3x + ( 2) 2 - ( 2 ) 2 -40 313=(x + 2 ) 2 - ( 2 ) 2 313313=(x + 2 + 2 )(x + 2 - 2 ) =(x+8)(x-5) [1**********]注:( ) 2 + ==( ) 2=( ) 2 244422 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c – a + a +b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

三次因式分解

下面几种方法仅供参考 1、可以用待定系数法来解决。根据高等数学中的理论,任何一个高次多项式,都可以分解 为若干个一次因式和判别式(B^2-4ac<0)的二次因式的乘积。所以你假设原始可以分解为(ax+b)(cx+d)(ex^2+fx+g)然后把这个式子展开,和你要分解的那个原式用对应系数相等的法则来求解出常数a,b,c,d,e,f,g 的值就可以了。 2、试根法 例如x^3-5x^2+17x—13 看看x等于什么可以使他等于0 显然x=1可以 所以有一个因式是x-1 所以x^3—5x^2+17x—13 =x^3—x^2—4x^2+4x+13x—13 =x^2(x—1)—4x(x-1)+13(x—1) =(x-1)(x^2-4x+13) 3一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型. 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A 和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=—(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如 ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,—(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)—((b/2a)^2—(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2—(c/a))^(1/2)

-多项式的因式分解定理

§1-5多项式的因式分解定理 多项式44-x 在有理数域、实数域、复数域上的因式分解 ][)2)(2)(2)(2(4][)2)(2)(2(4][)2)(2(4424224x C i x i x x x x x R x x x x x Q x x x +-+-=-++-=-+-=-(不能再分)(不能再分) 在不同的系数域上,具有不同形式的分解式 什么叫不能再分? 平凡因式: 零次多项式(不等于零的常数)、多项式自身、前两个的乘积 Definition8:(不可约多项式)令][)(x P x f 是的一个次数大于零的多项式,如果][)(x P x f 在中只有平凡因式,就称f(x )为数域P 上(或在P[x]中)的不可约多项式.(p(x)在数域P 上不能表示成两个次数低的多项式的乘积) 若)(x f 除平凡因式外,在P[x]中还有其它因式,f(x )就说是在数域P 上(或在P[x]中)是可约的. 如果不是平凡因式)(,)()()(x g x h x g x f =, 的次数显然和则)()(x h x g 都小于)(x f 的次数. 反之,若)(x f 能写成两个这样多项式的乘积,那么)(x f 有

非平凡因式;如果P[x]的一个n 次多项式能够分解成P[x]中两个次数都 小于n 的多项式 的乘积和)()(x h x g 即 )()()(x h x g x f 那么)(x f 在P 上可约. 由不可约多项式的定义可知: 任何一次多项式都是不可约多项式的. 不可约多项式的重要性质: 一个多项式是否不可约是依赖于系数域; 1.如果多项式)(x f 不可约,那么P 中任意不为零的元素c 与)(x f 的乘积c )(x f 都不可约. 2.设)(x f 是一个不可约多项式而P(x)是一个任意多项式,那么或者)(x f 与P(x)互素,或者)(x f 整除P(x). 3.如果多项式)(x f 与)(x g 的乘积能被不可约多项式P(x)整除,那么至少有一个因式被P(x)整除. Theorem5.如果)(x p 是一个不可约多项式,P(x)整除一些多项式)(,),(),(21x f x f x f s 的乘积,那么)(x p 一定整除这些多项式之中的一个. 证明:对被除多项式的个数s 用数学归纳法 当s=1时,显然成立;

《浅谈多项式因式分解的方法》

贵州师范大学求是学院本科期末论文(设计) 期末论文(设计)题目 《浅谈多项式因式分解的方法》 学生姓名:何娜 科任教师:龙伟锋 专业:数学与应用数学 年级: 2012级 学号: 122008011013 2015年 12 月 10 日

多项式因式分解的方法 摘要:在数学学习过程中以及上个学期的实习实践中(上初三的数学课),常常遇到多项式因式分解问题,本文对一元多项式因式分解的方法进行了初步的探索,归纳了一元多项式因式分解的12种方法,给出具体实例,并对每种方法加以评论。 关键词:一元多项式,因式分解 多项式在高等代数中的重要性使我们有必要对多项式进行深入研究。在高等代数中已经证明了数域上的多项式环内的每一个(n n >)0次多项式都可以分解成这个多项式环内不可约多项式的乘积,并且表达式唯一(因式次序及零次因式的差异除外)。本文将对多项式因式分解的方法进行总结归纳。多项式因式分解的方法很多,但具体到某一个多项式,要针对其特征,选取适当的方法,才能提高解题的效率。所以我们要灵活掌握这些方法,这会为我们解题带来很多方便。 1 求根法 (参见文献[]2)设多项式()x f =0111a x a x a x a n n n n ++++-- 是整系数多项式, 第一步 写出首项系数n a 的全部因数i v ,s i ,,2,1 =; 第二步 写出常数项0a 的全部因数j u ,t j ,2,1=; 第三步 用综合除法对j i u v 试验,确定()x f 的根; 第四步 写出()x f 的标准分解式。 例1 求()x f =251074234-+++x x x x 在有理数域上的因式分解式。 解 先把它转换成求()x f =251074234-+++x x x x 的有理根。 ()x f 的常数项和首项系数的全部因数分别为1±,2±与1±,2±,4±,则需要检验的有 理数为1±,2±,12±,14 ±. 由于()1-f =0,故-1是()x f 的根,且易知()x f =()() 2734123-+++x x x x .

因式分解方法与技巧

因式分解方法与技巧 因式分解是初二学生学习的一个难点,有些学生在学习时感到不知所措,究其原因是没有掌握因式分解的基本方法。故本人对因式分解的常用方法作了一个小结,希望能对同学们有所帮助。 专题一 分解因式的常用方法:一提二用三查 ,即先考虑各项有无公因式可提;再考虑能否运用公式来分解;最后检查每个因式是否还可以继续分解,以及分解的结果是否正确。 常见错误: 1、漏项,特别是漏掉 2、变错符号,特别是公因式有负号时,括号内的符号没变化 3、分解不彻底 首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底” [例题]把下列各式因式分解: 1.x(y-x)+y(y-x)-(x-y) 2 2.a a -5 3.3(x 2-4x)2-48 [解析]1中()()22x y y x -=-,可以直接提取公因式(y-x);2、3中先提取公因式,再用平方差公式分解 [答案]1 原式=x(y-x)+y(y-x)-(y-x)2 =(y-x)[x+y-(y-x)] =2y(y-x) 2 a 5-a=a(a 4-1)=a(a 2+1)(a 2-1)=a(a 2+1)(a+1)(a-1) 3原式=3[(x 2-4x)-16]=3(x 2-4x+4)(x 2-4x-4) [点拨]看出其中所含的公式是关键 专题二 二项式的因式分解:二项式若能分解,就一定要用到两种方法:1提公因式法 2平方差公式法。先观察二项式的两项是否有公因式,然后再构造平方差公式,运用平方差公式a 2-b 2=(a+b)(a-b)时,关键是正确确定公式中a,b 所代表的整式,将一个数或者一个整式化成整式,然后通过符号的转换找到负号,构成平方差公式,记住要分解彻底。 平方差公式运用时注意点: 根据平方差公式的特点:当一个多项式满足下列条件时便可用平方差公式分解因式: A 、 多项式为二项式或可以转化成二项式; B 、 两项的符号相反; C 、 每一项的绝对值均可以化为某个数的平方,及多项式可以转化成平方差的形式; D 、 首项系数是负数的二项式,先交换两项的位置,再用平方差公式; E 、 对于分解后的每个因式若还能分解应该继续分解;如有公因式的药先提取公因式 [例题]分解因式:3(x+y)2-27 [答案]3(x+y )2-27=3[(x+y)2-9]=3[(x+y)2-32 ]=3()()33-+++y x y x [点拨]先提取公因式,在利用平方差公式分解因式,一次不能分解彻底的,应继续分解 专题三

(完整版)因式分解知识点归纳总结

因式分解知识点归纳总结概述 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。 分解因式与整式乘法互为逆变形。 因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1)) 分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式 提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 例如:-am+bm+cm= a(x-y)+b(y-x)= ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a2-b2=(a+b)(a-b); 完全平方公式:a2±2ab+b2=(a±b) 2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 例如:a2 +4ab+4b2 = ⑶分组分解法 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y) 同样,这道题也可以这样做。 ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)

相关文档
最新文档