第8章 平台式惯性导航系统原理及应用分解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子信息工程学院
8
弹道式:起飞阶段必须在大气层内,平飞前 进阶段主要在空气稀少的高空或外层空间,下降 阶段再入大气层。弹道式导弹不在大气层中长时 间平行飞行,不需要飞航式导弹那样的弹翼和操 纵面,有的则连尾翼都没有。
特点:空气阻力小,飞行速度快,飞行距离远,能进行洲际攻击。
电子信息工程学院
9
4.半解析式平台惯导系统分类 飞机中应用多为半解析式惯导系统,根据平台两个水平 轴指向不同可分为 (1)指北方位惯导系统:工作时,平台的三个稳定轴分别指向 地理东、地理北、当地地平面的法线方向,即平台模拟当地地 理坐标系。 (2)自由方位惯导系统:工作时,平台的方位可以和北向成任 意夹角,始终指向惯性空间的某一个方向,台面仍要保持在当 地的水平面内。由于地球的旋转和飞机的运动,平台的横轴、 纵轴不指向地理东、北,而是有一定自由夹角,故称它为自由 方位惯导系统,其平台称为自由方位平台。 (3)游动方位惯导系统:与自由方位类似,平台的台面处于当 地水平面,方位轴只跟踪地球自转的分量。
电子信息工程学院
3
2.捷联式惯导:无稳定平台,加速度计和陀螺仪 与载体直接固连。载体转动时,加速度计和陀螺仪 的敏感轴指向也跟随转动。陀螺仪测量载体角运 动,计算载体姿态角,从而确定加速度计敏感轴 指向。再通过坐标变换,将加速度计输出的信号 变换到导航坐标系上,进行导航计算。 优点:无平台,结构简单,体积小,维护方便。 缺点:惯性元件直接装在载体上,环境恶劣,对 元件要求较高;坐标变换中计算量大。
式的一种,而不能单独分类。)
飞航式:在大气层中飞行,有弹翼、尾翼和舵 面。弹翼用于在大气层中飞行时产生流体升力, 平衡导弹的重量。尾翼用于保持导弹飞行姿态的 稳定性。舵面是用来控制导弹飞行姿态和弹道的 调整。
特点:飞行距离较近,多是战术导弹。长度、弹径和重量 较小,飞机、舰艇、潜艇和车辆均可作为发射平台。
电子信息工程学院
4
3.平台式惯导分类 (1)半解析式:又称当地水平惯导系统,系统 有一三轴稳定平台,台面始终平行当地水平面, 方向指地理北(或其它方位)。陀螺和加速度计 放置平台上,测量值为载体相对惯性空间沿水平 面的分量,需消除地球自转、飞行速度等引起的 有害加速度后,计算载体相对地球的速度和位置 。主要用于飞机和飞航式导弹,可省略垂直通道 加速度计,简化系统。
惯性导航原理
崔 铭
中国民航大学电子信息工程学院
2018/9/15
第8章 平台式惯性导航系统原理及应用
8.1
8.2 8.3 8.4 8.5
概
述
指北方位惯导系统 自由方位惯导系统 游动方位惯导系统 平台式惯导系统初始 对准原理
电子信息工程学院
2
8.1
概
述
一 惯性导航的分类 1.平台式惯导:三轴陀螺稳定平台,加速度计固 定在平台上,其敏感轴与平台轴平行,平台的三 根稳定轴模拟一种导航坐标系。 优点:直接模拟导航坐标系,计算比较简单;能 隔离载体的角运动,系统精度高。 缺点:结构复杂,体积大,制造成本高。
6
(3)解析式:陀螺和加速度计装于同一平台, 平台相对惯性空间稳定。加速度计测量值包含 重力分量,在导航计算前必须先消除重力加速 度影响。求出的参数是相对惯性空间,需进一 步计算转换为相对地球的参数。平台结构较简 单,计算量较大,主要用于宇宙航行及弹道式 导弹。
电子信息工程学院
7
导弹依在空中飞行的弹道可分两类:飞航式 导弹和弹道式导弹,也可称有翼导弹和无翼导弹。 (巡航导弹在弹道特征和弹体外形都有飞航式的特性,应作为飞航
电子信息工程学院
10
二 平台式惯导的基本组成 平台式惯导系统由三轴陀螺稳定平台(包含陀螺仪)、 加速度计、导航计算机、控制显示器等部分组成。
三 三种平台式惯导的特点(p299)
电子信息工程学院
11
电子信息工程学院
12
8.2
指北方位惯导系统
指北方位惯导系统是平台惯导中最基本的类型。陀 螺平台建立的理想坐标系与地理坐标系完全重合。这样 的平台需用一个三轴稳定平台,并对两个水平轴进行舒 勒调谐和积分修正控制其在水平面内,对方位轴系统施 以控制信号使其指向北方。 本章解决的主要问题:平台各轴的指令角速度、加 速度测量、导航参数解算 一 系统组成(P300)
电子信息工程学院
13
1.外横滚环 2.俯仰输出同步器 3.倾斜输出同步器 4.内横滚环力矩器 5.俯仰环 6.平台航向同步器 7.方位环力矩器 8.方位环 9.俯仰力矩器 10.内横滚环同步器 11.外横滚环力矩器 12.外横滚伺服放大器 13.内横滚环 14.内横滚伺服放大器 15.方位环伺服放大器 16.稳定信号分配器. 17.俯仰伺服放大器 18.锁定放大器 19.方式选择器 20.控制显示组件 21.计算机
电子信息工程学院
5
(2)几何式:该系统有两个平台,一个装有陀螺, 相对惯性空间稳定;另一个装有加速度计,跟踪 地理坐标系。陀螺平台和加速度计平台间的几何 关系可确定载体的经纬度,故称几何式惯导系统。 主要用于船舶和潜艇的导航定位。精度较高,可 长时间工作,计算量小,但平台结构复杂。
电子信息工程学院
电子信息工程学院
14
二 跟踪地理坐标系 1.地理坐标系相对惯性系 的运动规律:
VN V cos xt R R VE yt e cos R VE zt e sin tg R
为当地 式中:R 为地球半径, e 为地球自转速度, V 为飞行速Fra Baidu bibliotek 纬度,
电子信息工程学院
16
(1)稳定系统 ①方位轴稳定系统:方位轴上有干扰力矩,上陀螺的z 传感器感受角偏移。 ②内横滚环稳定系统:内横滚轴上有干扰力矩,两种情 况:当内横滚轴与平台y轴平行,下陀螺外环上的x传感 器感受角偏移;当内横滚轴与平台y轴不平行,即夹角 为航向角时,内横滚轴的干扰力矩上、下陀螺都感受, 此时两个陀螺信号要经信号分配器,再送到稳定电机处 理。
电子信息工程学院
15
2.控制平台跟踪地理坐标系 在平台上建立地理坐标系,包括: 初始对准——初始状态时将平台坐标调整到与起始点的 地理系坐标一致; 修正控制——在对准基础上控制平台跟踪地理系变化。 假设初始对准已完成(该内容后面章节讲解),修 正控制步骤:首先使平台相对惯性空间稳定;其次对平 台进行水平修正和方位修正,使平台保持在水平面内而 方位始终指北。
8
弹道式:起飞阶段必须在大气层内,平飞前 进阶段主要在空气稀少的高空或外层空间,下降 阶段再入大气层。弹道式导弹不在大气层中长时 间平行飞行,不需要飞航式导弹那样的弹翼和操 纵面,有的则连尾翼都没有。
特点:空气阻力小,飞行速度快,飞行距离远,能进行洲际攻击。
电子信息工程学院
9
4.半解析式平台惯导系统分类 飞机中应用多为半解析式惯导系统,根据平台两个水平 轴指向不同可分为 (1)指北方位惯导系统:工作时,平台的三个稳定轴分别指向 地理东、地理北、当地地平面的法线方向,即平台模拟当地地 理坐标系。 (2)自由方位惯导系统:工作时,平台的方位可以和北向成任 意夹角,始终指向惯性空间的某一个方向,台面仍要保持在当 地的水平面内。由于地球的旋转和飞机的运动,平台的横轴、 纵轴不指向地理东、北,而是有一定自由夹角,故称它为自由 方位惯导系统,其平台称为自由方位平台。 (3)游动方位惯导系统:与自由方位类似,平台的台面处于当 地水平面,方位轴只跟踪地球自转的分量。
电子信息工程学院
3
2.捷联式惯导:无稳定平台,加速度计和陀螺仪 与载体直接固连。载体转动时,加速度计和陀螺仪 的敏感轴指向也跟随转动。陀螺仪测量载体角运 动,计算载体姿态角,从而确定加速度计敏感轴 指向。再通过坐标变换,将加速度计输出的信号 变换到导航坐标系上,进行导航计算。 优点:无平台,结构简单,体积小,维护方便。 缺点:惯性元件直接装在载体上,环境恶劣,对 元件要求较高;坐标变换中计算量大。
式的一种,而不能单独分类。)
飞航式:在大气层中飞行,有弹翼、尾翼和舵 面。弹翼用于在大气层中飞行时产生流体升力, 平衡导弹的重量。尾翼用于保持导弹飞行姿态的 稳定性。舵面是用来控制导弹飞行姿态和弹道的 调整。
特点:飞行距离较近,多是战术导弹。长度、弹径和重量 较小,飞机、舰艇、潜艇和车辆均可作为发射平台。
电子信息工程学院
4
3.平台式惯导分类 (1)半解析式:又称当地水平惯导系统,系统 有一三轴稳定平台,台面始终平行当地水平面, 方向指地理北(或其它方位)。陀螺和加速度计 放置平台上,测量值为载体相对惯性空间沿水平 面的分量,需消除地球自转、飞行速度等引起的 有害加速度后,计算载体相对地球的速度和位置 。主要用于飞机和飞航式导弹,可省略垂直通道 加速度计,简化系统。
惯性导航原理
崔 铭
中国民航大学电子信息工程学院
2018/9/15
第8章 平台式惯性导航系统原理及应用
8.1
8.2 8.3 8.4 8.5
概
述
指北方位惯导系统 自由方位惯导系统 游动方位惯导系统 平台式惯导系统初始 对准原理
电子信息工程学院
2
8.1
概
述
一 惯性导航的分类 1.平台式惯导:三轴陀螺稳定平台,加速度计固 定在平台上,其敏感轴与平台轴平行,平台的三 根稳定轴模拟一种导航坐标系。 优点:直接模拟导航坐标系,计算比较简单;能 隔离载体的角运动,系统精度高。 缺点:结构复杂,体积大,制造成本高。
6
(3)解析式:陀螺和加速度计装于同一平台, 平台相对惯性空间稳定。加速度计测量值包含 重力分量,在导航计算前必须先消除重力加速 度影响。求出的参数是相对惯性空间,需进一 步计算转换为相对地球的参数。平台结构较简 单,计算量较大,主要用于宇宙航行及弹道式 导弹。
电子信息工程学院
7
导弹依在空中飞行的弹道可分两类:飞航式 导弹和弹道式导弹,也可称有翼导弹和无翼导弹。 (巡航导弹在弹道特征和弹体外形都有飞航式的特性,应作为飞航
电子信息工程学院
10
二 平台式惯导的基本组成 平台式惯导系统由三轴陀螺稳定平台(包含陀螺仪)、 加速度计、导航计算机、控制显示器等部分组成。
三 三种平台式惯导的特点(p299)
电子信息工程学院
11
电子信息工程学院
12
8.2
指北方位惯导系统
指北方位惯导系统是平台惯导中最基本的类型。陀 螺平台建立的理想坐标系与地理坐标系完全重合。这样 的平台需用一个三轴稳定平台,并对两个水平轴进行舒 勒调谐和积分修正控制其在水平面内,对方位轴系统施 以控制信号使其指向北方。 本章解决的主要问题:平台各轴的指令角速度、加 速度测量、导航参数解算 一 系统组成(P300)
电子信息工程学院
13
1.外横滚环 2.俯仰输出同步器 3.倾斜输出同步器 4.内横滚环力矩器 5.俯仰环 6.平台航向同步器 7.方位环力矩器 8.方位环 9.俯仰力矩器 10.内横滚环同步器 11.外横滚环力矩器 12.外横滚伺服放大器 13.内横滚环 14.内横滚伺服放大器 15.方位环伺服放大器 16.稳定信号分配器. 17.俯仰伺服放大器 18.锁定放大器 19.方式选择器 20.控制显示组件 21.计算机
电子信息工程学院
5
(2)几何式:该系统有两个平台,一个装有陀螺, 相对惯性空间稳定;另一个装有加速度计,跟踪 地理坐标系。陀螺平台和加速度计平台间的几何 关系可确定载体的经纬度,故称几何式惯导系统。 主要用于船舶和潜艇的导航定位。精度较高,可 长时间工作,计算量小,但平台结构复杂。
电子信息工程学院
电子信息工程学院
14
二 跟踪地理坐标系 1.地理坐标系相对惯性系 的运动规律:
VN V cos xt R R VE yt e cos R VE zt e sin tg R
为当地 式中:R 为地球半径, e 为地球自转速度, V 为飞行速Fra Baidu bibliotek 纬度,
电子信息工程学院
16
(1)稳定系统 ①方位轴稳定系统:方位轴上有干扰力矩,上陀螺的z 传感器感受角偏移。 ②内横滚环稳定系统:内横滚轴上有干扰力矩,两种情 况:当内横滚轴与平台y轴平行,下陀螺外环上的x传感 器感受角偏移;当内横滚轴与平台y轴不平行,即夹角 为航向角时,内横滚轴的干扰力矩上、下陀螺都感受, 此时两个陀螺信号要经信号分配器,再送到稳定电机处 理。
电子信息工程学院
15
2.控制平台跟踪地理坐标系 在平台上建立地理坐标系,包括: 初始对准——初始状态时将平台坐标调整到与起始点的 地理系坐标一致; 修正控制——在对准基础上控制平台跟踪地理系变化。 假设初始对准已完成(该内容后面章节讲解),修 正控制步骤:首先使平台相对惯性空间稳定;其次对平 台进行水平修正和方位修正,使平台保持在水平面内而 方位始终指北。