汽轮机厂汽轮机原理及运行篇
汽轮机运行
汽轮机运行第一章汽轮机的工作原理一、汽轮机:是一种以具有一定温度和压力的水蒸气为工质,将热能转变为机械能的回转式原动机。
.二、单级气轮机结构:喷嘴,动叶片,叶轮和轴等基本部件组成。
类型:纯冲动式:只在喷嘴中膨胀,动叶片仅受蒸汽的冲动力。
反动式:一半在喷嘴中膨胀,一半在动叶片中膨胀。
焓降相等。
冲动式:大部分在喷嘴中膨胀,还有少部分在动叶片中膨胀。
带有反动度的冲动式气轮机。
三、.气轮机的分类:1.按工作原理:纯冲动式:反动式,冲动反动联合式气轮机。
2.按热力过程:凝汽式,背压式,调整抽汽式,中间在热式。
(背压式,调整抽汽式)统称供热式汽轮机。
3.按蒸汽参数:低压:新蒸汽的压力为1.176—1.47MPa 中压:1.96—3.92MPa高压:5.88—9.8MPa 超高压:11.76—13.72MPa 亚临界:15.68—17.642MPa 超临界:22.06MPa以上。
4.按蒸汽流动方向:周流式,轴流式,辐流式气轮机。
5.另外如单缸,双缸,多缸。
单轴,双轴气轮机等。
四、级的反动度等于蒸汽在动叶片中的理想焓降与整个级的滞止理想焓降之比。
根据级的反动度的大小,可把级分为以下三种类型:1.纯冲动级:ρm=02.反动级:反动度ρm≈0.5.P1 〉P23.带反动度的冲动级:反动度0〈ρm〈0.5 一般取ρm=0.05~0.2 P1〉P24.喷嘴出口理想速度可写成:如果是实际的速度还要乘上速度系数。
c1t=1.414 Δh n* u=πd b n/60(圆周速度)5.当喷嘴工作在过热蒸汽区域时,其流量系数一般可取0.97。
当喷嘴在湿蒸汽区域工作时,其流量系数却大于1◎蒸汽在喷嘴中的流动是绝热的、稳定的,它遵守连续流动方程q mυ=Ac 或q m=Ac 或A=q mυυ c◎因q m是一个常数,会出现四种情况:(1)比容及流速都在增大,如果比容和流速增加的速率相等,这是一个等截面喷嘴。
(2)如果比容增长的速率小于流速增加的速率,这是一个渐缩喷嘴。
汽轮机工作原理及构造
汽轮机工作原理及构造汽轮机是一种常用于发电厂和船舶动力系统中的热力机械设备。
它通过燃烧燃料产生高温高压的蒸汽,然后利用蒸汽的能量驱动涡轮机进行旋转,最终将旋转的动能转化为电能或机械动力。
本文将介绍汽轮机的工作原理及构造。
一、汽轮机的工作原理汽轮机的工作原理基于热力学循环和流体力学原理。
一般而言,汽轮机采用的热力学循环是朗肯循环,其主要由以下四个过程组成:压缩、加热、膨胀和冷却。
1. 压缩过程:冷凝器中的凝汽泵将凝结的蒸汽吸入压缩机中,通过压缩使其压力和温度升高。
2. 加热过程:高温高压的蒸汽进入到汽轮机的燃烧室中,其中的燃料燃烧产生高温高压的气体,使蒸汽进一步增加温度和压力。
3. 膨胀过程:高温高压的气体通过喷嘴喷射到涡轮机中,推动涡轮机旋转,由于涡轮机叶片的设计,气体内部的压力和温度降低。
同时,涡轮机的转动也将转动轴上的发电机或其他机械装置带动。
4. 冷却过程:膨胀后的蒸汽进入冷凝器,通过冷凝器中的冷却水吸热,使蒸汽冷凝成水,并回路循环。
二、汽轮机的构造汽轮机的主要构造包括压缩机、燃烧室、涡轮机和冷凝器等组成部分。
下面将对这些部分进行简要介绍。
1. 压缩机:压缩机通常是由多个级数的离心式或轴流式压缩机组成。
其主要作用是将低温低压的蒸汽压缩成高温高压的蒸汽,为燃烧室提供所需的工作介质。
2. 燃烧室:燃烧室是燃烧燃料的地方,其设计可以使燃料尽量充分燃烧,并产生高温高压的气体。
不同类型的汽轮机有不同的燃烧室结构,常见的有环形燃烧室和燃气轮机中的燃烧室。
3. 涡轮机:涡轮机是汽轮机中最核心的部分,它是通过高温高压气体的推动而旋转,将热能转化为机械能。
涡轮机一般包括高压涡轮和低压涡轮。
高压涡轮接受来自燃烧室的高温高压气体推动,低压涡轮接受来自高压涡轮排出的低温低压气体推动。
4. 冷凝器:冷凝器是一个换热器,用于将膨胀后的蒸汽冷凝成水。
冷凝器通常通过冷却水来吸热,使蒸汽冷凝成水,并将冷凝后的水再次引入蒸汽循环中。
汽轮机结构及原理
汽轮机结构及原理一、组成部件:1. 压气机:用于将空气压缩,提高进入燃烧室的压力。
2. 燃烧室:将燃料与压缩空气混合并燃烧,产生高温高压的燃气。
3. 喷气管:用于引导和加速燃气流出燃烧室,产生冲力。
4. 轴:将压气机、涡轮机和发电机等部件连接起来。
5. 涡轮机:通过燃气的冲力驱动,使轴产生旋转运动。
6. 发电机:通过轴的运动,将机械能转化为电能。
二、工作原理:1. 压缩空气:气体由进气口进入压气机,压气机的叶片逐渐减少叶片间的空隙,从而将气体压缩,提高气体的压力和密度。
2. 燃烧过程:压缩后的空气经过燃油喷嘴喷入燃烧室,与燃料混合并点燃。
燃烧产生的高温高压燃气通过喷气管流向后方。
3. 燃气驱动:燃气通过涡轮机,将燃气的高速和高温转化为轴的旋转运动,产生机械能。
4. 电能发电:轴的旋转运动通过发电机,将机械能转化为电能。
发电机的旋转子产生交流,通过定子的线圈而感应电流,最终输出电能。
三、工作过程:1. 进气:外部空气通过进气口进入压气机。
2. 压缩:压气机的叶片将空气逐渐压缩,提高气体的压力和密度。
3. 燃烧:压缩后的空气通过燃油喷嘴喷入燃烧室,与燃料混合并点燃。
4. 转动涡轮:燃烧产生的高温高压燃气通过喷气管流向后方,驱动涡轮机旋转。
5. 转动轴:涡轮机的旋转运动通过轴传递,使轴产生旋转运动。
6. 发电:轴的旋转运动通过发电机,将机械能转化为电能,供应电力负载使用。
7. 排气:燃烧后的废气排出机外,通过喷气管排出。
四、特点和应用:1. 汽轮机具有高效率和大功率输出的优点,广泛应用于发电厂、船舶推进系统、航空器动力装置等领域。
2. 汽轮机结构简单,可靠性高,适应性强,同时可根据实际需求进行多机组联网运行,提高整体系统的可靠性和性能。
3. 由于汽轮机使用燃汽轮机使用化石燃料,其燃烧过程会产生大量的二氧化碳和其他排放物,对环境造成污染。
因此,在环保意识增强的背景下,与其他清洁能源技术相比,汽轮机在未来的发展中面临一定限制和挑战。
汽轮机工作原理及流程
汽轮机工作原理及流程
汽轮机是一种利用蒸汽动力的热力机械,其工作原理和流程是由蒸汽的能量转
换为机械能,从而驱动发电机或其他机械设备。
汽轮机工作原理及流程主要包括蒸汽进汽轮机、蒸汽膨胀、蒸汽冷凝和蒸汽排出等过程。
首先,蒸汽进汽轮机。
在汽轮机中,蒸汽从锅炉中产生,经过调节阀进入汽轮
机的高压缸,然后通过叶片的作用使汽轮机转动。
蒸汽的进入使得汽轮机内部产生高速旋转,从而转动发电机或其他机械设备。
其次,蒸汽膨胀。
在汽轮机内部,蒸汽受到叶片的作用,从而产生膨胀,使得
汽轮机转动更加迅速。
蒸汽的膨胀过程是汽轮机工作中非常重要的一环,它直接影响着汽轮机的工作效率和输出功率。
接着是蒸汽冷凝。
在汽轮机工作过程中,蒸汽膨胀后的温度降低,需要通过冷
凝器进行冷凝。
蒸汽在冷凝器内部散发热量,经过冷凝后变成凝结水,然后排出系统。
这一过程是为了保证汽轮机内部循环的蒸汽能够继续被利用,提高能源利用率。
最后是蒸汽排出。
冷凝后的凝结水排出系统,蒸汽的循环过程完成,汽轮机重
新进入下一个循环。
蒸汽排出过程是汽轮机工作流程的最后一环,也是为了保证系统内部蒸汽循环的顺利进行。
总的来说,汽轮机工作原理及流程是一个连续循环的过程,通过蒸汽的进入、
膨胀、冷凝和排出,实现了能量的转换和机械设备的驱动。
汽轮机作为一种重要的能源转换设备,在发电、工业生产等领域有着广泛的应用,其工作原理和流程的理解对于提高能源利用效率和保障设备安全稳定运行具有重要意义。
汽轮机工作原理及流程
汽轮机工作原理及流程一、简介汽轮机是一种将热能转化为机械能的旋转式动力机械,广泛应用于发电、化工、船舶等领域。
它利用高温高压蒸汽在汽轮机叶片上做功,带动转子旋转,从而输出动力。
汽轮机具有效率高、单机功率大、使用燃料范围广等优点。
二、工作原理汽轮机的工作原理主要包括冲动作用原理和反动作用原理。
1. 冲动作用原理当蒸汽进入汽轮机叶片通道时,蒸汽分子对叶片产生一定的冲动力,使叶片旋转。
这种冲动力是由于蒸汽在进入叶片通道时,因蒸汽温度和压力发生变化,蒸汽分子速度发生改变而产生的。
冲动作用原理适用于低速和中速汽轮机。
2. 反动作用原理当蒸汽进入汽轮机时,不仅对叶片产生冲动力,而且对整个汽轮机转子产生反作用力,推动转子旋转。
这种反作用力是由于蒸汽在叶片通道中充分膨胀,蒸汽分子速度增大而产生的。
反动作用原理适用于高速汽轮机。
三、流程汽轮机的工作流程主要包括启动过程和正常运行过程。
1. 启动过程启动过程是汽轮机从静止状态到额定转速运行的过程。
首先,需要建立蒸汽参数,使汽轮机具备足够的蒸汽动力。
然后,开启主汽阀,使蒸汽进入汽轮机,推动转子旋转。
随着转速的增加,蒸汽流量和压力逐渐增大,直到达到额定转速。
在启动过程中,需要对汽轮机的各个参数进行监控和调整,确保安全稳定的启动。
2. 正常运行过程正常运行过程中,汽轮机处于稳定的工作状态,蒸汽通过调节阀控制流量和压力,对汽轮机做功。
此时,蒸汽的能量得到充分的利用,转化为机械能输出。
汽轮机的运行参数需要进行实时监控和调整,以保证其稳定性和经济性。
如果遇到异常情况,需要进行及时的处理和修复,以防止事故的发生。
3. 停机过程停机过程是汽轮机从额定转速逐渐降低到静止状态的过程。
当需要停机时,首先关闭主汽阀,切断蒸汽供应,汽轮机的输出功率逐渐降低。
然后,通过调节凝汽器阀门,控制汽轮机的进水和出水,使汽轮机冷却。
随着时间的推移,汽轮机的转速逐渐降低,直到达到静止状态。
停机过程中,同样需要对汽轮机的各个参数进行监控和调整,确保安全稳定的停机。
《汽轮机的工作原理》课件
控制系统:通过传感器、控制器和执行器来控制汽轮机的运行状态和参数
调节系统与控制系统的关系:调节系统是控制系统的一部分,两者共同作用于汽轮机的运 行 调节系统和控制系统的作用:保证汽轮机的稳定运行,提高效率,降低能耗,延长使用寿 命
汽轮机的运行和维 护
汽轮机的发展趋势 和未来展望
提高汽轮机的效率和可靠性
采用先进的材料和 制造工艺,提高汽 轮机的耐久性和可 靠性
优化汽轮机的设计, 提高其效率和性能
采用先进的控制技 术和监测系统,提 高汽轮机的运行稳 定性和可靠性
加强汽轮机的维护 和保养,延长其使 用寿命和可靠性
发展新型的汽轮机技术
提高效率:通过改进设计、材料和制造工艺,提高汽轮机的热效率和机械效率 降低排放:采用环保技术,减少废气排放,降低对环境的影响
添加副标题
汽轮机的工作原理
汇报人:
目录
PART One
添加目录标题
PART Two
汽轮机的概述
PART Three
汽轮机的工作流程
PART Four
汽轮机的结构特点
PART Five
汽轮机的运行和维 护
PART Six
汽轮机的发展趋势 和未来展望
单击添加章节标题
汽轮机的概述
汽轮机的定义
汽轮机是一种将蒸汽的热能转化为机械能的旋转式动力机械。 主要由汽缸、转子、叶片、轴承等部件组成。 工作原理:蒸汽进入汽缸,推动转子旋转,从而输出机械能。 应用领域:广泛应用于发电、船舶、化工、冶金等行业。
THANK YOU
汇报人:
提高可靠性:通过优化设计、提高制造精度和加强维护,提高汽轮机的可靠性和寿命
汽轮机的本体结构及工作原理
汽轮机的结构及工作原理
叶 片 喷 嘴 转 轴
轮 毂
按工作原理分
冲动式汽轮机:蒸汽通过喷嘴时,喷嘴内蒸汽压力下 降,流速增加,蒸汽以较高的速度吹在动叶片上,叶片在 圆周方向分力作用下推动轮毂作圆周运动 反动式汽轮机:蒸汽通过喷嘴时,蒸汽只改变汽流方 向方向,当蒸汽进入叶片后,开始膨胀,流速增加,此时 蒸汽对叶片产生反作用力,从而推动转子转动。
叶轮,平衡孔
轴向推力的平衡
多级冲动式汽轮机的轴向推力有几种平衡方法?
1、采用推力轴承 2、叶轮上开平衡孔 1)开设平衡孔以均衡叶轮前后压差。 2)采用平衡活塞,即适当加大高压端前轴封第一段轴封套 直径,以在其端面上产生与轴向推力相反的推力,平衡轴向 推力。 3)采用相反的蒸汽流动布置,抵消轴向推力(多缸机组)
多级汽轮机的优缺点
优点: 1. 单机功率大; 2. 效率高 一. 循环热效率高:初参数高,终参数低; 二. 相对内效率提高:最佳速比,余速利用,喷嘴流 道效率高; 3. 单位功率投资减小: 造价、材料、占地、人力 缺点: 1. 附加损失加大:如隔板漏气; 2. 机组长度质量加大; 3. 工作温度高,材料要求高; 4. 级数多,结构复杂,成本提高
本汽轮机型号C15-3.43/1.27(435℃)型,型式为单缸、冲动、单抽汽凝汽 式汽轮机,具有三级抽汽、两级双列调节级,由青岛捷能汽轮机股份有限公司制 造。 汽轮机级数共十一级。由两级双列调节级和九级压力级组成,调整抽汽点在 第一压力级后抽出,由中压调门控制压力与流量。 机组有三级抽汽,第一级抽汽为工业抽汽,有二只抽汽口,在第一级压力级 后;第二级抽汽进入除氧加热蒸汽母管,有一只抽汽口,在第二级压力级后;第 三级抽汽进入低压加热器,有一只抽汽口,在第六级压力级后,第十一级后为排 汽口通凝汽器。 本机组有高压调门、低压调门各一组(其中高压调门6只,低压调门5只), 分别借助于机械杠杆与高低压油动机相连。 本汽轮机转子采用套装式转子。叶轮及汽封套筒“红套”于主轴上,用刚性 联轴器与发电机转子联接。前端的支承点为推力轴承前轴承,运行中形成转子的 相对死点,前后径向轴承都为椭圆轴承,推力轴承采用可倾瓦式推力瓦块,推力 轴承和前轴承组成径向推力联合轴承。具有垂直中分面和水平中分面。喷嘴室与 前汽缸铸为一体。新蒸汽由前汽缸左右两侧的导汽管进入汽缸,下半汽缸第一压 力级后设有工业抽汽口,后汽缸排汽口与凝汽器相连接。 在汽轮机前轴承的前端装有测速装置,在座内有主油泵、危急遮断装置、轴 向位移发送器、推力轴承前轴承及调节系统的一些有关部套。
汽轮机工作原理及用途
汽轮机工作原理及用途
汽轮机是一种利用高速流体动能转化为机械能的热力发动机。
其工作原理是通过循环流体(通常是蒸汽)在叶片上产生动力,并驱动轴传递机械能。
汽轮机的工作原理如下:
1. 气流进入汽轮机,并通过进气管道进入叶轮机组。
2. 叶轮机组由一组叶片构成,当气流通过叶片时,受到了力的作用,使得叶轮旋转。
3. 旋转的叶轮通过轴传递机械能,从而驱动其他设备,如发电机或涡轮泵。
4. 排出气流的废气经过排气管道排出汽轮机。
汽轮机具有多种用途,主要包括以下几个方面:
1. 发电:汽轮机是发电厂中常见的发电设备,通过与发电机联动,将机械能转化为电能,用于供应电力。
2. 动力:汽轮机用于推动各种类型的机械设备,如船舶、飞机和工业设备等。
3. 热能回收:汽轮机可以利用废热,如锅炉排出的高温废气,来驱动它们,从而提高能源利用效率。
4. 石油工业:汽轮机在石油加工过程中被广泛应用,在炼油厂中用于驱动压缩机和泵等设备。
5. 化工工业:汽轮机可用于化工厂中的各种过程,如提供压缩空气、提供动力等。
总之,汽轮机作为一种高效节能的发动机,被广泛应用于发电、动力和工业领域,为各种设备提供动力和能源。
汽轮机工作原理及流程
汽轮机工作原理及流程汽轮机是一种利用蒸汽能量来驱动转子旋转的热力机械设备,它在现代工业中扮演着至关重要的角色。
汽轮机的工作原理及流程对于了解其运行机制和性能特点具有重要意义。
本文将从汽轮机的工作原理、基本结构和工作流程等方面进行详细介绍。
汽轮机的工作原理主要是利用蒸汽的压力能将动能转化为机械能。
当高温高压的蒸汽通过汽轮机的喷嘴进入叶片区域时,蒸汽的动能将叶片推动并使其产生旋转。
汽轮机的转子通过叶片的推动而旋转,从而驱动汽轮机的发电机或其他负载设备。
这一过程中,蒸汽的压力和温度逐渐下降,最终排出汽轮机,完成了一个工作循环。
汽轮机的基本结构包括汽轮机转子、定子、叶片、喷嘴等部件。
转子是汽轮机的主要工作部件,它由多级叶轮组成,每个叶轮上安装有叶片。
定子是支撑转子的固定部件,它包括了汽轮机的外壳、轴承等部件。
叶片是汽轮机中最关键的部件之一,它的设计和排列方式直接影响着汽轮机的性能和效率。
喷嘴是用来喷射高压蒸汽的装置,它的设计和工作状态对汽轮机的工作效果有着重要影响。
汽轮机的工作流程主要包括汽轮机的启动、加速、稳定运行和停机等阶段。
在汽轮机启动阶段,首先需要将汽轮机加热至一定温度,然后通过喷射高压蒸汽来推动转子旋转。
随着蒸汽的不断喷射,汽轮机的转速逐渐加快,从而完成了汽轮机的启动。
在汽轮机稳定运行阶段,蒸汽的压力和温度保持在一定范围内,并通过控制喷嘴和叶片的工作状态来控制汽轮机的输出功率。
最后,在汽轮机停机阶段,需要逐渐减少喷嘴的喷射量,使汽轮机的转速逐渐降低,最终停止转动。
总的来说,汽轮机是一种利用蒸汽能量来驱动转子旋转的热力机械设备,其工作原理和流程对于了解其运行机制和性能特点具有重要意义。
通过对汽轮机的工作原理、基本结构和工作流程进行详细介绍,可以更好地理解汽轮机的工作原理和运行特点,为汽轮机的设计、运行和维护提供重要参考。
汽轮机工作原理及流程
汽轮机工作原理及流程汽轮机是一种利用蒸汽能量来驱动转子旋转,产生机械功的热力机械设备。
它广泛应用于发电厂、船舶和工业生产中,是目前最常见的热力发电设备之一。
汽轮机的工作原理及流程,对于理解其工作过程和性能特点具有重要意义。
汽轮机的工作原理主要包括蒸汽进汽轮机的过程、蒸汽在汽轮机中的膨胀过程和蒸汽排出汽轮机的过程。
首先,高温高压的蒸汽由锅炉产生,经过调节阀进入汽轮机的高压缸。
在高压缸内,蒸汽对转子产生推动力,使转子开始旋转。
随着蒸汽膨胀,其温度和压力逐渐降低,蒸汽流入中压缸和低压缸,继续对转子产生推动力,最终完成膨胀过程。
最后,膨胀后的低温低压蒸汽被排出汽轮机,进入凝汽器冷凝成水,并回到锅炉再次循环利用。
汽轮机的工作流程可以简单概括为蒸汽进汽轮机、蒸汽膨胀推动转子旋转、蒸汽排出汽轮机三个主要环节。
在实际应用中,汽轮机还包括了凝汽器、再热器、过热器等辅助设备,以提高其工作效率和性能。
整个工作流程需要严格控制蒸汽的温度、压力和流量,以确保汽轮机的安全稳定运行。
在汽轮机的工作过程中,蒸汽与转子之间的相互作用是至关重要的。
蒸汽的温度和压力决定了对转子的推动力大小,而转子的旋转速度和叶片的设计则影响了蒸汽的膨胀过程和功率输出。
因此,汽轮机的设计和优化是一个复杂的工程问题,需要考虑流体力学、热力学、材料力学等多个学科知识。
除了工作原理和流程,汽轮机的性能特点也是需要重点关注的内容。
汽轮机的效率、功率、启动时间、响应速度等指标直接影响了其在实际应用中的表现。
为了提高汽轮机的性能,需要不断进行技术改进和创新,以适应不同工况和需求。
总的来说,汽轮机的工作原理及流程是一个复杂而又精密的系统工程,需要综合考虑热力学、流体力学、机械设计等多个学科知识。
只有深入理解其工作原理和流程,才能更好地应用于实际工程中,并不断提高其性能和效率。
热电厂汽轮机的检修及安全运行
热电厂汽轮机的检修及安全运行热电厂汽轮机是发电厂的核心设备之一,它直接影响着发电厂的安全运行和发电效率。
对汽轮机进行定期的检修和维护至关重要。
本文将就热电厂汽轮机的检修及安全运行进行详细的介绍,以帮助读者更好地了解汽轮机的维护和管理。
一、汽轮机的工作原理及结构汽轮机是利用燃料燃烧产生的热能来驱动涡轮转动,从而带动发电机发电的设备。
其工作原理是利用热力能将水变为蒸汽,蒸汽的压力将涡轮推动,从而带动涡轮旋转,最终带动发电机发电。
汽轮机通常由高压缸、中压缸和低压缸组成,每个缸都装有涡轮和适当的定子叶片。
汽轮机的结构复杂,需要严格的维护和管理。
二、汽轮机的检修1. 定期检修汽轮机的定期检修是确保其正常运行的重要手段之一。
通常情况下,汽轮机需要进行年度和季度的定期检修,包括燃气系统、冷却系统、润滑系统、电气系统等各个方面的检修。
在检修过程中,需要对汽轮机的各个部件进行仔细的检查,包括叶轮、轴承、密封件、冷却系统等,确保其运行状态良好。
2. 故障维修除了定期检修外,汽轮机还需要及时处理各种故障。
在汽轮机的运行过程中,可能会出现轴承损坏、密封件老化、叶轮变形等问题,这就需要进行及时的维修和更换。
在进行故障维修时,需要注意安全措施,避免对工作人员和设备造成损坏。
3. 各部件的检修在进行汽轮机检修时,需要对各个部件进行详细的检查和维护。
叶片的检修需要对其表面进行清洁和修复,以保证汽轮机的高效运行;轴承的检修则需要检查润滑油情况和轴承的磨损程度,如果需要更换则需要及时处理;冷却系统的检修需要对冷却管道和冷却设备进行检查,确保其正常运行。
三、汽轮机的安全运行1. 安全操作汽轮机在运行过程中需要严格按照操作规程进行操作,避免因操作不当而引发事故。
操作人员需要经过专业培训,熟悉汽轮机的运行原理和操作规程,确保汽轮机的安全运行。
2. 定期维护除了定期检修外,汽轮机还需要进行定期的维护。
维护内容包括清洁、润滑、添加润滑油、更换密封件等,以确保汽轮机各个部件的正常运行。
汽轮机工作原理及结构
汽轮机工作原理及结构汽轮机作为一种常见的热能转换装置,在能源领域发挥着重要的作用。
本文将介绍汽轮机的工作原理和结构,以帮助读者更好地了解和应用这一技术。
一、工作原理汽轮机通过当燃料燃烧产生高温高压气体,然后将这些气体通过喷嘴喷入汽轮机装置中的转子。
转子上的叶片受到高速高压气体的冲击力,在转子上产生转动力,从而驱动轴的转动。
同时,高温高压气体通过转子后转变为低温低压气体,然后被排出。
汽轮机通常采用闭式循环,也就是说排出的低温低压气体会再次进入锅炉或燃烧室进行再加热,然后再进入汽轮机转子。
这种循环能够充分利用能量,提高汽轮机的热效率。
此外,汽轮机还可以与发电机或水泵相结合,将机械能转化为电能或液压能。
二、结构组成汽轮机通常由以下几个主要部分组成:1. 锅炉:负责产生高温高压气体的燃烧室。
不同类型的汽轮机使用的锅炉有所不同,包括燃煤锅炉、燃气锅炉和核电锅炉等。
2. 压缩机:负责将空气压缩并输送到锅炉,以增加锅炉燃烧效率。
常见的压缩机类型有离心式压缩机和轴流式压缩机。
3. 燃气轮机:由轴和转子组成,是汽轮机的核心部件。
在燃烧室中释放的高温高压气体通过喷嘴进入燃气轮机,推动转子旋转,从而产生机械能。
4. 发电机或水泵:将燃气轮机输出的机械能转化为电能或液压能。
发电机或水泵与燃气轮机通过轴相连,通过传递转动力来完成能量转换。
5. 辅助设备:包括冷却系统、润滑系统、控制系统等,用于确保汽轮机的正常运行和安全性。
除了上述主要组成部分,汽轮机的结构还可能包括透平机组、减速机、机架等。
这些部件的具体组合和布局会根据实际应用需求的不同而有所变化。
三、应用领域汽轮机广泛应用于发电、航空、船舶、石化等众多领域。
其中,发电是汽轮机最常见的应用之一。
在热电站中,汽轮机与发电机结合,通过燃烧燃料产生高温高压气体,并将这些气体转化为电能。
此外,汽轮机还可以配合热泵系统,提供供暖和供热。
在航空领域,涡轮引擎是最常见的汽轮机类型之一。
汽轮机的布雷顿循环说明书
汽轮机的布雷顿循环说明书这是一篇关于汽轮机布雷顿循环的说明书。
引言汽轮机作为一种重要的能量转换装置,广泛应用于发电厂、化工厂及其他工业领域。
布雷顿循环是汽轮机运行的基本原理,本文将详细介绍布雷顿循环的原理、工作过程及其在汽轮机中的应用。
一、布雷顿循环原理布雷顿循环是一种理想化的热力循环,由英国工程师乔治·布雷顿于19世纪初提出。
它基于以下原理:在高温高压状态下,蒸汽通过涡轮机做功,然后再通过凝汽器冷却成水,最后再通过泵送入锅炉中重新加热成蒸汽。
二、布雷顿循环工作过程1. 蒸汽压缩蒸汽从锅炉中产生后,经过高压泵进入涡轮机,通过压缩装置将其压缩至较高的压力,同时降低温度。
2. 蒸汽加热经过压缩的蒸汽进入锅炉,通过燃烧燃料提高温度和压力。
燃料的选择可以根据需求进行灵活调整。
3. 蒸汽膨胀高温高压的蒸汽经过燃烧后进入涡轮机,驱动涡轮旋转,完成对外界做功的过程。
涡轮机通常采用多级结构,以充分提取蒸汽的能量。
4. 蒸汽冷却蒸汽在涡轮机中做功后,通过凝汽器进行冷却,使其成为液体。
凝汽器利用冷却介质(如水)的循环,将热量带走,使蒸汽迅速冷凝。
5. 冷凝水加热冷却后的蒸汽成为液体,通过泵将其送回锅炉中,重新加热成为高温高压的蒸汽,循环进行下一次热力循环。
三、汽轮机中布雷顿循环的应用汽轮机是布雷顿循环应用的典型代表,其应用场景主要包括以下几个方面。
1. 发电厂汽轮机在发电厂中是常见的能量转换装置,通过布雷顿循环的工作原理,将化学能转化为电能。
通过适当的调节锅炉的供热量和涡轮机的负荷,可以实现稳定的发电效果。
2. 化工领域在化工工厂中,汽轮机广泛用于提供动力或制造过程中需要的蒸汽。
利用布雷顿循环的高效能量转换特性,可以实现能源的合理利用,提高工业生产的效率。
3. 船舶动力汽轮机在船舶动力中有着重要的应用。
通过布雷顿循环的工作原理,将燃料燃烧产生的能量转化为动力,推动船舶行驶。
其高效性和可调节性,使得汽轮机成为船舶动力的首选。
汽轮机原理及运行
答:A初压变化对经济性的影响。对于不同背压的级组,背压越高,初压改变对功率的影响越大。当主蒸汽温度不变,主蒸汽压力升高时,蒸汽的初焓减小;此时进汽流量增加,回热抽汽压力升高,给水温度随之升高,给水在锅炉中的焓长减小,1kg蒸汽在锅炉内的吸热量减少。此时进汽量虽增大,但由于进汽量的相对变化小于机组功率的相对变化,故热耗率相应减小,经济性提高。初压升高使循环效率增大的经济效益,几乎全部被进汽节流损失相抵消,对机组运行经济性几乎没有影响。B初压变化对安全性的影响。初压长高时,所有承压部件受力增大,其内部应力将增大。初压升高时,若初温保持不变,使在湿蒸汽区工作的级湿度增大,加剧其叶片的侵蚀,并使汽轮机的相对内效率降低。若初压升高过多,而保持调节阀开度不变,则使末级组蒸汽的理想焓降增大,会导致叶片过负荷。此时调节级汽室压力长高,使汽缸、法兰和螺栓受力过大,高压级隔板前后压差增大。当初压降低时,要保持汽轮机的功率不变,增加进汽量。此时末级组蒸汽的流量和理想焓降都相应增大,则蒸汽对动叶片的作用力增加,机组的轴向推力相应增大。
答:各级在工况变化时的特点通常将汽轮机的级分为调节级、中间级和末级组三类。A中间级在工况变化时,压力比不变。在工况变化范围不大时,中间级的级前蒸汽温度基本不变。此时级内蒸汽的理想焓降不变,速度比也不变,故级效率不变,级的内功率与蒸汽流量成正比,即与级前蒸汽压力成正比。B末级组变工况时汽轮机的排汽压力变化不大,当流量下降时G1/ G0减小,P01减小,且变工况前级组前后的压力差越大,P01减小得越多,即级前压力降低得多,级后压力降低得少。此时级压力比增大,级内理想焓降减小,而且末级的压力比和理想焓降变化最大。级的速度比随理想焓降的减小而增大,偏听偏信离最佳值,级效率相应降低。C调节级前后压力比随流量的改变而改变,其理想焓降亦随之变化。当汽轮机流量减小时,调节级的压力比逐渐减小,调节级焓降逐渐增大。
汽轮机工作原理及流程
汽轮机工作原理及流程
汽轮机是一种常见的热力机械,其工作原理及流程对于了解能源转换和机械运转原理具有重要意义。
汽轮机是利用蒸汽的动能来驱动涡轮转动,从而产生功率的装置。
下面将介绍汽轮机的工作原理及流程。
首先,汽轮机的工作原理是基于热力学的第二定律,利用热能转换成机械能。
汽轮机主要由汽轮机本体、汽轮机调速器、汽轮机控制系统、汽轮机辅机系统等部分组成。
汽轮机的工作流程主要包括蒸汽进汽轮机、蒸汽膨胀、蒸汽排出等过程。
其次,汽轮机的工作流程是通过蒸汽进汽轮机的作用,使得汽轮机叶片受到蒸汽的冲击,从而转动涡轮。
在汽轮机内部,蒸汽在高压区和低压区之间进行膨胀,从而产生功率输出。
最后,经过膨胀后的蒸汽被排出汽轮机,进入凝汽器进行冷凝,然后再次回到锅炉中进行循环利用。
总的来说,汽轮机的工作原理及流程是通过蒸汽的能量转换来驱动涡轮转动,从而产生功率输出。
汽轮机在工业生产和能源转换中具有重要地位,对于了解其工作原理及流程有助于提高能源利用
效率和机械运转效率。
希望本文对于读者对汽轮机的工作原理及流程有所帮助。
电厂汽轮机原理及系统
电厂汽轮机原理及系统一、引言电厂汽轮机是一种常见的发电设备,其原理和系统是电厂发电过程中关键的组成部分。
本文将从汽轮机的原理和系统两个方面进行详细介绍。
二、汽轮机原理汽轮机是利用燃烧产生的高温高压气体对叶轮进行推动,实现能量转换的设备。
其基本原理包括以下几个方面:1. 燃烧过程:燃料在燃烧室内与空气混合燃烧,产生高温高压气体。
2. 能量转换:高温高压气体通过喷嘴进入汽轮机的叶轮,推动叶轮高速旋转。
3. 转动机械:叶轮的旋转驱动整个汽轮机的转子系统运转。
4. 能量输出:汽轮机转子系统的运转带动发电机转子旋转,通过电磁感应产生电能输出。
汽轮机原理的核心在于能量转换过程,通过高温高压气体对叶轮的推动,将热能转化为机械能,最终转化为电能输出。
三、汽轮机系统汽轮机的系统是由多个组件和装置组成,共同协作完成能量转换和发电过程。
主要包括以下几个方面:1. 燃料供应系统:负责将燃料输送至燃烧室,确保燃料的稳定供应和燃烧效果。
2. 燃烧系统:包括燃烧室和喷嘴等部件,实现燃料与空气的混合燃烧,产生高温高压气体。
3. 叶轮和转子系统:包括汽轮机的高压叶轮、低压叶轮和转子等部件,通过高温高压气体的推动实现叶轮和转子的旋转运动。
4. 发电机系统:汽轮机驱动发电机转子旋转,通过电磁感应产生电能输出。
5. 冷却系统:汽轮机运转过程中会产生大量热能,冷却系统用于控制汽轮机的温度,确保安全运行。
6. 辅助系统:包括润滑系统、控制系统、监测系统等,对汽轮机进行辅助支持和监控。
汽轮机系统的各个组件和装置密切配合,共同完成能量转换和发电过程。
每个系统都起着重要的作用,任何一个环节的故障都可能导致汽轮机运行异常或停机。
四、总结电厂汽轮机是一种重要的发电设备,其原理和系统是电厂发电过程中关键的组成部分。
汽轮机通过燃料燃烧产生的高温高压气体对叶轮进行推动,实现能量转换,最终转化为电能输出。
汽轮机系统由多个组件和装置组成,包括燃料供应系统、燃烧系统、叶轮和转子系统、发电机系统、冷却系统以及辅助系统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机厂汽轮机原理及运行篇青岛捷能汽轮机厂汽轮机原理及运行篇1、汽轮机的级:一列喷嘴叶栅和其后相邻的一列动叶栅构成的基本作功单元。
2、选择填空:在膨胀流动过程中,亚音速汽流的速度变化率大于其比体积变化率,通道截面积将随速度的增大而减小;超音速汽流的速度变化率小于其比体积变化率,通道面积将随速度的增大而增大。
3、填空:(喷嘴损失)是蒸汽在流道内的磨擦而损耗的动能。
4、根据蒸汽在汽轮机内能量转换的特点,可将汽轮机的级分为(纯冲动机)、(反动级)、(带反动度的冲动级)和(复速级)。
5、纯冲动级:嘴叶栅中进行膨胀,而在动叶栅中蒸汽不膨胀的级称为纯冲动级。
6、带反动度的冲动级:蒸汽的膨胀大部分在喷嘴叶栅中进行,只有一小部分在动叶栅中进行的级称为冲动级。
7、最佳值使轮周效率达到最大值。
8、最佳速度比为:(x1)op=1/2cosα19、反动级的最佳速度比为:(x1)op=cosα110、简答:外部损失包括(1)、轴封漏汽损失;(2)机械损失11、多级汽轮机中的余速利用和重热现象,可以使多级汽轮机的内效率与单级汽轮机的内率之比大于1。
12、填空:汽轮机的内功率减去机械损失,得到(轴端功率)13、名词:彭台门系数:通过喷嘴的任一理想流量与同一初始状态下临界流量的比值为彭台门系数。
14、填空:当初压降低时,要保持汽轮机的功率不变,则要开大调节阀,(增加进汽量),机组的轴向推力(相应增大)。
15、汽轮机的初温升高,蒸汽在锅炉内的平均吸热温度提高,循环效率提高,(热耗率降低)。
16、排汽压力升高,使(排汽温度)升高。
17、当外负荷增加时,使汽轮发电机组的转速降低。
18、汽轮机内效率的大小主要取决于汽轮机通流部分的结构和机组运行中所带负荷的水平。
19、汽轮机的调节方式有喷嘴调节、节流调节、滑压调节和复合调节。
20、(1)、喷嘴调节在调节过程中,随着各调节阀的逐个依次开启。
(2)、节流调节同时改变几个调节阀的开度。
(3)、滑压调节,滑压运行在部分负荷下节流损失最小。
(4)、复合调节方式是定压运行和滑压运行的组合。
21、名词:调节系统的静态特性:稳定工况时,机组功率与转速的对应关系称为调节系统的静态特性。
22、调节系统设置同步器后不改变其静态特性,只是将静态特性曲线近似平移。
23、名词:迟缓率:是在外负荷变化、机组输出功率未变的时间内,转速的最大变化量与额定转速的比值。
24、调节系统的动态品质:(1)、调节系统的动态稳定性;(2)动态超调量;(3)过渡时间25、名词:动态稳定性:是指机组受到扰动时,能由一个稳定工况过渡到新的稳定工况,扰动的动态响应曲线是收敛的。
26、转子飞升时间常数越小,表明转子越易加速,超速可能性越大,转子飞升时间常数的大小与机组额定功率的比值成反比。
27、提高油动机工作油压,可减小油动机活塞直径,相应减小油动机时间常数。
28、填空:为了补偿再热器容积所造成的机组功率滞后,可在调节系统中增设(动太校正器)。
29、简答:危急跳闸系统主要监视汽轮机转速超限、推力瓦磨损、润滑油压低、EH油压低、凝汽器真空低。
30、问答:功率校正有两个作用:其一是在调节的动态过程中,造成高压调节阀动态过调,以补偿中、低压缸功率变化的滞后;其二是对发电机输出功率进行细调,达到精确控制机组输出电功率的目的。
31、单元机组协调控制的主要目的是在外负荷变化时,尽快调整锅炉燃烧率和汽轮机的阀门开度,使能量供求达到新的平衡。
32、为什么增设协调控制的主调节器,答:用以改变机炉调节系统的调节指令,协调机炉之间的能量平衡,控制运行方式的切换。
33、名词:热耗量Q0:在单位时间(每小时)内消耗的热量称为热耗量。
34、汽耗率d0:机组单位发电量(KW。
h)所消耗的蒸汽量(kg)称为----35、热耗率是单位发电量所消耗的热量,可以反映不同容量、不同参数机组的热经济性。
36、问答:造成加热器端差上升的原因:(1)因加热器水管破裂造成水从管内流出或者因疏水器失灵以至汽侧水位升高而淹没加热器水管,致使蒸汽凝结放热的面积减小,表现为加热不足,端差上升。
(2)加热器抽气系统故障或者加热器漏气严重(对于处于真空状态的加热器而言),致使加热器内不凝结气体积聚。
这些气体附着在水管外侧,致使传热恶化,端差上升。
(3)加热水管的表面被污染或结垢,使传热热阻增加,端差上升。
(4)、电厂常采用堵管的方法来临时解决加热器水管破裂的问题,而不至完全切除加热器,但是当堵塞的管束过多时,就会造成传热面积减小而引起端差的上升。
37、机组运行时,抽汽压损增加将使加热器内压力降低,若端差不变,则加热器出口水温降低。
38、加热器切除机组的热经济性会因此而降低。
切除高压加热器后在新汽流量保持不变且通流部分又允许时,将获得可观的超额功率,但热经济性降低。
39、加热器的疏水方式一般有两种,一种是逐级自流,一种是采用疏水泵将疏水送入回热器出口凝结水管道。
40、凝汽器水位过高,真空降低,过冷度增大。
41、滑压运行负荷调节优点:(1)、滑压运行可以提高汽轮机对外负荷变化的适应性。
(2)滑压运行可以延长机组使用寿命(3)、滑压运行在一定程度上提高了机组热经济性。
42、为什么滑压运行与定压运行相比,在相同的部分负荷下,汽轮机的相对内效率相应提高,答:(1)部分负荷下保持开启的调节阀处于全开状态,进汽节流损失相应减小。
(2)调节级具有压力级的特性,在部分负荷下可保持级效率不变,(3)末级组各级的湿度相对减小,而减少了湿气损失,从而提高了末级的级效率。
43、为什么在相同的部分负荷下可降低水泵的耗功量,减少厂用电的消耗,答:滑压运行低负荷时,锅炉给水流量和压力随之减少,给水泵可以低转速运行,因此可以采用调速给水泵,特别是采用变速小汽轮机带动给水泵。
44、高负荷时,主蒸汽压力采用定-滑-定方式45、调峰:电网对负荷进行调节,使系统的发电量和供电量保持平衡,电网的这一调节过程称为调峰。
46、汽耗率不但与有效汽耗,而且与空载汽耗有关。
47、填空:对于包括锅炉在内的单元机组,其负荷的经济分配应按能耗微增率相等的原则进行,即当总负荷一定时,各单元机组所分配的负荷使其微增率相等,总的能耗达到最小。
48、金属材料在受力较大时,可能产生塑性变形,称为屈服现象。
试件受拉力时的应力值,称为材料的屈服极限。
49、金属材料在一定的温度和拉力持续作用下,会发生断裂。
温度愈高、应为愈大,其断裂前的承载时间愈短。
50、工程上定义材料试件经历10ˇ7次应力循环才断裂的应力变化幅值为材料的疲劳极限。
51、汽缸壁的平均应力与其汽缸内、外压力差成正比。
52、喷嘴叶栅流道积垢,将使隔板两侧蒸汽的压力差增大。
53、转子内每一层都承受其外层质量产生的离心力,因此其中心孔表面、叶轮轴向中心线处的切向离心拉应力最大。
54、等截面直叶片型线根部截面的弯矩最大,弯曲应力也最大。
55、蒸汽对动叶作用力的方向是动叶片型线背弧的弯曲应力为压应力。
56、影响转子相对胀差的因素:(1)、通流部分各级蒸汽温度的变化速度。
(2)、轴封供汽温度。
(3)、汽缸法兰内、外壁温差。
(4)汽缸夹层的蒸汽温度。
(5)、汽缸排汽温度。
(6)、摩擦鼓风损失。
(7)转子的回转效应。
57、对一个动叶片而言,每经过一个喷嘴流道,蒸汽对动叶片的冲击力变化一次。
这种交变的蒸汽作用力称为高频激振力。
58、动叶片振动的分类:B型振动其顶点平衡位置不动,振幅为零。
59、频率分散度是同一级叶片自振率的最大值fmax-和最小值fmin之差与其平均值之比。
60、不调频叶片的安全准则为:Ab?,Ab,。
61、不允许叶片或叶片组在共振条件下工作,称为调频叶片。
62、综合题:衡的离心力的原因:(1)、转子质量不平衡。
(2)、转子弯曲造成质量不平衡。
(3)、转子上套装零件松动造成的质量不平衡。
转子质量不平衡引起各自振动的特征:由于不平衡离心力与转速的平方成正比,受迫振动的振幅也与转速的平方成正比。
对于转子弯曲造成的质量不平衡,不平衡离心力的方向与转子弯曲的方向一致。
转速不变,其最大振幅的相位与晃度相位的夹角不变;转速升高,此夹角随之增大。
对于套装件松动造成的质量不平衡,其定位键限制质量偏心的方向,最大振幅的相位与其定位键的相位有关。
转速升高,最大振幅的相位与其定位键相位的夹角增大,且松动间隙加大,振幅随转速升高增加的比例大于转速的平方。
63、工作转速高于临界转速的为挠性转子。
64、额定参数启动采用母管制连接的汽轮机。
65、对于采用滑参数启动的机组,锅炉点火前,凝汽器内应建立适当的真空。
66、冲转前减小转子偏心率的方法是进行较长时间的连续盘车。
67、冲转时进入汽轮机的蒸汽,其过热度应大于50?68、汽轮机启动的冲转方式:(1)、主汽门或其旁路阀控制冲转。
(2)、调节阀控制冲转。
(3)中压调节阀控制冲转。
69、中压缸启动:启动冲转时,高压缸处于隔离状态,主蒸汽经高压旁路进入再热器,从而保证再热蒸汽温度符合热态启动中压缸对进汽参数的要求。
在机组并网前后,切换为高压缸进汽,这种启动方式称为中压缸启动。
70、所谓“并网”就是将发电机的输出端通过隔离开关与电网相接通,使发电机输出的电功率送入电网,供用户使用。
并网条件:隔离开关两侧电压相等,其相位对应,且频率相同。
71、同步发电机输出电压的频率与电网供电频率相同。
72、主汽门关闭是停机过程的重要标志。
在主汽门关闭后,切断汽轮机的进汽,*转子旋转惯性克服摩擦的降速过程称为“惰走过程”。
73、与冷态启动比,热态启动要求轴封供汽温度较高。
74、汽轮机启动过程的优化原则(目标):启动过程的优化目标是在确保机组安全的前提下,尽可能加快启动速度。
75、大修停机应尽可能利用停机过程,对汽缸和转子进行冷却,故大修停机多采用滑参数停机。
76、造成汽轮机转子失效的原因:(1)、交变应力的反复作用下,造成转子材料脆化而产生疲劳裂纹。
(2)、另一原因是材料的高温蠕变。
77、从新机转子出现第一条可风裂纹到转子失效,所经历的低周交变应力的循环次数,定义为残余寿命。