材料力学 梁的应力.
材料力学第10章_梁的应力(1)
max
2 300 kNm
max
WZ
B
Wz
M
max
cm
3
B 1875
选择确定I字钢型号:INO50a
1875 1860 1875 100 % 0 .8 %
例 铸铁制作的悬臂梁,尺寸及受力如图示,图中F=20kN。梁的截面 为T字形,形心坐标yc=96.4mm。已知材料的拉伸许用应力和压缩许用应力 分别为[σ ]+=40MPa, [σ ]-=100MPa。试校核梁的强度是否安全。
Fa
Fb
C截面:
max
MC W zC
6
Fb
d 2
32
3
62 . 5 160 32
0 . 13
3
M
46 . 4 10 Pa 46 . 4 MPa
结论:轮轴安全
例 图示T形截面简支梁在中点承受集中力F=32kN,梁的长度L=2m。T形截 面的形心坐标yc=96.4mm,横截面对于z轴的惯性矩Iz=1.02×108mm4。求弯矩 最大截面上的最大拉应力和最大压应力。
y
(1)
(二)物理关系:
y
......
由纵向线应变的变化规律→正应力的分布规律。
在弹性范围内
d
E
O O1
E
Ey
...... (2)
A1
y
B1 x
E
Ey
1
为梁弯曲变形后的曲率
上式说明了横截面上正应力的分布规律,表明正应力沿截面高度
呈线性变化,距中性轴越远,应力值越大,在中性轴处正应力为零。
梁的应力计算公式全部解释
梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。
在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。
梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。
梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。
在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。
下面将分别对这三种类型的应力计算公式进行详细解释。
1. 弯曲应力计算公式。
梁在受到外部力的作用时,会产生弯曲应力。
弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。
其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。
弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。
2. 剪切应力计算公式。
梁在受到外部力的作用时,会产生剪切应力。
剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。
其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。
剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。
3. 轴向应力计算公式。
梁在受到外部力的作用时,会产生轴向应力。
轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。
材料力学 弯曲应力与强度条件
150 50
A
l 2
B
l 2
96 .4 C 50
200
z
M max
FL 16kNm 4
y
max max
200 50 96.4 153.6mm 96.4mm
max
My max IZ My max IZ
24.09MPa 15.12MPa
max
例题
长为2.5m的工字钢外伸梁,如图示,其外伸部分为0.5m,梁上 承受均布荷载,q=30kN/m,试选择工字钢型号。已知工字钢抗弯 强度[σ]=215MPa。
q 30 kN m
A
0.5m
解:1、求支反力,画梁的弯矩图,确 定危险截面 FA 46.9KN , FB 28.1KN
E
y
X
A
0:
y
A
N dA E
A
dA
E
A
ydA 0
S Z ydA yc A 0(中性轴通过截面形心)
M
A
Z
0:
M Z ydA M
A
M yE dA
y
E
y 2 dA 令: y 2 dA I Z A
C截面
c
B
B截面
∴铸铁梁工作安全。如果T截面倒
例题
A
y 铸铁制作的悬臂梁,尺寸及受力如图示,图中F=20kN。梁 的截面为T字形,形心坐标yc=96.4mm。已知材料的拉伸许用应 150 力和压缩许用应力分别为[σ]+=40MPa, [σ]-=100MPa。试 校核梁的强度是否安全。 F 50 96 .4
材料力学第五章弯曲应力
式中 : M 横截面上的弯矩
Iz
横截面对中性轴的惯性矩
y
求应力的点到中性轴的距离
I z A y2dA
m 惯性矩是面积与距离平方的乘积,恒为正值,单位为 4
My
IZ
讨论
应用公式时,一般将 M,y 以绝对值代入。根据梁变 形的情况直接判断 的正,负号。 以中性轴为界,梁 变形后凸出边的应力为拉应力( 为正号)。凹入边 的应力为压应力,( 为负号)。
max M (x) WZ
RA
P
A
C
5m 10m
RB B
a
12.5
z
166
例题1 :图示简支梁由 56 a 工字钢制成 ,其横截面见图 p = 150kN。求 (1) 梁上的最大正应力 max
(2) 同一截面上翼缘与腹板交界处 a 点的应力
解:
C 截面为危险截面。最大弯矩
+
M max 375KN.m
查型钢表,56 a 工字钢
I z 65586 cm6
W z 2342cm2
(1) 梁的最大正应力 +
σ max
M max WZ
160MPa
(2) a点的正应力
a点到中性轴的距离为
ya
560 2
21
所以 a 点的正应力为
σ a M max ya 145MPa IZ
12.5
My
IZ
最大正应力发生在横截面上离中性轴最远的点处 当 中性轴为对称轴时 ,ymax 表示最大应力点到中性轴 的距离,横截面上的最大正应力为
max M ymax Iz
WZ
IZ ymax
材料力学梁的应力知识点总结
材料力学梁的应力知识点总结梁是一种常见的结构元件,在工程中广泛应用。
了解梁的应力知识点对于工程设计和分析非常重要,本文将对材料力学梁的应力知识点进行总结。
1. 弯曲应力在弯曲载荷下,梁会发生弯曲变形,产生弯曲应力。
弯曲应力分为正应力和剪应力两部分。
梁的顶端受拉产生正应力,底端受压产生正应力。
横截面上由于剪力的存在,产生剪应力。
弯曲应力与梁的几何形状、材料性质和载荷有关。
2. 矩形截面的弯曲应力分布对于矩形截面的梁,弯曲应力的分布是不均匀的。
顶部和底部的纤维受到最大应力,处于拉伸或压缩状态。
靠近中性轴的纤维受到较小的应力。
弯曲应力的分布可用弯矩与惯性矩的比值来表示。
3. 剪应力和剪力流在梁的截面上,由于剪力的存在,产生剪应力。
剪应力的分布是沿纵横两个方向呈对称分布的。
剪应力在截面上的变化呈线性分布,最大值出现在截面的边缘。
剪力流是指单位深度上的剪力大小,剪应力和剪力流之间存在直接的线性关系。
4. 应力分量的变换在梁的应力分析中,常常需要对应力分量进行变换。
常用的应力分量变换公式有平面应力变换公式和平面应变变换公式。
5. 横截面形状的影响梁的横截面形状对其应力分布和强度有显著影响。
常见的梁截面形状有矩形、圆形和I型等。
圆形截面具有均匀的应力分布特点,适用于承受压力的情况。
I型截面具有较高的抗弯强度,适用于悬挑梁和跨大距离的情况。
6. 梁的断裂当梁受力达到其强度极限时,可能会发生断裂。
断裂形式可以是横断面的剪断、疲劳断裂或脆性断裂等。
设计中需要考虑梁的强度和刚度,以避免出现断裂。
总结:材料力学梁的应力知识点对于工程领域非常重要。
弯曲应力、剪应力和剪力流是梁应力分析的关键内容;矩形截面的弯曲应力分布是不均匀的,可以用弯矩与惯性矩的比值表示;横截面形状对梁的应力分布和强度有重要影响。
通过深入理解和应用这些知识点,可以对梁的行为和性能进行合理评估和设计。
梁的内力与应力(图片版)
σ=FbA,其中F为作用在梁上的力,b 为梁的宽度,A为梁的横截面积。
描述
正应力表示梁在承受拉伸或压缩时, 截面上产生的应力。
剪应力
剪应力
与截面相切的应力,主要由于剪 切而产生。
描述
剪应力表示梁在承受剪切时,截面 上产生的应力。
公式
τ=FsA,其中Fs为作用在梁上的剪 力,A为梁的横截面积。
弯曲应力
致梁发生断裂或严重变形。
强度失效的原因可能包括材料缺 陷、设计不当或制造工艺问题等。
弯曲失稳
弯曲失稳是指梁在受到垂直于 轴线的横向力作用时,发生弯 曲变形并最终失去稳定性。
弯曲失稳通常发生在梁的长度、 跨度较大或支撑不足时,导致 梁发生过大弯曲和扭曲。
弯曲失稳的原因可能包括梁的 刚度不足、支撑条件不当或外 力过大等。
。
混凝土
适用于桥梁、房屋和基础设施 等需要承受较大荷载且稳定性
要求较高的场合。
木料
适用于临时建筑、小型建筑和 家庭装修等需要较低承载能力
的场合。
其他材料
如铝合金、玻璃钢等,适用于 特殊场合和特定需求。
优化设计
截面优化
根据梁的跨度、承载能力和稳定性要求,选择合适的截面尺寸和 形状,以减小材料用量和提高承载能力。
梁的内力与应力(图片 版)
目录 CONTENT
• 梁的简介 • 梁的内力 • 梁的应力 • 梁的强度与稳定性 • 梁的设计与优化 • 梁的案例分析
01
梁的简介
梁的种类
01
02
03
简支梁
简支梁是两端支撑在支座 上的单跨梁,其载荷作用 在跨中位置。
连续梁
连续梁是多跨梁,载荷可 以作用在任意位置。
悬臂梁
第五章梁的应力
y
ρ
σmin M
σmax
σmax
材料力学
3.静力关系 3.静力关系
M O dA y
z
第五章 梁的应力
FN = σdA = 0 ∫A M y = ∫AzσdA = 0 M z = ∫ yσdA = M A E ∫ σ dA = ∫ ydA = 0
A
z(中性轴 中性轴) 中性轴
x
[σc ] = 60MPa ,试校核梁的强度。 试校核梁的强度。
材料力学
52
第五章 梁的应力
解:(1)求截面形心 z1 z
yc =
80 × 20 × 10 + 120 × 20 × 80 = 52mm 80 × 20 + 120 × 20
(2)求截面对中性轴z的惯性矩 求截面对中性轴z
80 × 203 Iz = + 80 × 20 × 42 2 12 20 × 1203 + + 20 ×120 × 282 12 = 7.64 ×10 −6 m 4
A
a
C
B
l
1 2) M max = FL = 17.8kN • m 4 M max 17.8 × 103 σ max = = = 126 × 106 Pa = 126MPa < [σ ] Wz 141×10 −6
材料力学
第五章 梁的应力
例5-3-4:T型截面铸铁梁,截面尺寸如图,[σt ] = 30MPa 型截面铸铁梁,截面尺寸如图,
材料力学
第五章 梁的应力
所示为横截面如图b所示的槽形截面铸铁梁 例5-3-5:图a所示为横截面如图 所示的槽形截面铸铁梁,该 : 所示为横截面如图 所示的槽形截面铸铁梁, 截面对于中性轴z 的惯性矩I 已知图a中 截面对于中性轴 的惯性矩 z=5493×104 mm4。已知图 中, × b=2 m。铸铁的许用拉应力 σt]=30 MPa,许用压应力 σ c]=90 。铸铁的许用拉应力[σ ,许用压应力[ MPa 。试求梁的许可荷载 。 试求梁的许可荷载[F]。
材料力学梁的应力解读
材料力学梁的应力解读
梁是结构分析中最基本的问题之一,也是材料力学中一个重要的概念。
梁的应力解读,就是对梁结构中的应力的分析。
一般来说,在材料力学中,梁的应力解读可以从下面几个方面来进行:
(1)弯曲应力:弯曲应力是指当梁在受到外力的作用下发生偏移或
沿着其中一轴线变形时,梁中钢材筋的纵向应力称为弯曲应力。
根据梁的
预定约束方式,可以分为受自重弯曲的应力和受外力弯曲的应力。
受自重
弯曲的应力大小由梁的自重和梁的几何形态所决定,一般情况下,斜梁的
自重弯曲应力会比悬臂梁的自重弯曲应力大。
受外力弯曲的应力大小取决
于受力梁的拉张性和刚度,以及施加外力的位置,大小和作用方向等因素,其中最重要的是材料的弹性模量。
(2)剪切应力:梁结构的剪切应力,是指梁受到外力作用时,对面
两侧的钢材筋之间的剪切应力。
由于受力面两端受非对称分布的外力作用,使得受力面的梁结构受到剪切应力的作用,一般情况下,受力面梁结构分
布的剪切应力会在受力面的两端有最大值,随着回头距离变小而逐渐减小。
(3)压应力:梁受外力所产生的压应力,是指受力面角支撑点处承
受拉力的钢材筋之间的应力,称为压应力。
梁的弯曲(应力、变形)
梁的弯曲类型
01
02
03
自由弯曲
梁在受到外力作用时,其 两端不受约束,可以自由 转动。
简支弯曲
梁在受到外力作用时,其 一端固定,另一端可以自 由转动。
固支弯曲
梁在受到外力作用时,其 两端均固定,不能发生转 动。
梁的弯曲应用场景
桥梁工程
桥梁中的梁常常需要进行弯曲变形以承受车辆和 行人等载荷。
稳定性。
06 梁的弯曲研究展望
CHAPTER
新材料的应用研究
高强度材料
随着材料科学的进步,高强度、轻质的新型 材料不断涌现,如碳纤维复合材料、钛合金 等。这些新材料在梁的弯曲研究中具有广阔 的应用前景,能够显著提高梁的承载能力和 刚度。
功能材料
新型功能材料如形状记忆合金、压电陶瓷等, 具有独特的力学性能和功能特性,为梁的弯 曲研究提供了新的思路和解决方案。
反复的弯曲变形可能导致疲劳裂纹的 产生和扩展,影响结构的疲劳寿命。
对使用功能的影响
弯曲变形可能导致结构使用功能受限 或影响正常使用。
04 梁的弯曲分析方法
CHAPTER
理论分析方法
弹性力学方法
01
基于弹性力学理论,通过数学公式推导梁在弯曲状态下的应力
和变形。
能量平衡法
02
利用能量守恒原理,通过计算梁在不同弯曲状态下的能量变化,
详细描述
常见的截面形状有矩形、工字形、圆形等。应根据梁的用途和受力情况选择合适的截面形状。例如, 对于承受较大弯矩的梁,采用工字形截面可以有效地提高梁的承载能力和稳定性。
支撑结构优化
总结词
支撑结构是影响梁弯曲性能的重要因素,合理的支撑结构可以提高梁的稳定性,减小梁 的变形。
纯弯曲梁的正应力实验报告
姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
材料力学课件:梁的弯曲应力
2纵向纤维假设:梁是由许多纵向纤维组成的,且 各 纵向纤维之间无挤压。
11
§ 4 . 6 梁横截面的正应力
推理:
Fs
(1)横截面上没有切应力
(2)横截面上有正应力
切应力τ
M
3、假设:
切应力τ 正应力σ
1弯曲平面假设:梁变形前原为平面的横截面变 形后 仍为平面,且仍垂直于变形后的轴线,只是各横 截 面绕其上的某轴转动了一个角度。
16
§ 4 . 6 梁横截面的正应力
1 M
EIZ
——弯曲变形计算的基本公式
将上式代入式 ( E Ey ) 得:
My
Iz
弯曲正应力计算公式
M Z
y zAσ x
y
弯矩可代入绝对值,应力的符号由变形来判断。
当M > 0时,上压下拉;
当M < 0时,上拉下压。
17
§ 4 . 6 梁横截面的正应力
92.55106 Pa 92.55MPa
M ql2 / 8 67.5kN m 22
§ 4 . 6 梁横截面的正应力
例题
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
M ql2 / 8 67.5kN m
120
4. 全梁最大正应力
180
B
xK
30 最大弯矩
z M max 67.5kNm
M
67.5kNm
解:1. 求支反力
FAy 90kN FBy 90kN
MC 60kN m
x
IZ
bh3 12
0.12 0.183 12
5.832105 m4
90kN 2. C 截面上K点正应力
材料力学——07 梁的弯曲应力与强度计算
(1)矩形截面中性轴附近的材
料未充分利用,工字形截
z
面更合理。
(2)为降低重量,可在中性轴附近开孔。
2、根据截面模量选择:
为了比较各种截面的合理性,以 来W衡z 量。
截面越合理。
A
越W大z, A
截面形状 矩形
Wz
A
0.167h
圆形 槽钢
工字钢
0.125d (0.27~0.31)h (0.27~0.31)h (d=h)
在上述前提下,可由平衡直接确定横截面上的 切应力,而无须应用“平衡,变形协调和物性 关系”。
(一)矩形截面
F mn
A m dx n L
分析方法(截面法):ຫໍສະໝຸດ 1、沿 mm,nn 截面截开,
取微段dx。
B
h
m
n
b
FQ
M
M+dM
FQ
(+)
m
n
(-)
FQ 图
(+)
M 图
1 m
n 2
kl
m
n
弯曲应力/弯曲时的剪应力
纤维伸长,必有一层纵向纤维既不伸长也不缩短,保持原来的长 度,这一纵向纤维层称为中性层。
中性层与横截面的交线称为中性轴 中性轴
中性层
(一)变形几何关系:
建立坐标系
m a b n dx
m
a by n
变形前:l bb dx d
变形后:l1 bb
( y)d
伸长量:ll1l (y)d dx
线应变: l ( y)d dx
第七章 梁的弯曲应力与强度计算
7.1梁横截面上的正应力
aP
Pa
A
B
FS
第六章:梁弯曲时的内力和应力
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。
材料力学 正应力及其强度条件
中性层
中性轴
对 称 z o 轴 中 性 y 轴
中性层
F
F
m
n
2.纯弯曲正应力公式的推导 (一)几何关系: o
中性层
d q
m
n
中性轴
m
n o
z m o 1
m
n
z
r
o
o 2
n
中性轴
y
dx
n m dx
y
变形前:
y
l = dx = r × dq
变形后:
100
例题 4.22 &
图示T形截面简支梁在中点承受集中力F=32kN,梁的长度L=2m。T形 截面的形心坐标yc=96.4mm,横截面对于z轴的惯性矩Iz=1.02×108mm4。求 弯矩最大截面上的最大拉应力和最大压应力。 y
F
150 50
A l 2 l 2
B
96 . 4 C 50
F
实验现象:
F
ü1、变形前互相平行的纵向直
m
n
线、变形后变成弧线,且凹边纤 维缩短、凸边纤维伸长。
ü2、变形前垂直于纵向线的横向
m
n
线,变形后仍为直线,且仍与弯曲 了的纵向线正交,但两条横向线 间相对转动了一个角度。
§由现象1
j靠近凹入的一侧,纤维缩短,靠近凸出的 一侧,纤维伸长; k由于纤维从凹入一侧的伸长或缩短到突出 一侧的缩短或伸长是连续变化,故中间一定 有一层,其纤维长度不变,这层纤维称为中 性层。中性层与横截面的交线称为中性轴; l弯曲变形时,梁的横截面绕中性轴旋转。
28 . 1
kNm
13. 16
材料力学04梁截面正应力
y
M
这表明,直梁的横截面上的 正应力沿垂直于中性轴的方向按 直线规律变化(如图)。 11
三、静力学方面
横截面上的应力合成内力,则
FN d A
A
(d)
M y z d A
A
M z y d A
A
12
EI yz E M y z d A yz d A 0 A A
所以梁的强度由最大拉应力控制:
33
C截面:
F 3 2 m 13410 m M C 134103 m 4 t,max 30106 Pa Iz Iz
F 24.6kN
B截面:
F 3 2 m 8610 m M B 86103 m 2 t,max 30106 Pa Iz Iz
F 19.2kN
所以,该梁的许可荷载为[F]=19.2 kN。
34
§4-5 梁横截面上的切应力· 梁的切 应力强度条件
Ⅰ. 梁横截面上的切应力
• • • • 矩形截面梁 工字形截面梁 薄壁圆环形截面梁 圆截面梁
研究表明:截面上各点的切应力不相等
求解的理论根据:切应力互等定理
35
一、矩形截面梁
29
根据强度条件要求:
Wz M max
375 kN m 2460106 m3 152106 Pa
由型钢规格表查得56b号工字钢的Wz为
Wz 2447cm3 2447106 m3
此值虽略小于要求的Wz但相差不到1%,故 可以选用56b工字钢。
工程实践中,如果最大工作应力超过许用应力 不到5%,则通常还是允许的。
梁平面弯曲时横截面上的正应力,材料力学
Iz M
1 / 为梁轴线变形后的曲率 EI越大 1 / 越小 EI 梁的抗弯刚度
3、纯弯曲时正应力公式的推导
( y) E
y
M 该点的弯矩 Iz 截面对 z 轴(中性轴)的惯性矩
4、纯弯曲时正应力分布关系 对某一截面而言,M和Iz 若都是确定的,当 横截面的弯矩为正时,则 ( y )沿截面高度 的分布规律:
实验和弹性力学理论的研究都表明:当跨度 l 与横截 面高度 h 之比 l / h > 5 (细长梁)时,纯弯曲正应力公 式对于横力弯曲近似成立。
弯曲正应力公式
可推广应用于横力弯曲和小曲率梁但公式中的M应为所研 究截面上的弯矩,即为截面位置的函数。
1、梁横力弯曲时横截面上的正应力 对于变截面梁,最大弯曲正应力并不一定出现在弯矩最大 的横截面上,其大小应为:
2.9 107 mm 4
y2 200 53.2 146.8 mm
4、应力计算 考察C截面,弯矩为正
C截面下边受拉上边受压
M C y1 12 106 53.2 22MPa 7 Iz 2.9 10
C
M C y2 12 106 146.8 60.74MPa 7 Iz 2.9 10
⑴
截面关于中性轴对称
z
t max
c max
M Wz
t
Wz ——截面的抗弯截面系数
⑵ 截面关于中性轴不对称
max
z
t
My max Iz
max
c
My max Iz
c
几种常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
材料力学简支梁的应力测试与分析
材料力学简支梁的应力测试与分析告王宇哲学号:2012080090022学生姓名:杨康2012080090023司超杰2012080090024陈焕2012080090025指导教师:牟萍日期:2014年11月27日星期四一、实验室名称:主楼G-113二、实验项目名称:简支梁的应力测试与分析三、实验原理:1、弯曲试验装置弯曲试验装置有起定位固定作用的弯曲实验底座、用于实现简支梁及静不定梁的弯曲支架、固定较支架、用于实现悬臂梁的悬臂支架、用于实现静不定梁的挡板、拉杆等部件。
弯曲实验底座由其下①50mm的定位销于试验机工作台连接,试验机的加载压头作用点与弯曲底座对中。
搭建时将弯曲支座连接螺栓方头放入底座的T 型槽,调整支座在底座上的位置,将简支梁支座准确安装在弯曲底座导轨上,再拧紧其连接螺栓。
2、试件本实验梁为矩形截面梁。
由弯曲正应力的强度条件M”疵5[切徨,梁能承受的必唤与弯曲截面系数巧成正比,合理的截面形状应是横截面积A较小,弯曲截面系数"z较大。
对高为h,宽为b的矩形截面梁,抵抗垂直平面内的弯曲变形时,如截面竖放比截面横放的%大(徨二塔),所以实验梁竖放比横放更为合理。
为满足实验梁在实验过程中发生弹性变形,梁受纯弯曲时的正应力公式本加载装置最大弯矩发生在CD段内,如图3-1所示,其值梁内最大正应力满足碳钢(45#)比例极限p 200Mp a,加载载荷控制在60KN1、支座的简化任何一个在对称面内承受载荷作用的梁,可能产生3中刚体位移:沿梁轴线方向、垂直于轴线方向的移动以及在对称面内的转动。
为了约束可能产生的运动,必须有支座,约束的数目至少应该是以上3种刚体运动,使支座处的约束反力和载荷组成一个平衡的平面力系。
梁支座的结构各不相同,简化了的形式如下:1)活动铰支座梁在支座处沿垂直于支承面方向不能移动,可在平行于支承面的方向移动和转动。
此时仅有一个垂直于支承面方向的支座反力F Ay。
2)固定铰支座梁在支座处只能转动,二不能沿任何方向移动。
建筑力学 材料力学 梁的应力
M y1 y2
2.5kNm A1
A3
RA 2.5kN ; RB 10.5kN
M C 2.5kNm(下拉、上压 )
M B 4kNm(上拉、下压)
G
A2
A4
画危面应力分布图,找危险点
-4kNm ○ ⊕ M 2.5kNm A1 A3 x
sA L
2
M C y2 2.5 88 28.2MPa 8 Iz 76310
[例4] 工字钢简支梁受力 如图a)所示,已知l=6 mm, FPl=12 kN,FP2=21 kN, 试选择工字钢的型号。 解 (1) 作弯矩图 作出的弯矩图 如图b)所示。由图中可知Mmax=36kN· m。 (2) 选择截面
Wz ≥
M max
钢的许用应力 s =160 MPa。
s
q=60kN/m B 2m 180 30 1 2 z 120 y + qL2 8 Mmax x
M max qL2 / 8 60 32 / 8 67.5kNm
求应力
bh3 1201803 Iz 1012 5.832105 m 4 12 12
h Wz I z / 6.48 10 4 m 3 2
120 x
求曲率半径
EI z 200 5.832 1 10 194.4m M1 60
M M1
+ qL2 8 Mmax
§6-2 梁的正应力强度及其应用
一、危险面与危险点分析: 一般截面,最大正应力发生在弯矩绝对值最大的截面的 上下边缘上。
s
M
s
s
二、正应力和剪应力强度条件:
M max s max s Wz
由此可见,全梁的最大拉应力为 s t max 39.3MPa ≤ s t ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一层即不伸长也不缩短, 称为中性层。 ⑵横线代表一横截面,变形后仍为直线,但转过一个角 度,且仍与纵线正交。横截面与中性层的交线称为中性轴。
纵向对称面
中性层 中性轴
⒉ 基本假设
⑴平面假设:梁的横截面变形后仍为平面,且与梁变形
后的轴线正交; ⑵层间纤维无挤压。
⒊ 变形几何关系 取一微段dx
o a
o1 k1 c
o
h
d
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横 截面上最大拉应力值和最大压应力值为 Myt ,max Myc,max t,max c,max Iz Iz
简单截面对于形心轴的惯性矩和弯曲截面系数 (1) 矩形截面
3 bh I z y 2 d A by2 d y A h 2 12 h2
变形后
变形前
⒋ 变形物理关系
E E
y
其中y 为横截面上求应力那点相对中性轴的坐标, 为 中性层变形后的曲率半径。欲求横截面上一点应力必须知道 中性轴的位置和中性层的曲率半径。 ⒌ 静力关系 横截面正应力满足如下关系: z
FN dA 0
A
M y z dA 0
12
(2) 圆截面 在等直圆杆扭转问题(§3-4)中已求得:
4 π d 2 Ip d A A 32
d
o
y dA
z
z
y
而由图可见,ρ2=y2+z2 , 从而 知
4 π d 2 2 2 Ip d A y d A z d A I z I y A A A 32
根据对称性可知,原截面对于形心轴z和y的惯 性矩Iz和Iy是相等的,Iz= Iy,于是得
I p πd 4 Iz I y 2 64
而弯曲截面系数为
d
o z y
y
dA
z
Iy Iz πd 3 Wz W y d d 32 2 2
(3) 空心圆截面 由于空心圆截面的面积A等于大圆的面积AD减 去小圆(即空心部分)的面积Ad故有
max
M ymax Iz
Iz , 上式可改写为 令 Wz ymax
max
M Wz
Wz 称为抗弯截面模量,单位:m3。 上述分析是在平面假设下建立的,对于横力弯曲,由于 横截面上还有剪力,变形后截面会发生翘曲,平面假设不再 成立。当截面尺寸与梁的跨度相比很小时,翘曲很小,仍可 按平面假设分析,上面公式仍可使用。
a A
P
P B
a D
⊕
- ○
有弯矩,又有剪力,该两段 梁的弯曲称为横力弯曲。 ⊕ M
x
x
§4–6 弯曲正应力
一、纯弯曲时梁的正应力 ⒈ 实验观察
⑴纵向直线代表一 层纤维,变形后为平行 曲线。每层变成曲面, 同层纤维变形相同。 M 下层纤维受拉伸长, 上层纤维受压缩短;层
a
b
c
d
a
b
M
c d
间变形连续,中间必有
o1o2 dx d k1 ' k2 ' ( y)d
b
o2 k2 d
l k1 ' k2 'dx ( y)d d yd l yd y dx d
dx
a ' d b ' o1 o2 k1 ' k2 ' c' d'
由:M z
A
y dA M
A
z
A
y dA
E
y dA
2
E
Iz M
y
C
x dA
M EI z
于是得:
1
z y
其中EIz 表征杆件抵抗弯曲变形的能力,称为抗弯刚度。
M y y Iz
E
M y Iz
C
z
由该式可知横截面上各点正应
力大小与各点到中性轴的距离成正 比,中性轴上各点正应力为零,离 y z
A
Hale Waihona Puke yx dAz
y
M z y dA M
A
z
由:F N
A
dA
A
E
A
E
ydA 0
y
C
x dA
FN
E
ydA
E
Sz 0 E
z y
必有 Sz=0 ,z 轴过截面形心。 由: M y
A
z dA
A
yzdA
S yz 0
必有 Syz=0 ,z 轴为形心主轴。
Iz y2 d A
A
O
D d
z
y2 d A y2 d A
AD Ad
AD Ad
y2 d A
y
πD 4 πd 4 π 4 4 D d 64 64 64 πD 4 14 64 dD 。 式中,
而空心圆截面的弯曲截面系数为 Iz πD 3 4 Wz 1 D 32 2 根据对称性可知:
O
I y Iz ,
W y Wz
D d
z
y
思考: 空心圆截面对于形心轴的惯性矩就等于大圆 对形心轴的惯性矩减去小圆对于形心轴的惯性矩; 但空心圆截面的弯曲截面系数并不等于大圆和小 圆的弯曲截面系数之差,为什么?
型钢截面及其几何性质:参见型钢表
需要注意的是,型钢规格表中所示的x轴是我 们所标示的z轴。
建筑力学
第4章 弯曲应力
§4–5 概述
§4–6 弯曲正应力
§4–7 弯曲切应力
§4–8 梁的强度计算 §4–9 提高梁强度的主要措施 §4–10 弯曲中心
§ 4 –5
一、平面弯曲 P1
概述
P2
纵向对称面
二、纯弯曲 图示梁 AB 段横截面上 C 只有弯矩,而无剪力,该段 梁的弯曲称为纯弯曲。 F C A与BD 段横截面上即 s
x dA
y
中性轴最远点正应力最大。
max
C
C
z
max
z
b o z
d2
yc,max
h
d
o
z
yt,max
O z y
y (a)
y (b)
b
(c)
中性轴 z 为横截面对称轴的梁 (图a,b) 其横截 面上最大拉应力和最大压应力的值相等;中性轴 z 不是横截面对称轴的梁 (图c) ,其横截面上的最大 拉应力和最大压应力的值不相等。
Iz bh2 Wz h 6 2
3 b h 2 2 I y z d A hz d z A b 2 12 2 Iy bh Wy b 6 2 b2
思考: 一长边宽度为 b,高为 h 的平行四边形,它对于 bh3 形心轴 z 的惯性矩是否也是 I z ?
d1
h
中性轴z为横截面的对称轴时,横截面上最大拉、 压应力的值max为 Mymax M M max Iz I z Wz ymax 式中,Wz为截面的几何性质,称为弯曲截面系数 3。 (section modulus in bending) ,其单位为 m b