填料吸收塔课程设计

合集下载

填料吸收塔设计(附图)

填料吸收塔设计(附图)

填料吸收塔课程设计说明书专 业 化 学 制 药 班 级 制药061班 姓 名 X X X 班 级 序 号 49 指 导 老 师 X X 日 期 2008 – 5 – 18成 绩Xuzhou College of Industrial Technology目录前言 (2)水吸收丙酮填料塔设计 (2)一任务及操作条件 (2)二吸收工艺流程的确定 (2)三物料计算 (3)四热量衡算 (4)五气液平衡曲线 (5)六吸收剂(水)的用量Ls (5)七塔底吸收液浓度X1 (6)八操作线 (6)九塔径计算 (6)十填料层高度计算 (9)十一填科层压降计算 (13)十二填料吸收塔的附属设备 (13)十三课程设计总结 (15)十四主要符号说明 (16)十五参考文献 (17)十六附图 (18)前言塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的形式,可以分为填料塔和板式塔。

板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。

工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。

塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。

板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。

填料塔由填料、塔内件及筒体构成。

填料分规整填料和散装填料两大类。

塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。

与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。

水吸收丙酮填料塔设计一任务及操作条件①混合气(空气、丙酮蒸汽)处理量:12493/m h。

②进塔混合气含丙酮 2.34%(体积分数);相对湿度:70%;温度:35℃;③进塔吸收剂(清水)的温度25℃;④丙酮回收率:90%;⑤操作压力为常压。

填料吸收塔的设计化工原理课程设计

填料吸收塔的设计化工原理课程设计

一、设计任务书1、设计题目:填料吸收塔的设计2、设计任务:试设计一填料吸收塔,用于脱除合成氨尾气中的氨气,要求塔顶排放气体中含氨低于200ppm,采用清水进行吸收3、工艺参数与操作条件(1)工艺参数表1—1(2)操作条件①常压吸收:P=②混合气体进塔温度:30℃③吸收水进塔温度:20℃。

4、设计项目:(1)流程的确定及其塔型选择;(2)吸收剂用量的确定;(3)填料的类型及规格的选定;(4)吸收塔的结构尺寸计算及其流体力学验算,包括:塔径、填料层高度及塔高的计算;喷淋密度的校核、压力降的计算等;(5)吸收塔附属装置选型:喷淋器、支承板、液体再分布器等;(6)附属设备选型:泵、风机附:1、NH3~H2O系统填料塔吸收系数经验公式:k G a=cG m WLnk L a=bWLP式中ka——气膜体积吸收系数,kmol/——液膜何种吸收系数,l/h GG——气相空塔质量流速,kg/——液相空塔流速,kg/WL2、(氨气—水)二成分气液平衡数据表1—3二、工艺流程示意图(带控制点)三、流程方案的确定及其填料选择的论证1、塔型的选择:塔设备是能够实现蒸馏的吸收两种分离操作的气液传质设备,广泛地应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。

在工业生产中,一般当处理量较大时采用板式塔,而当处理量小时多采用填料塔。

填料塔不仅结构简单,而且阻力小,便于用耐腐蚀材料制造,对于直径较小的塔,处理有腐蚀性的物料或要求压降较小的真空蒸馏系统,填料塔都具有明显的优越性。

根据本设计任务,是用水吸收法除去合成氨生产尾气的氨气,氨气溶于水生成了具有腐蚀性的氨水;本设计中选取直径为600mm,该值较小,且Φ800mm以下的填料塔对比板式塔,其造价便宜。

基于上述优点,因此本设计中选取填料塔。

2、填料塔的结构填料塔的主要构件为:填料、液体分布器、填料支承板、液体再分器、气体和液体进出口管等。

3、操作方式的选择对于单塔,气体和液体接触的吸收流程有逆流和并流两种方式。

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)1000字氨气填料吸收塔是一种常见的化工工艺设备,用于从氨气等气体中去除二氧化碳等有害成分。

在这篇课程设计中,我们将重点讨论氨气填料吸收塔的设计原理和实现方法。

一、设计原理氨气填料吸收塔的设计原理基于物理吸收法,它通过填充物(如泡沫塑料、陶瓷、金属等)将气相物质传递到液相解吸剂中,以达到去除气体中有害成分的目的。

其中,填充物的种类、形状和大小会影响到吸收效率和压力损失。

塔顶设置进口气流分布器,塔底设置液体分布器,使操作稳定,保证吸收效果。

二、实现方法1. 确定设计参数氨气填料吸收塔的设计需要涉及到多项因素,包括:(1)吸收剂的化学性质:吸收剂的化学性质会影响到塔内化学反应的速率和吸收效率。

因此,需要选择合适的吸收剂,并对其进行物性参数测定。

(2)气体流量:气体流量会影响到塔内的混合程度和扩散速率。

因此,需要确定气体流量范围和变化规律。

(3)操作温度和压力:操作温度和压力会直接影响到化学反应的速率和吸收效率。

因此,需要选择合适的操作温度和压力,并对其进行测定。

(4)塔体高度和直径:塔体高度和直径会影响到填充物的分布、气液流动情况和压降。

因此,需要按照实际需要确定塔的高度和直径。

(5)填充物种类和数量:填充物的种类和数量对吸收效率和压力损失有较大影响。

因此,需要选择合适的填充物,并确定填充层数和填充物粒径。

2. 填充物选型填充物的种类是影响氨气填料吸收塔吸收效率和压力损失的一个关键因素。

选用填充物时需要考虑以下方面:(1)物理性能:填充物的物理性能直接影响其在吸收塔内的分布、气液流动情况和压降。

因此,需要选择合适的物理性能(如比表面积、孔隙率、容重等)的填充物。

(2)化学特性:填充物的化学特性对气液反应速率和吸收效率有较大影响。

因此,需要选择符合需要的化学特性的填充物。

(3)成本和耐久性:填充物的成本和耐久性也是选型时需要考虑的因素,以确保经济可行和长期稳定运行。

化工原理填料吸收塔课程设计

化工原理填料吸收塔课程设计

化工原理填料吸收塔课程设计引言:填料吸收塔是化工工艺中常用的一种设备,用于将气体中的有害物质通过吸收剂吸附或反应的方式去除。

本次课程设计旨在通过对填料吸收塔的设计和工艺参数的优化,实现高效的气体净化效果。

一、填料吸收塔的基本原理及结构填料吸收塔是利用填料表面积大、内部通道多、与气体充分接触的特点,通过物理吸附或化学吸收的方式将气体中的有害成分去除。

其基本结构包括进气口、出气口、填料层和液体循环系统等。

二、填料的选择及特性填料是填料吸收塔中起到关键作用的部分,其选择应根据气体的性质和处理效果的要求来确定。

常用的填料包括球状填料、骨架填料和网状填料等,它们具有不同的表面积、孔隙率和液体分布性能,对吸收效果和塔内气液分布起到重要影响。

三、填料吸收塔的设计步骤及要点1. 确定气体的物理和化学性质,包括流量、温度、压力、组成等;2. 选择合适的填料类型和尺寸,考虑填料的表面积、孔隙率和液体分布性能;3. 确定填料层数和塔径高比,以及液体循环系统的设计参数;4. 进行塔内气液分布的模拟和优化,保证填料与气体充分接触;5. 进行设备的结构设计和材料选择,考虑耐腐蚀性和操作安全性;6. 进行设备的动态模拟和优化,确定最佳操作条件和效果。

四、填料吸收塔的性能评价及优化填料吸收塔的性能评价主要包括吸收效率、压降和能耗等指标。

通过调整填料层数、液体循环系统和操作条件等参数,可以实现吸收效率的提高和能耗的降低。

同时,还应考虑填料的寿命和维护等方面的因素,以保证设备的稳定运行和经济性。

五、填料吸收塔的应用及发展趋势填料吸收塔广泛应用于化工、环保和能源等行业,用于废气处理、脱硫和脱硝等工艺。

随着环保要求的提高和技术的进步,填料吸收塔的设计和优化将更加注重能耗和运行成本的降低,同时也将更加重视对废气中微量有害物质的去除效果。

结论:填料吸收塔作为一种重要的气体净化设备,在化工工艺中发挥着重要作用。

通过合理的设计和优化,可以实现高效的气体净化效果和能耗降低。

吸收填料塔的课程设计

吸收填料塔的课程设计

吸收填料塔的课程设计一、课程目标知识目标:1. 学生能理解吸收填料塔的基本概念,掌握其工作原理和应用场景。

2. 学生能够掌握吸收填料塔的构造、性能参数及其对吸收效率的影响。

3. 学生能够掌握吸收填料塔的设计原则和计算方法。

技能目标:1. 学生能够运用所学知识,进行吸收填料塔的选型和计算。

2. 学生能够分析吸收填料塔在实际工程中的应用,并提出优化方案。

3. 学生能够通过实验和模拟等方法,验证吸收填料塔的设计效果。

情感态度价值观目标:1. 学生能够认识到吸收填料塔在环保和节能领域的重要意义,增强环保意识。

2. 学生通过吸收填料塔的学习,培养解决实际工程问题的兴趣和自信心。

3. 学生在团队协作中,培养沟通、交流和合作的能力。

课程性质:本课程为化学工程与工艺专业的一门专业课程,旨在帮助学生掌握吸收填料塔的基本理论、设计和应用。

学生特点:学生已具备一定的化学基础和工程观念,具有较强的逻辑思维能力和动手能力。

教学要求:结合实际案例,采用理论教学、实验操作和课后练习相结合的方式,使学生能够将所学知识应用于实际工程问题。

在教学过程中,注重培养学生的创新能力、实践能力和团队协作能力。

通过本课程的学习,使学生能够达到上述课程目标,并为后续相关课程打下坚实基础。

二、教学内容1. 吸收填料塔的基本概念与工作原理- 吸收填料塔的定义及其在化工中的应用- 吸收填料塔的工作原理及分类2. 吸收填料塔的构造与性能参数- 填料的种类、结构及其对吸收效率的影响- 填料塔的流体力学性能和传质性能参数3. 吸收填料塔的设计原则与计算方法- 设计原则及其考虑因素- 填料塔的塔径、塔高、填料层高度等计算方法4. 吸收填料塔的选型与应用- 填料塔选型的原则及方法- 填料塔在化工、环保等领域的应用案例5. 实验与模拟- 吸收填料塔的实验操作方法- 计算机模拟在吸收填料塔设计中的应用教学大纲安排:第一周:吸收填料塔的基本概念与工作原理第二周:吸收填料塔的构造与性能参数第三周:吸收填料塔的设计原则与计算方法第四周:吸收填料塔的选型与应用第五周:实验与模拟教学及课后实践教学内容依据课程目标和教材章节进行安排,注重理论与实践相结合,通过讲解、案例分析、实验和模拟等多种方式,使学生掌握吸收填料塔的相关知识。

填料吸收塔课程设计

填料吸收塔课程设计

过程进行中温度的 变化情况
等温吸收 非等温吸收
我们的设计任务均为单组分、等温的物理吸收过程
10 气体出口装置 9 液体进口装置 8 液体分布装置 7 填料压紧装置 6 填料 5 塔体 4 液体再分布器 3 填料支承板 2 液体出口装置 1 气体进口
编号 名 称
一般设计过程和步骤
⑴ 吸收剂的选择 ⑵ 决定操作温度和压力 ⑶ 确定气液平衡关系; ⑷ 选择液气比和确定流程; ⑸ 选择填料 ⑹ 计算塔径和填料层高度; ⑺ 压力损失计算; ⑻塔内辅助装置的选择和计算;
⑴ 密度: L 998 .2kg / m3
⑵ 粘度: L 0.01Pa s 3.6kg /(m h) ⑶ 表面张力: L 72.6dyn / cm 940896 kg / h2
⑷ SO2在水中的扩散系数:
DL 1.47 105cm2 / s 5.29 106 m2 / h
匡国柱,史启才主编.化工单元过程及设备 课程设计.北京:化学工业出版社,2001
1.填料支承结构的设计
涂伟平,陈佩珍,程达芬编.化工过程及设备设计.北京:化学工业出 版社,2000:103-106.
2 .填料塔附属设备的设计
E.E.路德维希编.化工装置实用工艺设计(第2卷).北京:化学工业 出版社,2000:321-329.
金属鲍尔环填料、塑料鲍尔环填料、改 型鲍尔环填料 金属填料、塑料阶梯环 弧鞍填料 瓷质、聚丙烯矩鞍填料 金属环矩鞍填料 聚丙何特性
⑴ 比表面积
单位体积填料的填料表面积称为比表面积,以 a 表示,其单 位为m2/m3。填料的比表面积愈大,所提供的气液传质面积 愈大。因此,比表面积是评价填料性能优劣的一个重要指标。

丙酮填料吸收塔课程设计

丙酮填料吸收塔课程设计

丙酮填料吸收塔课程设计一、教学目标本课程旨在通过丙酮填料吸收塔的学习,让学生掌握其基本原理、结构特点以及应用领域。

具体目标如下:1.知识目标:a.了解丙酮填料吸收塔的定义、工作原理和分类;b.掌握丙酮填料吸收塔的设计计算方法和操作要点;c.熟悉丙酮填料吸收塔在化工、环保等领域的应用。

2.技能目标:a.能够运用所学知识对丙酮填料吸收塔进行简单的设计和计算;b.具备分析丙酮填料吸收塔操作过程中可能出现的问题的能力;c.学会使用相关软件对丙酮填料吸收塔进行模拟和优化。

3.情感态度价值观目标:a.培养学生对化工工艺和环保领域的兴趣,增强其社会责任感;b.培养学生严谨治学、勇于创新的精神;c.使学生认识到丙酮填料吸收塔技术在现代工业中的重要性,提高其学习的积极性。

二、教学内容本课程的教学内容主要包括以下几个部分:1.丙酮填料吸收塔的基本原理:介绍丙酮填料吸收塔的工作原理、分类及特点。

2.丙酮填料吸收塔的设计计算:讲解丙酮填料吸收塔的设计计算方法,包括塔径、塔高、填料层参数等。

3.丙酮填料吸收塔的操作要点:介绍丙酮填料吸收塔的操作流程、注意事项及故障处理。

4.丙酮填料吸收塔的应用领域:讲解丙酮填料吸收塔在化工、环保等领域的应用实例。

5.案例分析:分析实际工程中丙酮填料吸收塔的应用案例,加深学生对理论知识的理解。

为了提高教学效果,本课程将采用以下教学方法:1.讲授法:系统地传授丙酮填料吸收塔的基本原理、设计计算方法、操作要点等知识。

2.案例分析法:通过分析实际工程案例,使学生更好地理解和掌握丙酮填料吸收塔的应用。

3.实验法:学生进行丙酮填料吸收塔的实验操作,培养学生的动手能力和实际问题解决能力。

4.讨论法:鼓励学生积极参与课堂讨论,提高其思维能力和团队协作能力。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《化工工艺学》、《环保工程》等。

2.参考书:丙酮填料吸收塔相关的研究论文、技术手册等。

水吸收填料塔课程设计

水吸收填料塔课程设计

水吸收填料塔课程设计一、课程目标知识目标:1. 让学生掌握填料塔的基本概念、分类和结构特点;2. 使学生了解水吸收过程中填料塔的工作原理;3. 帮助学生理解影响填料塔传质效果的主要因素。

技能目标:1. 培养学生运用化学原理分析填料塔传质过程的能力;2. 提高学生运用实验方法研究填料塔传质效果的能力;3. 培养学生运用CAD等软件进行填料塔设计的初步技能。

情感态度价值观目标:1. 培养学生对化学工程学科的兴趣,激发学习热情;2. 培养学生的团队合作意识,提高沟通与协作能力;3. 增强学生的环保意识,使其认识到化学工艺在环保领域的重要性。

本课程针对高中年级学生,结合化学工程学科特点,注重理论联系实际,提高学生的实践操作能力。

通过本课程的学习,使学生能够掌握填料塔的相关知识,培养其解决实际工程问题的能力,同时培养其良好的情感态度和价值观。

课程目标具体、可衡量,便于教学设计和评估。

二、教学内容1. 填料塔的基本概念与分类:介绍填料塔的定义、作用及分类,重点讲解散装填料塔和规整填料塔的结构特点及优缺点。

2. 填料塔的工作原理:阐述水吸收过程中填料塔内气液两相的流动特性,分析传质过程的基本原理。

3. 影响填料塔传质效果的因素:分析填料类型、填料层高度、气液流速等参数对传质效果的影响。

4. 填料塔的设计计算:介绍填料塔设计的基本原则,讲解塔径、塔高、填料层高度等参数的计算方法。

5. 填料塔的实验研究:组织学生进行填料塔传质实验,观察不同工况下的传质效果,分析实验数据。

6. 填料塔CAD设计:引导学生运用CAD软件进行填料塔结构设计,培养学生的实际操作能力。

教学内容根据课程目标,紧密结合教材,注重科学性和系统性。

教学大纲明确,内容包括教材相关章节,确保教学内容的安排和进度合理。

通过本章节的学习,使学生全面掌握填料塔相关知识,为实际工程应用打下基础。

三、教学方法本章节采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:通过生动的语言和丰富的实例,为学生讲解填料塔的基本概念、工作原理及设计计算方法,巩固学生的理论基础。

填料吸收塔课程设计

填料吸收塔课程设计

一设计任务书(一)设计题目水吸收SO2过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除焙烧炉送出的混合气体(先冷却)中的SO2,其余为惰性组分,采用清水进行吸收。

混合气体的处理量m3/h 2000混合气体SO2含量(体积分数)10%SO2的回收率不低于97%吸收剂的用量与最小用量之比 1.3(二)操作条件(1)操作压力常压(2)操作温度25℃(三)设计内容(1)吸收塔的物料衡算;(2)吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制吸收塔设计条件图;(7)对设计过程的评述和有关问题的讨论。

二设计方案简介2.1方案的确定用水吸收SO2属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。

因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。

2.2填料的类型与选择对于水吸收SO2的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。

在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。

阶梯环是对鲍尔环的改进。

与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。

由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。

锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。

阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。

2.3设计步骤本课程设计从以下几个方面的内容来进行设计(一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。

三、工艺计算3.1基础物性数据3.1.1 液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

化工原理课程设计--填料吸收塔的设计

化工原理课程设计--填料吸收塔的设计

化工原理课程设计--填料吸收塔的设计《化工原理》课程设计填料吸收塔的设计学院南华大学船山学院专业制药工程班级 10级姓名龙浩学号 20109570111指导教师王延飞2012年11月25日1.水吸收氨气填料塔工艺设计方案简介任务及操作条件①混合气(空气、NH3 )处理量:10003/m h;②进塔混合气含NH3 7% (体积分数);温度:20℃;③进塔吸收剂(清水)的温度:20℃;④NH3回收率:96%;⑤操作压力为常压101.3k Pa。

1设计方案的确定用水吸收氨气属于等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。

因用水做座位吸收剂,且氨气不作为产品,股采用纯溶剂。

该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。

经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。

2填料的选择对于水吸收氨气的过程,操作温度计操作压力较低。

工业上通常是选用塑料散装填料。

在塑料散装中,塑料阶梯环填料的综合性能较好,见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。

设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。

国内阶梯环特性数据52. 工艺计算2.1基础物性数据 2.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查的,20℃水的有关物性数据如下: 密度为 ρ1 =998.2Kg /m 3粘度为 μL =1.005mPa ·S =0.001Pa ·S=3.6Kg /(m ·h ) 表面张力为 σL =72.6dyn /cm=940 896Kg /h 2氨气在水中的扩散系数:D L =1.80×10-9 m 2/s=1.80×10-9×3600 m 2/h=6.480 ×10-6m 2/h2.1.2气相物性的数据 混合气体平均摩尔质量为M VM =Σy i M i =0.101×17+0.899×28=26.889混合气体的平均密度为ρvm =RTPM VN=101.3×26.889/(8.314×293)=1.116Kg /m 3 混合气体的粘度可近似取为空气的粘度,查手册的20℃空气的粘度为μV =1.81×10—5Pa ·s=0.065Kg /(m ·h )查手册得氨气在20℃空气中扩散系数为D v = 0.189 cm 2/s=0.068 m 2/s2.1.3气液相平衡数据20C 下氨在水中的溶解度系数:)/(725.03kpa m kmol H ⋅=,常压下20℃时亨利系数:SLHM E ρ==998.2/(0.725×18.02)=76.40Kpa相平衡常数为755.01.10140.76===P E m溶解度系数为717.02.184.762.98=⨯==SLEM H ρ998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯ 2.1.4 物料衡算 进塔气相摩尔比为Y 1=11y 1y —=0.101/(1—0.101)=0.11235 出塔气相摩尔比为Y 2=Y 1(1—φ)=0.11235×(1—0.9996)=0.000045进塔惰性气相流量为V=1000/22.4×273/(273+20)×(1—0.101)=34.29Kmol /h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即;(V L )min =2121m X Y Y Y —/— 对纯溶剂吸收过程,进塔液相组成为 X 2=0(VL)min =(0.11235—0.000045)/[0.11235/(0.754—0)]=0.753 取操作液气比为最小液气比1.8VL=1.8×0.753=1.355 L=1.355×34.29=46.516Kmol /hV (Y 1—Y 2)=L (X 1—X 2)X 1=34.29×(0.11235—0.000045) /46.516=0.08278 5填料塔的工艺尺寸的计算 1) 塔径的计算采用Eckert 通用关联图计算泛点气速 塔径气相质量流量为V ω=1000×1.103=1103Kg /h液相质量流量可近似按纯水的流量计算,即:L ω=46.516×18.02=838.218㎏/hEckert 通过关联图的横坐标为025.0)2.998116.1(1103218.838)(5.05.0=⨯=L V V L w w ρρ 21.02.02=ψΦL LV F F g u μρρ1170-=Φm F95.01116.111702.99881.921.021.02.02.0=⨯⨯⨯⨯⨯=ψΦ=L V F L F g u μρρ729.0665.014.33600/100044=⨯⨯==uV D Sπ圆整塔经,取D=0.8ms m u u F /665.095.07.07.0=⨯==泛点率校核:)%(69%1008.0785.03600/10002在允许范围内=⨯⨯=u填料规格校核:805.2138800>==d D112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.8 取u =0.8u F =0.8×3.017m/s =2.41m/sD =u4πSV = [(4×1000/3600)/(3.14×2.41)] 0.5=0.38m 圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:U min =(L W )min · a t =0.101×114.2=11.534m 3/m 2·h 查常用散装填料的特性参数表,得at=114.2m 2/m 3 U=46.516×18.02/998.2/(0.785×0.42)=6.717>U min经以上校核可知,填料塔直径选用D= 400mm 是合理的。

吸收填料塔课程设计

吸收填料塔课程设计

吸收填料塔课程设计一、教学目标本节课的教学目标是让学生掌握吸收填料塔的基本原理、结构和设计方法。

具体包括以下三个方面:1.知识目标:(1)了解吸收填料塔的定义、分类和应用范围;(2)掌握吸收填料塔的基本结构及其相互之间的关系;(3)理解吸收填料塔的传质机理和设计原则。

2.技能目标:(1)能够运用所学知识分析和解决实际工程中的吸收问题;(2)具备初步设计吸收填料塔的能力;(3)学会查阅相关资料和规范,提高自主学习能力。

3.情感态度价值观目标:(1)培养学生的团队协作精神和责任感;(2)激发学生对化工过程强化的兴趣,培养创新意识;(3)强化环保意识,提高学生对化工废水处理的重视。

二、教学内容本节课的教学内容主要包括以下几个部分:1.吸收填料塔的定义、分类和应用范围;2.吸收填料塔的基本结构及其相互之间的关系;3.吸收填料塔的传质机理和设计原则;4.吸收填料塔的计算方法和设计步骤;5.吸收填料塔的优化和强化措施。

三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解吸收填料塔的基本概念、原理和设计方法;2.案例分析法:分析实际工程中的吸收问题,引导学生运用所学知识解决问题;3.讨论法:分组讨论吸收填料塔的优化和强化措施,培养学生的创新意识;4.实验法:安排实验室参观或动手实验,加深学生对吸收填料塔的理解。

四、教学资源本节课的教学资源包括:1.教材:《化工原理》、《化工工艺学》等;2.参考书:《吸收分离工程》、《填料塔设计手册》等;3.多媒体资料:吸收填料塔的图片、视频、动画等;4.实验设备:吸收填料塔模型、相关分析仪器等。

通过以上教学资源的选择和准备,为学生提供丰富的学习体验,提高教学效果。

五、教学评估本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解能力;2.作业:布置相关的练习题和设计任务,评估学生对吸收填料塔知识的掌握程度和应用能力;3.考试:安排一次期中考试,全面测试学生对吸收填料塔的原理、设计和应用的掌握情况。

填料塔课程设计--填料吸收塔的设计

填料塔课程设计--填料吸收塔的设计

课程设计题目:填料吸收塔的设计教学院:化学与材料工程学院专业:应用化工技术2010级(1)班学号:学生姓名:指导教师:2012年6 月3 日课程设计任务书2011 ~ 2012 学年第 2 学期一、课程设计题目填料吸收塔的设计二、工艺条件1.处理能力:1500m3/h混合气(空气、SO2)2.年工作日:300天3.混合气中含SO2: 3%(体积分数)4.SO2排放浓度:0.16%5.操作压力:常压操作6.操作温度:20℃7.相对湿度:70%8.填料类型:自选(塑料鲍尔环,陶瓷拉西环等)9.平衡线方程:(20℃)三、课程设计内容1.设计方案的选择及流程说明;2.工艺计算;3.主要设备工艺尺寸设计;(1)塔径的确定;(2)填料层高度计算;(3)总塔高、总压降及接管尺寸的确定。

4.辅助设备选型与计算。

四、进度安排1.课程设计准备阶段:收集查阅资料,并借阅相关工程设计用书;2.设计分析讨论阶段:确定设计思路,正确选用设计参数,树立工程观点,小组分工协作,较好完成设计任务;3.计算设计阶段:完成物料衡算、流体力学性能验算及主要设备的工艺设计计算;4. 课程设计说明书编写阶段:整理文字资料计计算数据,用简洁的文字和适当的图表表达自己的设计思想及设计成果。

五、基本要求1.格式规范,文字排版正确;2. 主要设备的工艺设计计算需包含:物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算;3.工艺流程图:以2号图纸用单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点;4. 填料塔工艺条件图:以2号图纸绘制,图面应包括设备的主要工艺尺寸,技术特性表和接管表;5. 按时完成课程设计任务,上交完整的设计说明书一份。

教研室主任签名:年月日第一章概述1.1设计依据本课程设计从以下几个方面的内容来进行设计1、填料的选择由于水吸收S0的过程、操作、温度及操作压力较低,工业上通常选用所了散装填238金属鲍尔环料。

氨气填料吸收塔课程设计

氨气填料吸收塔课程设计

氨气填料吸收塔课程设计一、课程目标知识目标:1. 学生能够理解并掌握氨气填料吸收塔的基本原理和结构组成。

2. 学生能够掌握氨气填料吸收塔在化工生产中的应用及其重要性。

3. 学生能够了解并描述氨气填料吸收塔的工艺流程和相关参数。

技能目标:1. 学生能够运用所学知识,分析和解决氨气填料吸收塔在运行过程中可能遇到的问题。

2. 学生能够设计简单的氨气填料吸收塔实验方案,进行实验操作,并处理实验数据。

3. 学生能够运用相关软件或工具对氨气填料吸收塔进行模拟和优化。

情感态度价值观目标:1. 培养学生对化学工程学科的兴趣,激发学习热情,增强对化工行业的认识。

2. 培养学生具备良好的团队合作精神,善于倾听他人意见,提高沟通与协作能力。

3. 培养学生关注环境保护和资源利用,认识到化工生产过程中节能减排的重要性。

分析课程性质、学生特点和教学要求,本课程旨在使学生在掌握氨气填料吸收塔相关知识的基础上,提高解决实际问题的能力,培养创新意识和实践操作技能。

通过本课程的学习,学生能够将理论知识与实际应用相结合,为未来从事化工领域工作打下坚实基础。

课程目标分解为具体学习成果,以便于后续教学设计和评估。

二、教学内容1. 氨气填料吸收塔的基本原理:介绍氨气填料吸收塔的工作原理,包括吸收过程中的气液相传质机理、填料层的作用等。

- 教材章节:第三章“气体吸收塔的基本理论”2. 氨气填料吸收塔的结构与组成:讲解氨气填料吸收塔的各部分结构及其功能,如塔体、填料、喷嘴、液体分布器等。

- 教材章节:第四章“吸收塔的构造与设计”3. 氨气填料吸收塔的工艺流程:分析氨气填料吸收塔在实际生产中的应用,介绍工艺流程及操作要点。

- 教材章节:第五章“吸收塔的工艺流程与操作”4. 氨气填料吸收塔的模拟与优化:运用相关软件或工具对氨气填料吸收塔进行模拟,探讨优化方案,提高吸收效率。

- 教材章节:第七章“吸收塔的模拟与优化”5. 实践操作:设计氨气填料吸收塔实验,让学生动手操作,观察实验现象,处理实验数据,提高实践能力。

丙酮填料吸收塔课程设计

丙酮填料吸收塔课程设计

丙酮填料吸收塔课程设计一、课程目标知识目标:1. 学生能理解丙酮填料吸收塔的基本原理,掌握吸收塔的构造和功能。

2. 学生能掌握丙酮在吸收塔中的传质、传热过程,并了解影响吸收效率的主要因素。

3. 学生能运用相关理论知识,分析丙酮填料吸收塔的操作参数,对其进行优化。

技能目标:1. 学生具备设计丙酮填料吸收塔实验方案的能力,能进行实验操作,并对实验数据进行处理和分析。

2. 学生能运用计算机软件对丙酮填料吸收塔进行模拟和优化,提高解决实际问题的能力。

情感态度价值观目标:1. 学生通过本课程的学习,培养对化学工程学科的兴趣,激发学习热情。

2. 学生能认识到丙酮填料吸收塔在化工生产中的应用价值,增强社会责任感和环保意识。

3. 学生通过小组合作、讨论交流,培养团队协作精神,提高沟通能力和解决问题的能力。

课程性质:本课程为化学工程学科的专业课程,旨在让学生掌握丙酮填料吸收塔的原理和操作,提高实验技能和实际应用能力。

学生特点:学生为高年级本科生,具备一定的化学基础和工程知识,具有较强的逻辑思维和动手能力。

教学要求:结合学生特点,注重理论与实践相结合,强调实验操作和实际应用,提高学生的综合能力。

通过课程目标分解,确保学生能够达到预期的学习成果,为后续教学设计和评估提供依据。

二、教学内容1. 丙酮填料吸收塔的基本原理:包括吸收塔的结构、填料的类型及特点、气液两相间的传质和传热过程。

相关教材章节:第三章“吸收与吸附”,第5节“填料塔吸收”。

2. 影响丙酮填料吸收塔效率的因素:分析温度、压力、气体流速、液体流速等操作参数对吸收效率的影响。

相关教材章节:第三章“吸收与吸附”,第6节“影响吸收效率的因素”。

3. 丙酮填料吸收塔的设计与优化:介绍实验方案设计、操作参数优化方法,以及计算机模拟在吸收塔设计中的应用。

相关教材章节:第四章“化工塔设备”,第2节“填料塔的设计与优化”。

4. 实验操作与数据处理:包括实验操作步骤、注意事项以及实验数据的收集、处理和分析方法。

化工原理课程设计氨气填料吸收塔设计

化工原理课程设计氨气填料吸收塔设计
防腐措施
对于腐蚀性物料,需要采取相应的防腐措施,如涂层保护、材料选择等,以延长塔体的使用寿命。
材料选择
根据物料的腐蚀性、操作温度、压力等条件,选择合适的塔体材料,如碳钢、不锈钢等。
05
CHAPTER
填料选择与性能评价
依据
根据处理量、压降要求、操作条件(如温度、压力)以及经济因素进行选择。
建议
换热器
根据热量平衡计算,选择合适的换热器类型和规格,并进行详细的计算和校核。
填料塔
根据设计参数选择合适的填料塔类型和规格,并进行详细的计算和校核。
04
CHAPTER
塔体结构设计与优化
适用于中小处理量、要求压力降小、易发泡或具有腐蚀性的物料。
填料塔
适用于大处理量、操作弹性大、效率高的场合。
板式塔
适用于气体处理量大、不易发泡的物料。
喷淋塔
塔径计算
根据处理量、空塔气速等参数,选择合适的塔径,保证气体在塔内的均匀分布和流动。
塔高计算
根据填料层高度、液体分布器高度、塔底空间高度等参数,确定塔的总高度。
液体分布器设计
选择合适的液体分布器类型,保证液体在填料层上的均匀分布,提高传质效率。
强度校核
对塔体进行强度校核,包括塔体壁厚、支撑结构等,确保塔体在操作过程中具有足够的强度和稳定性。
培养解决实际工程问题的能力,提高创新意识和实践能力。
01
02
03
04
在合成氨生产过程中,需要将含有氨气的混合气体进行分离和提纯,填料吸收塔可用于此过程中的氨气吸收。
合成氨工业
尿素生产过程中会产生大量含有氨气的废气,通过填料吸收塔可实现废气的有效处理和资源回收。
尿素生产
石油化工行业中的某些生产过程也会产生含氨废气,利用填料吸收塔可确保废气达标排放。

填料吸收塔的课程设计

填料吸收塔的课程设计

课程设计报告题目填料吸收塔的设计课程名称化工原理课程设计专业班级学生姓名学号设计地点指导教师设计起止时间:2011 年8月 29日至 2011 年 9 月 9 日目录一、前言 (4)1.1设计方案简介 (4)1.2 吸收剂的选择 (4)1.3 填料的选择 (5)1.4 工艺流程说明 (6)二、平衡关系及物料衡算 (6)2.1 平衡关系的计算 (6)2.2 物料衡算 (7)三、填料塔工艺尺寸计算 (9)3.1 塔径的计算 (9)3.2 填料层高度的计算 (10)3.3 填料层压降的计算 (11)3.4 填料层喷林密度的核算 (11)四、填料塔内件的类型和计算 (12)4.1 支撑装置 (12)4.2 分布装置 (12)4.3 进出口管的计算 (13)4.4 附属空间 (13)五、附属设备的选型 (14)5.1 风机 (14)5.2 离心泵 (14)5.3 换热器 (15)六、附录 (16)6.1 设计结果一览表 (16)6.2 主要符号说明 (17)6.3 设计总结 (19)6.4 参考文献 (21)附图X-Y相图 (23)流程图 (24)设备图 (24)一、前言1.1 设计方案简介(1)填料塔简介:填料塔是提供气-液、液-液系统相接触的设备。

吸收塔设备一般可分为级式接触和微分接触两类。

一般级式接触采用气相分散,设计采用理论板数及板效率;而微分接触设备常采用液相分散,设计采用传质单元高度及传质单元数,填料塔的特性也正是体现在这几个方面。

①生产能力填料塔的生产能力大于同直径的筛板塔和浮阀塔。

②分离效率填料塔的分离效率可和相同高度的板式塔相比。

③操作弹性设计合理的填料塔,其操作弹性一般好于筛板塔,大致和浮阀塔相当。

④压降(阻力)除非在很高的液相流率下操作,填料塔中每一个理论板的压降通常小于板式塔。

⑤成本填料的制造成本较高,但填料塔比板式塔容易安装,因此可导致总体上较低的安装成本。

填料塔存在的两个主要缺点是容易堵塞设备及容易造成液体和气体分布的不良。

环境工程原理课程设计填料吸收塔

环境工程原理课程设计填料吸收塔

环境工程原理课程设计 - 填料吸收塔概述本文将详细介绍填料吸收塔的原理、设计和应用。

通过相应的分析和实验结果,提供一个全面、详细、完整且深入的探讨填料吸收塔的主题。

以下是本文的详细内容:一、填料吸收塔的概念与原理1.1 填料吸收塔的定义填料吸收塔是一种常见的气液分离设备,广泛应用于环境工程领域。

它通过将气体与液体接触,使气体中的有害物质被液体吸收,并实现气体的净化与净化。

1.2 填料吸收塔的工作原理填料吸收塔的工作原理是将气体和液体按照相逆流方式通过填料层,利用气液两相之间的质量传递来完成物质的吸收和分离。

在填料层的作用下,气体与液体之间发生物质的传递和吸收过程。

1.3 物质传递机制物质在填料吸收塔中的传递主要有质量传递和动量传递两种机制。

质量传递是指气体和液体之间物质的扩散,而动量传递是指气液两相之间的动量交换。

二、填料吸收塔的设计2.1 填料选择与性能要求填料是填料吸收塔中的关键部件,其性能直接影响到塔的吸收效率和运行效果。

选择合适的填料并确定其性能要求是设计填料吸收塔的重要步骤。

2.2 塔高与填料层高度的计算塔高是指填料吸收塔的总高度,而填料层高度是指填料层的高度。

两者的计算与塔的工艺性能和操作效果密切相关。

2.3 液体流量与气体流量的计算填料吸收塔的设计还需计算液体流量和气体流量。

液体流量的确定需要考虑填料的液膜面积,而气体流量的确定需要考虑填料的传质能力和物质传递效果。

2.4 填料吸收塔的压降计算填料吸收塔中的压降是指气体流过填料层时由于与填料的摩擦和阻力而产生的能量损失。

压降的计算对于塔的设计和操作参数的确定非常重要。

三、填料吸收塔的应用3.1 污水处理中的填料吸收塔填料吸收塔在污水处理中被广泛应用,主要用于去除废水中的臭味和有害气体。

通过填料吸收塔的设计和运行,可以实现污水的有效处理和净化。

3.2 烟气脱硫中的填料吸收塔填料吸收塔在烟气脱硫中也得到了广泛的应用。

通过填料吸收塔,可以将烟气中的二氧化硫等有害物质进行吸收和分离,实现烟气的净化和脱硫。

氨气填料吸收塔课程设计

氨气填料吸收塔课程设计

氨气填料吸收塔课程设计氨气填料吸收塔课程设计设计任务书1.设计题目本次设计任务为设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为2000m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。

要求排放气体中含氨低于0.05%(体积分数)。

2.操作条件1)操作压力:常压2)操作温度:20℃3)吸收剂用量为最小用量的1.8倍。

3.填料类型选择聚丙烯阶梯环填料。

4.设计内容1)确定设计方案并进行说明。

2)进行物料衡算。

3)计算吸收塔的工艺尺寸。

4)计算填料层压降。

5)简要设计液体分布器。

6)绘制液体分布器施工图。

7)计算吸收塔接管尺寸。

8)列出设计参数一览表。

9)绘制生产工艺流程图(A3号图纸)。

10)绘制吸收塔设计条件图(A3号图纸)。

11)对设计过程进行评述和有关问题的讨论。

目录前言1.水吸收氨气填料塔工艺设计方案简介1.1 任务及操作条件本设计任务为设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为2000m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。

要求排放气体中含氨低于0.05%(体积分数)。

2.工艺计算2.1 基础物性数据2.1.1 液相物性的数据2.1.2 气相物性的数据2.1.3 气液相平衡数据2.1.4 物料衡算2.2 填料塔的工艺尺寸的计算2.2.1 塔径的计算2.2.2 填料层高度计算2.2.3 填料层压降计算前言塔设备是炼油、石油化工、精细化工、食品、医药及环保等部门中使用量大应用面广的重要单元设备。

它广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中,一直是国内外学者普遍关注的重要课题。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

氨吸收填料塔的课程设计

氨吸收填料塔的课程设计

氨吸收填料塔的课程设计一、课程目标知识目标:1. 让学生掌握氨吸收填料塔的基本结构和工作原理;2. 了解氨吸收填料塔在化工生产中的应用及重要性;3. 掌握氨吸收填料塔的物料平衡和热量平衡计算方法;4. 学会分析氨吸收填料塔的操作参数对吸收效果的影响。

技能目标:1. 培养学生运用化学知识解决实际问题的能力;2. 培养学生进行实验操作、数据收集和处理的能力;3. 提高学生分析、解决化工过程中填料塔相关问题的能力。

情感态度价值观目标:1. 培养学生对化学学科的兴趣,激发他们探索科学奥秘的热情;2. 培养学生关注环保,认识到化学技术在环境保护中的重要作用;3. 培养学生的团队合作精神,提高他们沟通、交流的能力。

分析课程性质、学生特点和教学要求,本课程旨在通过理论教学和实验操作相结合的方式,使学生在掌握氨吸收填料塔相关知识的基础上,能够将其应用于实际问题的分析和解决。

通过本课程的学习,学生将具备以下具体学习成果:1. 能够描述氨吸收填料塔的结构、工作原理及应用场景;2. 能够正确进行氨吸收填料塔的物料平衡和热量平衡计算;3. 能够分析操作参数对氨吸收填料塔吸收效果的影响,并提出优化方案;4. 能够熟练操作实验设备,收集和处理实验数据,撰写实验报告;5. 能够积极参与团队合作,有效沟通,共同解决问题。

二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 氨吸收填料塔的基本概念及分类- 氨吸收填料塔的定义及作用- 填料塔的分类及特点2. 氨吸收填料塔的结构与工作原理- 填料塔的结构组成- 氨吸收填料塔的工作原理- 填料塔在化工生产中的应用3. 氨吸收填料塔的物料平衡和热量平衡- 物料平衡计算方法- 热量平衡计算方法- 实际操作中的影响因素4. 操作参数对氨吸收填料塔吸收效果的影响- 气液两相流动特性- 填料塔操作参数的优化- 操作参数对吸收效果的影响分析5. 氨吸收填料塔的实验操作与数据处理- 实验设备的使用方法- 实验数据的收集与处理- 实验报告的撰写教学大纲安排如下:第一周:氨吸收填料塔的基本概念及分类第二周:氨吸收填料塔的结构与工作原理第三周:氨吸收填料塔的物料平衡和热量平衡第四周:操作参数对氨吸收填料塔吸收效果的影响第五周:氨吸收填料塔实验操作与数据处理三、教学方法针对本章节内容,采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:- 对于氨吸收填料塔的基本概念、结构、工作原理等理论性较强的内容,采用讲授法进行教学,使学生系统、全面地掌握相关知识;- 讲授过程中注重与实际应用相结合,通过举例说明,增强学生的理解和记忆。

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计课程设计题目:填料吸收塔的设计教学院:化学与材料工程学院专业:化学工程与工艺(精细化工方向)学号:学生姓名:指导教师:2012 年 5 月31 日目录1 绪论 (1)1.1吸收技术概况 (1)1.2吸收过程对设备的要求及设备的发展概况 (1)2 课程设计任务 (2)2.1设计内容 (2)2.2设计要求 (2)2.3设计方案介绍 (3)3 吸收塔的工艺计算 (4)3.1 基础物性数据计算 (4)3.1.1 物料衡算 (4)3.1.2 液气比的计算 (5)3.1.3 吸收剂的用量 (5)3.2 塔径的计算及校核 (5)3.2.1 填料选择 (5)3.2.2 泛点气速、塔径的计算 (6)3.2.3 数据校核 (7)3.3 填料层高度的计算 (7)3.3.1 传质单元高度计算 (7)3.3.2 传质单元数的计算 (9)3.3.3 总高度的计算 (10)3.4流体力学参数计算 (10)3.4.1 吸收塔的压力降 (10)3.4.2 气体动能因子 (11)3.4.3 吸收因子 (11)3.5 吸收塔辅助设备计算及选型 (12)3.5.1 液体初始分布器 (12)3.5.2 液体再分布器 (12)3.5.3 其他附属塔内件 (12)4 解吸塔工艺计算 (13)4.1基础数据计算 (13)4.1.1 最小气液比及吸收剂用量 (13)4.2塔径的计算及校核 (14)4.2.1 填料的选择 (14)4.2.2 塔径计算 (14)4.2.3 数据校核 (15)4.3.1 传质单元高度计算 (16)4.3.2 传质单元数的计算 (17)4.3.3 总高度的计算 (18)4.4 流体力学参数的计算 (18)4.4.1 解吸塔的压力降 (19)4.4.2 气体动能因子 (19)4.4.3 解吸因子 (19)4.5解吸塔的辅助设备的计算与选型 (20)4.5.1 液体初始分布器 (20)4.5.2 其他附属内件 (20)5设计结果及评述 (21)5.1设计结果一览表 (21)5.2设计评述 (22)6 参考文献 (23)1 绪论1.1吸收技术概况气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一设计任务书(一)设计题目过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除焙烧水吸收SO2炉送出的混合气体(先冷却)中的SO2,其余为惰性组分,采用清水进行吸收。

(二)操作条件(1)操作压力常压(2)操作温度25℃(三)设计内容(1)吸收塔的物料衡算;(2)吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制吸收塔设计条件图;(7)对设计过程的评述和有关问题的讨论。

二设计方案简介2.1方案的确定用水吸收SO属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流2不作为产品,故采用纯溶剂。

程。

因用水作为吸收剂,且SO22.2填料的类型与选择的过程,操作温度及操作压力较低,工业上通常选用塑料散对于水吸收SO2装填料。

在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。

阶梯环是对鲍尔环的改进。

与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。

由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。

锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。

阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。

2.3设计步骤本课程设计从以下几个方面的内容来进行设计(一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。

三、工艺计算3.1基础物性数据3.1.1 液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查得,25℃时水的有关物性数据如下:密度为ρL=997.1 kg/m3粘度为μL=0.0008937 Pa·s=3.2173kg/(m·h)表面张力为σL=71.97 dyn/cm=932731 kg/h2SO2在水中的扩散系数为 DL=1.724×10-9m2/s=6.206×10-6m2/h(依Wilke-Chang0.518r0.6()1.85910M TDVφμ-=⨯计算,查《化学工程基础》)3.1.2 气相物性数据设进塔混合气体温度为25℃,混合气体的平均摩尔质量为M Vm=Σy i M i=0.1×64.06+0.9×29=32.506g/mol 混合气体的平均密度为ρVm =PM/RT=101.325×32.506/(8.314×298.15)=1.3287kg/ m 3混合气体的粘度可近似取为空气的粘度,查手册得25℃空气的粘度为 μV =1.83 ×10-5Pa•s=0.066kg/(m•h) 查手册得SO 2在空气中的扩散系数为 D V =1.422×10-5m 2/s=0.051 m 2/h (依 1.7500()P T D D P T =计算,其中273K 时,1.013×10-5Pa 时SO2在空气中的扩散系数为1.22×10-5m 2/s ,查《化学工程基础》)3.1.3 气液相平衡数据由手册查得,常压下25℃时SO 2在水中的亨利系数为 E=4.13 ×103kPa 相平衡常数为m=E/P=4.13×103/101.3=40.76溶解度系数为H=ρ/EM=997.2/4.13×103×18.02=0.0134kmol/kPa m33.1.4 物料衡算(l). 进塔混合气中各组分的量近似取塔平均操作压强为101.3kPa ,故: 混合气量= 273.1512000()81.80273.152522.4=+kmol /h混合气SO 2中量=81.80×0.1=8.18 kmol /h=8.18×64.06=542.01k g /h设混合气中惰性气体为空气,则混合气中空气量=81.8-8.18=73.62kmol /h=73.62×29=2135kg /h(2).混合气进出塔的摩尔组成120.18.18(10.97)0.0033273.628.18(10.97)y y =-==+- (3)混合气进出塔摩尔比组成 进塔气相摩尔比为111y 0.10.111y 10.1Y ===-- 出塔气相摩尔比为21(1)0.11(10.97)0.0033A Y Y ϕ=-=-=(4)出塔混合气量出塔混合气量=73.62+8.18×0.03=73.7836kmol/h=2135+542.01×0.03=2151.26kg/h(5)吸收剂(水)的用量L该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算12min 12()Y Y LY V X m-=-对于纯溶剂吸收过程,进塔液相组成为X 2=0min 0.110.0033()39.540.11/40.760L V -==- 取操作液气比为min 1.3()L LV V = 1.339.5451.40LV=⨯= 51.473.623784.07L =⨯= kmol/h (6)塔底吸收液组成X 11212()()V Y Y L X X -=-173.62(0.110.0033)0.002083784.07X ⨯-==(7)操作线方程依操作线方程223784.07()0.003373.62L L Y X Y X X V V =+-=+ 51.40.0033Y X =+3.2填料塔的工艺尺寸的计算 3.2.1塔径的计算采用Eckert 通用关联图计算泛点气速。

气相质量流量为w v =2000×1.3287=2657.4 kg/h 液相质量流量可近似按纯水的流量计算,即 W L =3784.07×18.02=68188.94 kg/h 其中:ρL =997.1 kg/m 3 ρV =1.3287 kg/m 3g = 9.81 m/s 2 = 1.27×108 m/h 2 W V = 2657.4 kg/h W L = 68188.94 kg/h μL =0.0008937 Pa·s(1)采用Ecekert 通用关联图法计算泛点气速u F 。

通用填料塔泛点和压降的通用关联图如下:图一填料塔泛点和压降的通用关联图(引自《化工原理》)图中u0——空塔气速,m /s;φ——湿填料因子,简称填料因子,1 /m;ψ——水的密度和液体的密度之比;g——重力加速度,m /s2;ρV、ρL——分别为气体和液体的密度,kg /m3;w V、w L——分别为气体和液体的质量流量,kg /s。

此图适用于乱堆的颗粒形填料,如拉西环、弧鞍形填料、矩鞍形填料、鲍尔环等,其上还绘制了整砌拉西环和弦栅填料两种规整填料的泛点曲线。

对于其他填料,尚无可靠的填料因子数据。

Eckert通用关联图的横坐标为0.50.5w 68188.941.3287()()0.937w 2657.4997.1V L V L ρρ== 查图一查得纵坐标值为20.2u ()0.022g VF L Lρφμρ= 表一 散装填料泛点填料因子平均值( 《化工原理课程设计》附录十一)查得:1170F m φ-= 0.987/F u m s === (2)操作气速由以下公式计算塔径:(《化工原理课程设计》)D =对于散装填料,其泛点率的经验值为u /u F =0.5~0.85 取 u =0. 7u F =0.7×0.987=0.691m/s (3)塔径由 1.012D m ===圆整塔径,取D =l.1m 。

(4)泛点率校核:22000/36000.585/0.785 1.1u m s ==⨯0.585100%59.27%(0.987F u u =⨯=在允许范围内) (5)填料规格校核:110028.94838D d ==> (6)液体喷淋密度校核: 取最小润湿速率为 (L w )min=0.08 m 3/m·h 查填料手册得塑料阶梯环比表面积a t =132.5m 2/m 3U min=(L w )min a t =0.08×132.5=10.6m 3/ m 2·h32min 268188.94/997.271.99m /0.785 1.1U m h U ==>⨯ 经以上校核可知,填料塔直径选用D =1100mm 合理。

3.2.2填料层高度计算 (1)传质单元数N OG1140.760.002080.08478Y mX *==⨯= 220Y mX *==解吸因数为:40.7673.620.7933784.07mV S L ⨯=== 气相总传质单元数为:12221ln[(1)]110.110ln[(10.793)0.793]9.85710.7930.00330OG Y Y N S S S Y Y **-=-+---=-+=--(2)传质单元高度的计算气相总传质单元高度采用修正的恩田关联式计算0.10.20.750.052221exp 1.45w C L t L L t L t L L L L t a U a U U a a g a σσμρρσ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭查表二:常见材质的临界表面张力值得 C σ= 33 dyn/cm = 427680 kg/h 2 液体质量通量为:2268188.9471789.17/()0.785 1.1L U kg m h ==⨯ 气膜吸收系数由下式计算:0.050.20.750.1222842768071789.1771789.17132.571789.171exp 1.45932731132.5 3.2173997.1 1.2710997.1932731132.50.6047w t a a -⎧⎫⎛⎫⎛⎫⨯⎪⎪⎛⎫⎛⎫=--⎨⎬ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭=气体质量通量为:10.730.237V V t V G t V V V U a D k a D RT μμρ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭气体质量通量:222000 1.32872797.70/()0.785 1.1V U kg m h ⨯==⨯ 10.7322797.700.066132.50.0510.237132.50.066 1.32870.0518.3142980.0363/()G k kmol m hkPa ⨯⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭=液膜吸收系数由下式计算:211323121833260.009571789.17 3.2173 3.2173 1.27100.00950.6047132.5 3.2173997.1 6.20610997.11.320/L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭= 查表三:常见填料塔的形状系数本设计填料类型为开孔环 所以 Ψ=1.45,则()1.11.130.0363132.50.6047 1.45 4.3769kmol / m kPa G G w k a k a h ψ==⨯⨯⨯=0.40.41.320132.50.6047 1.45122.71/L L w k a k a l hψ==⨯⨯⨯=又因u/u F =59.27﹪>50﹪ 需要按下式进行校正,即1.4'2.2'19.50.51 2.60.5G G F L L F u k a k au u k a k a u ⎡⎤⎛⎫⎢⎥=+- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+- ⎪⎢⎥⎝⎭⎣⎦可得:()()()1.4'32.2'19.50.59270.5 4.3769 5.85kmol / m kPa 1 2.60.59270.5122.71124.41/G L k a h k a l h⎡⎤=+-⨯=⎣⎦⎡⎤=+-⨯=⎣⎦则()3''111.297kmol / m kPa 11115.850.0134124.41G G L K a h k aHk a===++⨯由273.621.297101.30.785 1.10.590OG Y G V VH K a K aP m==ΩΩ=⨯⨯⨯= (3)填料层高度的计算由0.599.857 5.82OG OG Z H N m ==⨯= 根据设计经验,填料层的设计高度一般为Z ′=(1.2~1.5)Z (4-19)式中 Z ′——设计时的填料高度,m ;Z ——工艺计算得到的填料层高度,m 。

相关文档
最新文档