手性药物的研究发展

手性药物的研究发展
手性药物的研究发展

手性药物的研究发展

学号:312011********* 姓名:王震班级:2011级化学2班

摘要:在生命过程中发生的各种生化反应过程均与手性的识别和变化有关,从而联系到药物的手性,由于手性药物的对映异构体的药效也有差别,导致在药物合成过程中不对称合成成为重中之重。

另外虽然手性药物的物理化学性质基本相同,但是由于药物分子所作用的受体或靶位是氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,它们对与其结合的药物分子的空间立体构型有一定的要求,因此,对映体药物在体内往往呈现很大的药效学、药动学等方面的差异。因此手性拆分已成为药理学研究和制药工业日益迫切的课题。

关键词:手性药物的定义手性药物合成手性药物拆分发展趋势

1手性药物的定义:

人的手是不对称的,左手和右手相互不能叠合,彼此是实物和镜像的关系,这种关系在化学中称为“对映关系”,具有对映关系的两个物体互为“对映体”。手性是人类赖以生存的自然界的本质属性之一。生命现象中的化学过程都是在高度不对称的手性环境中进行的。由自然界的手性属性联系到化合物的手性,也就产生了药物的手性问题。手性药物是指药物的分子结构中存在手性因素,而且由具有药理活性的手性化合物组成的药物。药物的药理作用是通过与体内的大分子之间严格的手性识别和匹配而实现的[3]。

在许多情况下,化合物的一对对映异构体在生物体内的药理活性、代谢过程、代谢速率及毒性等存在显著的差异。按药效方面的简单划分,可能存在三种不同的情况:

(1)只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用;

(2)一对对映异构体中的两个化合物都有等同的或近乎等同的药理活性;

(3)两种对映体具有完全不同的药理活性,如镇静药沙利度胺,(R)-对映体具有缓解妊娠反应作用,(S)-对映体是一种强力致畸剂[2]。

2手性药物的合成:

自19世纪以来作为手性药物的合成的主要手段——不对称反应研究已经有了100多年的历史,其发展历程经历了四个阶段:

(1)手性源的不对称反应;

(2)手性助剂的不对称反应;

(3)手性试剂的不对称反应;

(4)不对称催化反应: 在底物A进行不对称反应时加入少量的手性催化剂C,使它与反应底物和试剂形成高反应活性的中间体,催化剂作为手性模板控制反应物的对映面,经不对称反应得到新的手性产物T,而C在反应中循环使用,达到手性增值或手性发大效应。由于不对称催化反应是催化量的反应,对于产

生大量手性化合物来讲是最经济和实用的技术,因此不对称催化反应是目前药物合成中研究和应用最广泛的合成方法[3]。

3手性药物的拆分:

利用化学拆分法、超临界流体色谱法、膜分离法以及模拟流动床法分离药物对映体,已成为新药研究和分析化学的领域之一。

(1)化学法:化学拆分法是广泛使用的一种方法,经典的化学拆分是利用手性试剂与外消旋体反应,生成两个非对映异构体,再利用其物理性质的差异将其拆分。但此类方法存在收率较低、拆分剂消耗大及在拆分的化合物类型上受到限制等缺点。近几年来,随着主客体化学的深入研究而发展起来的包结拆分由于其拆分效率高、操作简单及适用条件广泛等优点而受到重视。

包结拆分的基本原理是:手性主体化合物通过氢键及分子间的次级作用,选择地与客体分子中一个对映体形成稳定的包结络合物析出来,从而实现对映体的分离[1]。

(2)超临界流体色谱法:超临界流体色谱具有简单、高效、易于变换操作条件等优点,已成为和高效液相色谱和气相色谱互为补充的拆分方法,因其具有独特的优越性,应用前景极为广阔[1]。

(3)膜分离法:氨基酸的生物转移通常是由埋在生物膜中的载体蛋白来传递的,这种转移的对映体选择性是非常高的。很久以来,人们就希望将这种对映体转移体系用于分离技术中,通过膜分离进行旋光异构体的拆分正是这种生物过程的模拟[1]。

(4)模拟流动床色谱(SMB)法:模拟流动床色谱(simulated moving bed chromatography)技术是由D.B.Broughton在1961年的一个专利中提出来的。最初这种技术用于正己烷和环己烷的分离,后来又用于间二甲苯和对二甲苯的大规模制备。模拟流动床手性拆分系统在运行过程中,旋转阀间歇性地开关,控制在不同时间外消旋体的进样、新溶剂的注入和两个旋光异构体的提取位置[1]。

4、手性药物的发展趋势

手性药物在新药的设计、研究、开发、上市是一个主要的课题。立体化学结构是药理学的一个重要方面。在过去的几十年中,药典的主导力量是外消旋体,但是自从1980年新技术的出现,允许显著数量的纯对映体的药剂,人们对药物作用的立体化学的认识和兴趣有所增加。

立体选择性生物分析的进步,导致了立体选择性药效学和药代动力学的重要性的新的认识,使对映体对整体药物作用的相对贡献出现了差异。当一种对映体负责感兴趣的活性,与其成对的对应体可能是无效的,拥有一些感兴趣的活性,可能是活性对映体的拮抗剂,也可能是希望的或不希望的单独的活动[。考虑到这些可能性,似乎是纯立体化学药物的主要优势,比如说总给药剂量减少,治疗窗增大,减少主体间变异以及剂量-反应关系间更精准的估计。这些因素导致在

企业和一些监管机构越来越偏爱单一对映体。手性药物的监管始于美国,1992年美国出版了一本正式的方针关于手性药物的发展,这份文件的题目是新立体异构体药物的政策声明。紧接着,1994年欧盟发表了手性活性药物的研究开始了对手性药物的监管。申请人必须认识到新药中手性药物的存在,企图分离立体异构体,评估不同的立体异构体对感兴趣的活性的不同的贡献,并且做出理性的选择对上市的立体异构体的形式。

单一对映体形式的手性药物的全球销售额持续增长。单一对映体剂型的药的市场份额在逐年增长,从1996年的27%(744亿美元),到1997年的29%,1998年的30%,1999年的32%,2000年的34%,2001年的38%,到2002年其市场份估计到了39%(1519亿美元)从1991-2002年间,FDA批准的药物的分布与世界范围的分布有一些类似,在这12年间,44%的单对映体药物,42%的非手性药物以及小部分的外消旋体药物约占14%。每三年的分布,单对映体的优势是明显的,起始于1991-1993年间的45%,从1991-2002年间的这个指数的变化是轻微的,然而这个时期的的外消旋体的严重下降。非对映体从1991-1993年间的35%到1997-1999年间的52%,然后2000-2001年间下降到了FDA批准药物的44%。2001年,单一对映体(60%)接任了领先品种,与非对映体(40%)和外消旋体(0%)相比。

外消旋体药物的案例,反应停是一个值得评论的。1961年的反应停事件是药品监管的重大事件。沙利度胺在美国以外的市场上销售是在1950年的晚期以及1960年的早期作为安眠药和治疗怀孕早期的孕吐。这种药物治疗导致了畸形儿的诞生,在那个时期,沙利度胺还没有被FDA批准。然而,在1998年FDA批准了沙利度胺的外消旋体,急性治疗皮肤表现的中度至重度麻风结节性红斑(ENL)作为预防和制止的ENL的皮肤表现复发的维持治疗。它被授予单一对映体,并被分为新化学实体。如果单一对映体已经使用,沙利度胺的悲剧本来是可以避免的,这个提案是错误的。

目前在药物对映体拆分中,采用的主要手段是气相色谱法和高效液相色谱法,但因其手性柱费用高,易污染且手性衍生化常带进副产物等缺点仍需进一步研究。而超临界流体色谱法正处于发展阶段,虽各种参数的影响尚未完全清楚,但随其理论和技术的日臻完善,超临界流体色谱法在手性物质分析的应用上将得到进一步发展。模拟流动床法克服了一般手性液相色谱的不足,但设备投资较大;膜分离法在生产方面有较明显的优势,操作简便且不易污染。

在20世纪80年代,甚至在监管机构鼓励(但不强制)对映体纯药物的开发和销售的指导方针的变化之前,单一对映体在批准的药物中是一个很重要的成分。监管的指导方针并没有很明显影响到手性药物(单一对映体和外消旋体)和非手性药物的比率。然而,指导方针的确在手性药物类别中产生了重大影响,导致了近几年外消旋体的发展急剧下降。在过去的十年里,监管机构对于手性药物的态度的改变影响了单一对映体的提交数量。在批准的单一对映体药物中,与那

些只含有一个(全球16%,FDA 18%)的手性中心相比,绝大多数包含多个手性中心(全球84%和82%FDA)。从2003年1月至8月,FDA批准的15个药物的现有数据表明分配如下:64%单一对映体,14%外消旋体和22%无手性。虽然在2001年和2002年,FDA没有批准任何的外消旋体药物,在2002年只有两个批准的外消旋体药物(全球),外消旋药物不应该被宣布为死亡的选择。这还有待观察外消旋体是否将从药品审批销声匿迹。目前的研究可能揭示知识产权的手性公开的情况,比如与美国的未决诉讼挑战,包括口服抗血小板手性药物氯吡格雷的专利。

最后,这些数据证实了该结论是,有关外消旋体相对单一对映体优点的争论得到了解决,强调有单对映体药物更有好处。由此可见手性药物发展之迅速,其开发前景十分广阔,目前吸引了不少的药物研究单位在从事手性药物的开发和研究,并不断有新的手性药物陆续上市。手性药物不但具有极大的社会效益还具有可观的经济效益,开发手性药物的不但能促进人类的健康长寿、服务于社会,也会为企业收入的发展及经济的繁荣作出巨大的贡献。

参考文献

[1]冯洪珍,孟昭力,王如斌.手性药物拆分的几种方法及研究进展.首席医学网

[2]卢定强,李衍亮,凌岫泉,涂清波,陈佳.手性药物拆分技术的研究进展.首席医学网[3]胡文浩,周静.手性,手性药物及手性合成.华东师范大学化学系,上海,200062

手性药物拆分的研究进展

手性药物拆分的研究进展 许多药物具有光学活性(opitical activeity)。一般显示光学活性的药物分子,其立体结构必定是手性(chirality)的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体(enantiomer)。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 目前,利用酶法、超临界流体色谱(SFC)法、化学法、高效液相色谱(HPLC)法、气相色谱(GC)法、毛细管电泳(capillary electrophoreisis,CE)法和分子烙印法拆分对映体,已成为新药研究和分析化学领域的重要课题。笔者在本文综述了近年来利用上述方法拆分手性药物的研究进展。 1酶法 酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。该法拆分手性药物已有较久的历史,反应产物的对映过剩百分率可达100%。酶催化的反应大多在温和的条件下进行,温度通常在0~50℃,pH 值接近7.0。由于酶无毒、易降解、不会造成环境污染,适于大规模生产。酶固定化技术、多相反应器等新技术的日趋成熟,大大促进了酶拆分技术的发展。脂肪酶、酯酶、蛋白酶、转氨酶等多种酶已用于外消旋体的拆分。脂肪酶是最早用于手性药物拆分的一类酶,是一类特殊的酯键水解酶,具有高度的选择性和立体专一性,反应条件温和,副反应少,适用于催化非水相递质中的化学反应,在B 一受体阻滞药、非甾体类抗炎药和其他多种药物的手性拆分中都有广泛的应用。意大利的Batlistel等用固定于载体Amberlite AD-7上的脂肪酶对萘普生的乙氧基乙酯进行酶法水解拆分,对温度、底物浓度和产物抑制等进行了研究,最后使用500 mL的柱式反应器,在连续进行了1200h的反应后,得到了l8kg的光学纯S-萘普生,且酶活性几乎无损失。另外,酯酶具有很高的工业价值,其应用前景也极为广阔。Jiaxin等利用pseudomaonas cepacia脂肪酶拆分了一类酰基取代的1.环己烯衍生物,通过酶催化酯交换反应,得到产率较高的光学纯化合物,且提供了反应过程监测方法。这种方法可推广到该类化合物系列衍生物的合成与拆分。 2 SFC法 根据手性选择剂种类不同,该分离方式主要包括氨基酸和酰氨类手性固定相、Prikle型手性固定相、环糊精型键合固定相如聚甲基异丁烯酯等。由于SFC 法尚处于发展阶段,各种参(如温度、压力、流动相的组成和密度等) 对分离度的影响机制还未完全清楚。SFC法具有简单、高效、易于变换操作条件等优点,已成为与HPLC法和GC法互补的拆分方法,因其具有独特的优越性,应用前景极为广阔。Nozal等用Chiralpak AD柱和Chiralcel OD柱在SFC条件下拆分了驱肠蠕虫药阿苯唑亚砜化合物,并研究了甲醇、乙醇、乙丙醇及乙腈等有机溶剂对立体构型的影响。结果表明,在以Chiralpak AD柱为固定相时,用2丙醇可以获得最好的拆分效果;而在Chiralcel OD柱上用甲醇效果最好。

隐身材料的研究进展及存在问题

隐身斗篷的研究进展及存在问题 摘要:隐身斗篷,由硅纳米材料制造而成,利用该特殊材料折射或吸收大部分光线,从而达到隐形的目的。本文主要总结归纳现如今应用于隐身斗篷的各种主要材料,详细论述了基于超材料特殊电磁特性的隐身技术,简单介绍部分材料应用原理。 关键词:影身斗篷,超材料,限元分析软件,均匀介质 1. 隐身斗篷的应用前景 隐形斗篷我其实是在电影Harry Potter 中第一次知道,它常被哈利拿来干一些从霍格华兹魔法学校里偷跑出来如此的事情。现实中科学家们也一直在研究它。在不远的将来,隐身斗篷将会真的存在于现实世界中了。而且隐身斗篷的应用前景非常广。隐身技术在外科手术,军事航空等多个领域中获得广泛的应用。例如, “地震斗篷”——能够让冲击波、暴风浪或者海啸在所遮蔽的物体面前变成“瞎子”,进而达到保护建筑物的目的。同时为提高战场生存能力, 隐身技术越来越多地应用于军用装备上。随着军用探测技术的不断进步, 对军用装备隐身性能的要求不断提高, 传统的隐身技术已经不能满足要求。 2. 隐身材料及其隐身原理 2.1 超材料 众所周知,介电常数和磁导率是用于描述物质电磁特性的基本物理量,决定着电磁波在物质中的传播特性。迄今为止,自然界中天然物质的介电常数和磁导率均大于或等于1。2000年,Smith 等人利用金属铜的开环共振器和导线组成2 维周期性结构,首次在实验室制造出微波频段具有负介电常数和负磁导率的介质材料,引起科学界的轰动。随后,双负材料、单负材料、手性材料、理想磁导体和理想电导体等材料成为科学研究的热点,并将这些材料统称为超材料(metamaterials)。由于超材料具有一系列特殊的电磁特性,因而具有广阔的应用前景。 2.1.1超材料椭圆柱电磁斗篷 文献[1] 利用有限元分析软件Comsol Multip hysics 分析了超材料介电常数偏差、磁导率偏差 和损耗对电磁斗篷场分布的影响,并讨论了在电 磁斗篷内放置不同电磁特性的物体后斗篷外电 场分布的变化。 图1 为TE 波辐射下超材料椭圆柱电磁斗篷 的计算模型。超材料椭圆柱是沿z 轴放置的无限 长空心柱,其横截面为xOy 平面,椭圆中心为坐标 原点,内外径短轴分别为a 和b ,长轴分别为ka 和 kb ,其中, k 为长轴与短轴之比,仿真时取k = 6 , a =0. 1 m ,b = 0. 2 m 。在图1 所示的左边完全匹配 层( PML) 的内表面施加沿z 轴方向电流,激励起 沿x 轴方向(水平) 传播的频率为2 GHz 的TE 波。计算区域四周是PML 吸收层,斗篷内外均为空气。 通过文献[1]计算可知,超材料介电常数和磁导率空间分布如图2所示。图2 (a) 为介电常数分量在xOy 平面上的空间分布,由图可以看出,在x = 0 或y = 0 的平面上 xx 最小,同时在两图1 TE 波辐射下超材料椭圆柱电磁斗篷的计

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法 非对映体结晶法适用于拆分外消旋化合物,利用天然旋光纯手性拆分试剂与消旋化合物

手性超材料研究进展

手性超材料研究进展 钟柯松 2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao 等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电

手性与手性药物

手性与手性药物 【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 Abstract:Recently,clinical sigmificance of chiral drug attracts wide attention.Exploration of chiral drug was an heated discussion of internatiomal research.The paper expounded the concept of chirality and drug ,chiral actual meaning of research,and progresses on the research of chiral drug,showed that market foreground of chiral drug was extensive. Key words:Chirality;Chiral drug. 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。

在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他

手性表面活性剂研究进展

手性表面活性剂的研究进展 摘要:简介手性表面活性剂的分类、结构,重点综述胆汁盐类、皂苷类手性表面活性剂的研究与应用,以及氨基酸型、季铵盐型、烷基糖苷型和松香型手性表面活性剂的合成与研究现状。 关键词:手性表面活性剂;进展;手性分离;立体合成 手性表面活性剂(chiral surfactant)是指一类性质上具有一般表面活性剂特性——具有油水两亲性,结构上含有手性中心的手性分子。由于分子结构中有手性中心的存在,该类表面活性剂具有良好的区域选择性、不对称催化能力和手性识别能力。尤其是在特定的手性拆分中的手性识别能力,使得手性两亲分子在立体选择性合成和手性药物分离领域逐渐成为一大热点。此外,近年来,在无机材料科学方面,利用手性表面活性剂合成无机介孔材料的研究也有迅速的进展。 随着医药科学和材料科学等领域的发展,手性表面活性剂由于其独特的分子结构特性而具有的不可替代性使得它的需求日益增加,因而引起了化学、材料等学科对手性表面活性剂的普遍关注。 目前获得手性两亲分子的途径还比较少,而且只局限于应用已有的手性源来合成,因此手性表面活性剂的类型并不多。主要可从来源分为天然手性表面活性剂和合成手性表面活性剂两大类。 1.天然手性表面活性剂 天然手性表面活性剂可细分为胆汁盐类和皂苷类两类。 1.1胆汁盐(Bile salts)类 胆汁(酸)盐类手性表面活性剂属于阴离子表面活性剂,具有光学活性,可用于手性对映体的拆分,最早由Terabe等[1]在1989年应用在几种氨基酸和药物的胶束电动色谱(MEKC 法)手性分离中。其基本结构式如图1,主体结构由四个饱和稠环构成。表1列举了几种常见的胆汁盐类手性表面活性剂。 图1 胆汁盐类结构式 表1 几种常见的胆汁盐类手性表面活性剂

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

手性分子与手性药物1

有机化学 ——手性分子和手性药物 12应化一班 高钰(120911103) 胡傲(120911106) 文正(120911118) 鲍敏(120911126) 李梦园(120911132) 张艳(120911146) 郑丽(120911150)

手性分子 手性:实物和其镜像不能重叠的现象 手性碳:连有4个不同的原子或基团的碳原子(“*”)手性分子:不能与其镜像重合的分子 如何判断一个分子是否有手性? ●最直接法:画其对映体,看是否重合 ●观察有无手性碳: ●若分子中只含有一个手性碳,即为手性分子●若分子中含有2个以上手性碳,视情况分析●观察其结构中是否具有对称因素(对称面、对 称中心及其它对称因素);一般说来,如果分子既没有对称面有无对称中心,分子就具有手性。

最直接法 两者不能重合,是手性分子 两者能重合,不是手性分子

观察有无手性碳 有手性碳,是手性分子 有手性碳,但不是手性分子 有手性碳(两个及两个以上)的不一定是手性分子

对称性 (一)对称面:假想有一个平面它可以把分子分割成互为镜像的两半,这个平面就叫对称面。 (二)对称中心:在分子中取一点P,画通过P点的任一直线,若在与P点等距离的此直线两端为相同原子(团),则P点即为该分子的对称中心。 (三)对称轴:如果穿过分子画一条直线,分子以它为轴旋转一定角度后,可以获得与原来分子相同的形象,这一直线即为该分子的对称轴。

R/S构型标记法 (一)R/S构型标记法命名规则 1、根据次序规则,排列成序,a>b>c>d; 2、把最小的d基团放在最远,其它三个朝向自己; 3、观察a b c顺序,若呈顺时针为R-构型;呈逆时针为S-构型。(二)由费歇尔投影式确定R/S构型的方法

手性药物发展趋势_附件

手性药物的发展趋势 手性药物在新药的设计、研究、开发、上市是一个主要的课题[1–4]。立体化学结构是药理学的一个重要方面[1]。在过去的几十年中,药典的主导力量是外消旋体,但是自从1980年新技术的出现,允许显著数量的纯对映体的药剂,人们对药物作用的立体化学的认识和兴趣有所增加[2-4]。 立体选择性生物分析的进步,导致了立体选择性药效学和药代动力学的重要性的新的认识,使对映体对整体药物作用的相对贡献出现了差异。当一种对映体负责感兴趣的活性,与其成对的对应体可能是无效的,拥有一些感兴趣的活性,可能是活性对映体的拮抗剂,也可能是希望的或不希望的单独的活动[3-5]。考虑到这些可能性,似乎是纯立体化学药物的主要优势,比如说总给药剂量减少,治疗窗增大,减少主体间变异以及剂量-反应关系间更精准的估计[3,4]。这些因素导致在企业和一些监管机构越来越偏爱单一对映体。手性药物的监管始于美国,1992年美国出版了一本正式的方针关于手性药物的发展,这份文件的题目是新立体异构体药物的政策声明[6]。紧接着,1994年欧盟发表了手性活性药物的研究[7]开始了对手性药物的监管。申请人必须认识到新药中手性药物的存在,企图分离立体异构体,评估不同的立体异构体对感兴趣的活性的不同的贡献,并且做出理性的选择对上市的立体异构体的形式。 单一对映体形式的手性药物的全球销售额持续增长。单一对映体剂型的药的市场份额在逐年增长,从1996年的27%(744亿美元),到1997年的29%,1998年的30%,1999年的32%,2000年的34%,2001年的38%,到2002年其市场份估计到了39%(1519亿美元)[8-13]。 排名前十的单一对映体药物(每年销售额大于10亿美元)是:阿托伐他汀

手性药物的检测方法研究进展

2 019年第3期分析仪器Analy tical InstrumentationNo.3May .2019 1 基金项目:江苏省高等学校自然科学研究项目(18KJD150003 )。檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱殗 殗 殗 殗 综 述 手性药物的检测方法研究进展 李周敏* 曾 韬 姚开安 李心爱 宣 婕 (南京大学金陵学院,南京210089 )摘 要:对手性药物的分析一直是药学领域的一个研究热点,近年来各种检测新方法也不断应用于手性药物的分析中。本文主要介绍了近十年来手性药物的检测方法。比较目前已有的手性药物检测方法的优势与不足,并对手性药物检测方法的发展趋势进行了展望。 关键词:手性药物 对映异构体 手性检测 综述DOI:10.3969/j .issn.1001-232x.2019.03.001Research on progress in detection methods of chiral drugs.Li Zhoumin*,Zeng Tao,Yao Kaian,Li Xi'nai,Xuan Jie(Nanjing University Jingling College,Nanjing2 10089,China)Abstract:This article introduced detection methods of chiral drugs in the past decade,compared theadvantages and disadvantages of these methods,and prospected the trends.Key  words:Chiral drugs;Enantiomer;Chiral detection;Review1 前言 手性药物即在药物分子结构中引入手性中心所得到的一对互为镜像与实物的对映异构体。目前,临床上使用的药物约有三分之一是手性药物。在药代动力学方面,手性药物也可能在体内的吸收、分布、代谢和排泄中表现出一定程度的立体选择性。因此手性药物的检测在新药研发、活性化合物筛选和药物检验中均十分重要。本文就手性药物的检测方法进行综述。 2 手性药物的检测方法 近年来各种检测新方法不断应用于手性药物的分析中,包括旋光法(polarimetry)和旋光色散法(optical rotation dispersion method,ORD)、圆二色性法(电子圆二色性法electron circular dichroism,ECD、振动圆二色性法vibration circular  dichroism,VCD)、手性拉曼光谱法(Raman optical activity ,ROA)、质谱法(mass sp ectrum,MS)、核磁共振法(nuclear magnetic resonance,NMR),电化学法(Electrochemical)、光学传感器等。2.1 旋光法和旋光色散法 旋光法(polarimetry)一直是人们最常用来检测手性分子的方法,以其操作简单、检测价格低而极受欢迎,也是现在《中国药典》中广泛使用的方法。虽然影响因素较多,包括温度、检测光波长、样本杂质等,但其在一定条件下满足手性分析基本需求。在实验中通常以光学纯度来对样品进行分析。通常将供试品在钠光谱D线处的旋光度与相同条件下同种纯品旋光度的比值定义为光学纯度(opticalpurity ,O.P),其值某种意义上反映了供试品纯度。戴月华等人[1] 用旋光法测定硫酸西索米星氯化钠注 射液中西索米星的含量。郝玲花等人[2]用旋光度法 测定布洛芬注射液中精氨酸的含量,主药布洛芬不 干扰精氨酸测定。杨振林等人[3]用旋光法测定氯霉素滴耳液中氯霉素的含量。董杰[4]用旋光法测定盐

什么是手性药物

什么是手性药物? 四川大学华西药学院郑虎教授解释说,如人体的左右手一样,在空间上不能完全叠合,却能互为镜像的奇特属性,我们就称之为“手”性。具有互呈镜像结构的化学物分子互称为对映异构体或光学异构体,即左(右)手与右(左)手互称对映异构体。手性药物是指只含单一对映体的药物,即只有一只“左手”或一只“右手”的药物。而含有一对对映异构体的药物则好像人的左右手一样,左手——左旋体((R型,D型,(+)型)与右手——右旋体((S型,L型,(-)型)以同等的量共生,这样构成的药物称为消旋药物。 手性是自然界的本质属性之一,郑教授说,作为生命活动重要基础的生物大分子,如核酸、蛋白质、多糖等分别由具有手性的D-DNA、L-氨基酸、D-单糖构成,载体、酶、受体等也都具有手性,它们一起构成了人体内高度复杂的手性环境。药物在进入体内后,其药理作用是通过与体内这些靶分子之间的严格手性匹配和分子识别能力而实现的。立体结构相匹配的药物通过与体内酶、核酸等大分子中固有的结合位点产生诱导契合,从而抑制(或激动)该大分子的生理活性,达到治疗的目的。 一般情况下,具有手性药的药物,它的两个对映体在体内以不同的途径被吸收、活化或降解,所以在体内的药理活性、代谢过程及毒性存在着显著的差异。当一个有手性的化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。药物能起作用的仅是其中的一只“手”,这只高活性的“手”我们称为优对映体;而另一只“手”效力微小或干脆使不出“劲”,或不能很好地契合而成为无效对映体,或与其它大分子契合产生不同的药理作用,甚至产生毒性,称为劣对映体。 以前由于对此缺少认识,人类曾经有过惨痛的教训。发生在欧洲震惊世界的“反应停”事件就是一例。20世纪50年代,德国一家制药公司开发出一种镇静催眠药反应停(沙利度胺),对于消除孕妇妊娠反应效果很好,但很快发现许多孕妇服用后,生出了无头或缺腿的先天畸形儿。虽然各国当即停止了销售,但却造成6000多名“海豹儿”出生的灾难性后果。后来经过研究发现,反应停是包含一对对映异构体的消旋药物,它的一种构型R-(+)对映体有镇静作用,另一种构型S-(-)对映体才是真正的罪魁祸首——对胚胎有很强的致畸作用。 传统的以消旋体给药的方式带来的一些问题引起了越来越广泛的关注和 重视,为了避免这类悲剧的再次发生,世界各国由此开始关注手性药物,加强了对手性药物药效学差异的研究。 手性药物为何异军突起 经过40年的发展,特别是近两年,世界医药领域研发手性药物之势愈来愈烈,并已有大量新品种面世,成为世界各国制药公司追求利润的新目标。在20世纪最后十余年内,手性药物临床用量日益上升,市场份额逐年扩大。尤其是1999年,国际手性药物跨越了一个新的里程碑,销售额比1998年的998亿美元增长了15.18%,达到1150亿美元,约占当年全球医药市场总收入(3600亿美元)

手性超材料研究进展.

手性超材料研究进展 钟柯松2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov 等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang 等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电流回

未来合成药物的发展趋势

未来合成药物的发展趋势 1.有机合成化合物仍然是以后化学合成药物的最重要来源。对现有化合物进行随机筛选仍然是先导化合物的重要来源。 2.从药用植物中发现新的先导化合物并进行结构改造或修饰从药用植物中发现新的先导化合物并进行结构改造和修饰、发明新药仍是今后合成新药研究的重要部分。 3. 模仿性(“me-too”)新药研究是化学合成药物永恒的主题之一。 模仿,但不是一味的仿制,即在不侵犯别人专利权的情况下,对新出现的很成功的突破性新药进行较大的分子结构改造或修饰,寻找作用机制相同或相似,并在治疗应用上具有某些优点的NCE,这种新药研究工作的投入较少,但仍可产生较好的经济效益。 4.手性药物的开发将得到更大的重视。 手性是自然界的本质属性之一。生命活动中一些重要的生物大分子,如蛋白质、多糖、核酸和酶等,几乎全是手性的。消旋药物中的一个对映体往往能很好地与手性大分子契合而发挥预期的药理作用,另一个对映体则往往不能很好地契合而成为无效对映体,或与其它大分子契合而产生不同的药理作用和具有毒副作用。 5.半合成及全合成抗生素将有较大的发展。 通过对土壤进行随机筛选,发现新结构类型抗生素已经很困难。半合成及全合成抗生素在以后将会得到特别的发展。 6.组合化学技术将在新药的研究中发挥应有的作用。 组合化学是有机化学和药物化学领域中一项革命性的新技术,它的出现大大加快了新药先导化合物发现和优化的进程。创新药物研究的核心是发现药物先导化合物,这涉及两个关键的创新点:药物作用靶点的创新和化合物的创新。 7. “点击化学”将成为未来新药研发最有效的技术之一。 2001年美国诺贝尔化学奖获得者、史格堡研究院化学生物研究所的研究员贝瑞·夏普利斯(K. Barry Sharpless)发展出一种名为“click chemistry”的新技术,其所具有的高效和高控制性,在化学合成领域掀起了一场风暴,成为目前国际医药领域最吸引人的发展方向,被业界认为是未来加快新药研发最有效的技术之一。 8.计算机辅助药物设计的发展前景良好。从上世纪70年代开始,人类的新药开发就得益于计算机的应用。 9.研究开发先进的合成新技术。 研究开发先进的合成技术,如:手性合成、微波化学合成、声化学合成、电化学合成、等离子体化学合成、固相化反应、室温和低热温度下固相化学合成、超临界状态下化学合成、纳米技术、光化学合成、冲击波化学合成等先进的合成技术。选择新型催化技术,如:配位催化、相转移催化、超强酸超强碱催化、杂多酸催化、胶束催化、氟离子催化、钛化合物催化、纳米粒子催化、光催化、晶格氧选择氧化及非晶态合金加氢催化等。发展生物化工合成法:包括发酵工程、酶工程、基因工程及细胞工程等。研究和利用新型高效分离技术包括: (a)膜分离技术:液膜分离、渗透气化膜分离、反渗透膜分离、电渗、超滤、微滤、纳滤、聚滤气体膜分离等; (b) 超临界流体技术:SCF萃取、SCF重结晶、SCF干燥、SCF色谱;

手性分子与手性药物

. . . . . 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. . . . . 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. . . . . 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. . . . . 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. . . . . Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

相关文档
最新文档