有限长单位脉冲响应滤波器设计
有限长单位脉冲响应(FIR)滤波器的设计方法-第一节
![有限长单位脉冲响应(FIR)滤波器的设计方法-第一节](https://img.taocdn.com/s3/m/c010c0cf8662caaedd3383c4bb4cf7ec4afeb6b3.png)
在通信系统中的应用
信号调制与解调
频分复用
FIR滤波器在通信系统的信号调制与解 调过程中起到关键作用,能够实现信 号的频谱搬移。
FIR滤波器可以实现频分复用,将多个 信号调制到不同的频段上,实现多路 信号同时传输。
信道均衡
在通信过程中,信号经过信道时会受 到各种干扰和失真,FIR滤波器可以用 于信道均衡,减小信号失真。
特点
稳定性好、易于实现、无递归结 构、相位线性等。
FIR滤波器的应用领域
01
02
03
信号处理
FIR滤波器广泛应用于信 号去噪、滤波、增强等处 理。
图像处理
在图像处理中,FIR滤波 器用于图像平滑、锐化等 操作。
通信系统
FIR滤波器用于通信系统 的调制、解调、信道均衡 等。
FIR滤波器与IIR滤波器的比较
群时延
群时延
群时延是描述滤波器对信号延迟影响 的参数。在通信和音频处理中,群时 延的稳定性非常重要,在设计FIR 滤波器时考虑使用特定的窗函数或优 化算法,以减小信号通过滤波器时的 延迟。
幅度响应
幅度响应
幅度响应描述了滤波器对不同频率信号的衰减程度。理想的幅度响应应该是对 所有频率成分具有相同的衰减,但在实际中很难实现。
VS
总结词:计算量较小,需要较高的存 储空间和通信开销,适用于大规模数 据和分布式系统。
05
FIR滤波器的应用实例
在音频处理中的应用
音频信号降噪
FIR滤波器能够有效地去除 音频信号中的噪声,提高 音频质量。
音频压缩
通过FIR滤波器对音频信号 进行压缩,可以减小音频 文件的大小,便于存储和 传输。
最优化方法
最优化方法是一种基于数学优化的FIR滤波器设计方法, 其基本思想是通过优化算法来求解FIR滤波器的系数,
有限长单位脉冲响应(FIR)滤波器的设计方法-第三节
![有限长单位脉冲响应(FIR)滤波器的设计方法-第三节](https://img.taocdn.com/s3/m/1195ef2ff4335a8102d276a20029bd64793e6255.png)
目录
• FIR滤波器的基本概念 • FIR滤波器的设计方法 • FIR滤波器的实现 • FIR滤波器的性能评估 • FIR滤波器的应用实例
01 FIR滤波器的基本概念
定义与特性
定义
FIR滤波器,即有限长单位脉冲响 应滤波器,是指系统在单位阶跃 信号作用下,输出为有限长脉冲 响应序列的数字滤波器。
群延迟
群延迟是滤波器对信号中 不同频率成分的延迟时间, 反映了滤波器对信号的时 延效应。
重要性
群延迟特性对于实时信号 处理和通信系统中的同步 非常重要。
设计准则
为了减小群延迟,FIR滤波 器应具有较小的阶数和较 宽的过渡带。
频率响应特性
频率响应
FIR滤波器的频率响应决定了其 对不同频率成分的增益和相位响
频率采样法
01
频率采样法是一种基于频率域的FIR滤波器设计方法,其基本思想是在频域内对 给定的理想滤波器的频率响应进行采样,然后通过逆变换得到滤波器的系数。
02
频率采样法的主要步骤包括确定采样点、计算滤波器系数和验证滤波器性能。
03
频率采样法的优点是能够准确地设计具有特定频率响应的滤波器,适用于高通 和带通滤波器的设计。
特性
其特点是系统函数在有限时间内 为零,即系统的阶跃响应不随时 间无限延续。
FIR滤波器的优势
01
02
03
稳定性
由于FIR滤波器的系统函 数在有限时间内为零,因 此其系统是稳定的。
无递归运算
FIR滤波器的计算只涉及 加法、乘法和延时运算, 不涉及递归运算,因此计 算相对简单。
线性相位
FIR滤波器具有严格的线 性相位特性,能够保证信 号在处理过程中不发生失 真或变形。
08第八章 有限脉冲响应数字滤波器的设计
![08第八章 有限脉冲响应数字滤波器的设计](https://img.taocdn.com/s3/m/28b6bb216edb6f1aff001fb2.png)
8.3 利用频域采样法设计FIR滤波器
频域采样法是在频率域对理想滤波器Hd(ejω)采样, 在采样点上设计的滤波器H(ejω)和理想滤波器 Hd(ejω)幅度值相等,然后根据频率域的采样值求 得实际设计的滤波器的频率特性H(ejω)。
对理想滤波器的频率特性Hd(ejω)在[0,2]范围内
窗函数法 频率取样法 等纹波逼近法
4
8.2 利用窗函数法设计FIR滤波器
设计思想
寻找一个FIR滤波器,使其频率响应H(ejω)逼
近理想FIR滤波器的频率响应Hd(ejω).
一般情况下,Hd(ejω)在边界频率处有不连续 点,因此hd(n)是无限长的,且是因果的。 设计方法是用窗函数w(n)对hd(n)进行截取
15
三角(Bartlett)窗
三角(Bartlett)窗
1s in ( N 2 ) N 1 We ,M B r( ) Ms in ( 2 ) 2
j 2
1 2 n () n 1c o s , 0 nN 1 2 N 1
He ( j) h ( ne ) jn
n 0 N 1
如果Hd(ejω)不能用简单函数表示,可以 用求和代替积分。 H(e) e 0 . 2
j j d
0
0 . 2
23
将hd(n)与窗函数相乘得FIR数字滤波器 的冲激响应h(n) 计算FIR数字滤波器的频率响应,并验证 是否达到所要求的指标
2n w () n 0 . 5 4 0 . 4 6 c o s w () n N 1
课后习题及答案_第7章有限脉冲响应数字滤波器设计--习题(精品pdf)
![课后习题及答案_第7章有限脉冲响应数字滤波器设计--习题(精品pdf)](https://img.taocdn.com/s3/m/657fef187dd184254b35eefdc8d376eeaeaa172f.png)
第6章 有限脉冲响应(FIR)数字滤波器的设计习题1. 已知FIR 滤波器的单位脉冲响应为:(1) h (n )长度N =6h (0)=h (5)=1.5h (1)=h (4)=2h (2)=h (3)=3(2) h (n )长度N =7h (0)=- h (6)=3h (1)=- h (5)=- 2h (2)=-h (4)=1h (3)=0试分别说明它们的幅度特性和相位特性各有什么特点。
2. 已知第一类线性相位FIR 滤波器的单位脉冲响应长度为16, 其16个频域幅度采样值中的前9个为:H g (0)=12, H g (1)=8.34, H g (2)=3.79, H g (3)~H g (8)=0根据第一类线性相位FIR 滤波器幅度特性H g (ω)的特点, 求其余7个频域幅度采样值。
3. 设FIR 滤波器的系统函数为求出该滤波器的单位脉冲响应h (n ), 判断是否具有线性相位, 求出其幅度特性函数和相位特性函数。
4. 用矩形窗设计线性相位低通FIR 滤波器, 要求过渡带宽度不超过π/8 rad 。
希望逼近的理想低通滤波器频率响应函数H d (e j ω)为(1) 求出理想低通滤波器的单位脉冲响应h d (n );(2) 求出加矩形窗设计的低通FIR 滤波器的单位脉冲响应h (n )表达式, 确定)9.01.29.01(101)(4321−−−−++++=z z z z z Hα与N之间的关系;(3)简述N取奇数或偶数对滤波特性的影响。
5.用矩形窗设计一线性相位高通滤波器,要求过渡带宽度不超过π/10 rad。
希望逼近的理想高通滤波器频率响应函数H d(e jω)为(2)用h1(n)和h2(n)分别构成的低通滤波器是否具有线性相位?群延时为多少?题8图9.对下面的每一种滤波器指标,选择满足FIRDF设计要求的窗函数类型和长度。
(1)阻带衰减为20 dB,过渡带宽度为1 kHz,采样频率为12 kHz;(2)阻带衰减为50 dB,过渡带宽度为2 kHz,采样频率为20 kHz;(3)阻带衰减为50 dB,过渡带宽度为500 Hz,采样频率为5 kHz。
FIR滤波器设计和DSP实现
![FIR滤波器设计和DSP实现](https://img.taocdn.com/s3/m/a13a9e69cec789eb172ded630b1c59eef8c79a2c.png)
FIR滤波器设计和DSP实现FIR滤波器(Finite Impulse Response Filter)又称为有限脉冲响应滤波器,是一种数字滤波器,其脉冲响应为有限长度。
FIR滤波器具有稳定性、线性相位等优点,广泛应用于数字信号处理(DSP)中。
1.窗函数法:窗函数法是FIR滤波器设计中最简单、最常用的方法之一、设计步骤主要有:选择合适的窗函数(如矩形窗、汉宁窗、哈宁窗等);确定滤波器的截止频率和通带或阻带波动范围;根据窗函数的特性进行滤波器系数的计算。
窗函数法设计得到的滤波器具有较好的频域响应,并且易于实现。
2.频率采样法:频率采样法是通过对滤波器在频域中的理想特性进行采样,然后进行逆变换得到滤波器系数。
设计步骤主要有:确定理想滤波器的频率响应;进行频率采样,得到取样频率上的实际频率响应;对实际频率响应进行逆变换,得到滤波器系数。
频率采样法设计的滤波器可以满足设计要求,但是需要进行逆变换,计算复杂度较高。
3.最小二乘法:最小二乘法是通过求解最小化均方差的优化问题,得到最佳滤波器系数。
设计步骤主要有:建立最小二乘优化问题的数学模型;对数学模型进行求解,得到最佳滤波器系数。
最小二乘法能够得到较好的滤波器性能,并且不需要进行逆变换,计算复杂度相对较低。
1.将滤波器的系数存储在系数寄存器中;2.将输入信号与相应的系数进行乘法运算;3.将乘法运算的结果累加得到输出信号;4.将输入信号和系数向右移动一个位置;5.重复步骤2-4,直到滤波器输出满足要求。
DSP实现可以采用硬件方法,如使用专用的FPGA或ASIC实现滤波器的计算单元;也可以采用软件方法,在DSP芯片上运行相应的滤波算法代码。
对于较复杂的滤波器设计,可以使用专门的滤波器设计软件进行设计和实现。
综上所述,FIR滤波器的设计和实现是数字信号处理中的重要内容,不同的设计方法和实现方式可以根据具体需求选择。
设计一个合适的FIR 滤波器可以满足信号处理的要求,并且在DSP实现中能够提高系统的运算效率和性能。
第5章 有限长单位脉冲响应(FIR)滤波器的实现
![第5章 有限长单位脉冲响应(FIR)滤波器的实现](https://img.taocdn.com/s3/m/6f7f65397375a417866f8f5b.png)
17
4.
h(n)奇对称,h(n)=-h(N-1-n),N为偶数
j N N 1 1 j 2 2 2
He
e
N 1 2hn sin n n 0 h(n) 2
3 0 1 2 4 5
h(n) 奇对称
图5.1.1 线性相位特性
8
5.1.2 线性相位FIR滤波器的幅度特性
对于线性相位FIR 滤波器h(n)有奇对 称和偶对称两种情 况,且每种情况包 含了N为奇数和偶 数,所以共分四种 情况:
h(n) h(n)
0
1
2
3 4
5
6ห้องสมุดไป่ตู้
n
0
1
2
3
4
5
n
(a) h(n) h(n)
(b)
4 1 2 3
16
N 1 2 H c(n) sin n n 1 所以 N 1 n c ( n) 2h 2
由于 对这些点也奇对称,有
点呈奇对称,所以 。
由于 时, 相当 于H(z)在 处有两个零点,不能用于 的滤波器设计,故不能用作低通、高通和带阻滤波器的设计。
( )
式中为常数,表示此时通过这一系统的各频率分量的时
延; 系统的群时延为:
d ( ) g d
5
线性相位FIR滤波器的DTFT为
H e j h n e jn H e j ( ) H e j
5
6
3
4
5
n
0
1
2
n
(c)
(d)
图5.1.2
线性相位FIR滤波器h(n)的四种对称形式
数字信号处理有限脉冲响应数字滤波器的设计
![数字信号处理有限脉冲响应数字滤波器的设计](https://img.taocdn.com/s3/m/78efc6132a160b4e767f5acfa1c7aa00b42a9d5e.png)
下面推导与证明满足第一类线性相位旳条件是: h(n)是实序列且对(N-1)/2偶对称,即
h(n)=h(N-n-1)
(7.1.5)
满足第二类线性相位旳条件是:h(n)是实序列且对 (N-1)/2奇对称,即
h(n)=-h(N-n-1)
(7.1.6)
12/30/2023
第7章 有限脉冲响应数字滤波器的设计
12/30/2023
第7章 有限脉冲响应数字滤波器的设计
12/30/2023
第7章 有限脉冲响应数字滤波器的设计
12/30/2023
第7章 有限脉冲响应数字滤波器的设计
2. 线性相位FIR滤波器幅度特征Hg(ω)旳特点 1) h(n)=h(N-n-1),N=奇数
按照(7.1.8)式,幅度函数H g(ω)为
假如θ(ω)满足下式:
θ(ω)=θ0-τω,θ0是起始相位
(7.1.4)
严格地说,此时θ(ω)不具有线性相位,但以上两
种情况都满足群时延是一种常数,即
12/30/2023
d ( ) d
第7章 有限脉冲响应数字滤波器的设计
也称这种情况为线性相位。一般称满足(7.1.3)式是 第一类线性相位;满足(7.1.4)式为第二类线性相位。
z- 1
z- 1
z- 1
h(0) y(n)
-1 h(1)
-1 z- 1 h(2)
-1 z- 1
-1 z- 1
N=奇 数 h((N- 1)/2)
图7.1.3 第二类线性相位网络构造
12/30/2023
第7章 有限脉冲响应数字滤波器的设计
7.2 利用窗函数法设计FIR滤波器
设希望设计旳滤波器传播函数为Hd(ejω),hd(n)是与 其相应旳单位脉冲响应,所以
FIR数字滤波器的基本原理及设计方法
![FIR数字滤波器的基本原理及设计方法](https://img.taocdn.com/s3/m/e564a927f121dd36a32d82dd.png)
第一章 FIR 数字滤波器的基本原理及设计方法有限长单位脉冲响应数字滤波器(FIRDF ,Finite Impulse Response Digital Filter )的最大优点是可以实现线性相位滤波。
而IIRDF 主要对幅频特性进行逼近,相频特性会存在不同程度非线性。
我们知道,无失真传输与滤波处理的条件是,在信号的有效频谱范围内系统幅频响应为常数,相频响应具有线性相位。
在数字通信和图像处理与传输等应用场合都要求滤波器具有线性相位特性。
另外FIRDF 是全零点滤波器,硬件和软件实现结构简单,不用考虑稳定性问题。
所以,FIRDF 是一种很重要的滤波器,在数字信号处理领域得到广泛应用。
当幅频特性指标相同时,FIRDF 的阶数比IIRDF 高的多,但是同时考虑幅频特性指标和线性相位要求时,IIRDF 要附加复杂的相位校正网络,而且难以实现严格线性相位特性。
所以,在要求线性相位滤波的应用场合,一般都用FIRDF 。
FIRDF 的设计方法主要有两类:第一类是基于逼近理想滤波器特性的方法,包括窗函数法,频率采样法和等波纹最佳逼近法。
第二类是最优设计法,我们主要讨论第一类设计法,侧重与滤波器的设计方法和相应的MATLAB 工具箱函数的介绍。
FIR 数字滤波器的设计方法有窗函数法、频率采样法和基于firls 函数和remez 函数的最优化方法。
MATLAB 语言中的数字信号处理工具箱,提供了一些滤波器的函数,使FIR 滤波器的运算更加方便和快捷。
在MATLAB 中提供的滤波函数有fir1(),此函数以经典的方法实现加窗线性相位FIR 数字滤波器设计,可以设计出低通、高通、带通和带阻滤波器;fir2函数设计的FIR 滤波器,其滤波的频率特性由矢量f 和m 决定,f 和m 分别为滤波器的期望幅频响应的频率相量和幅值相量。
Firls()和remez()的基本格式用于设计I 型和II 型线性相位FIR 滤波器,I 型和II 型的区别是偶函数还是奇函数。
有限长单位脉冲响应FIR滤波器的设计方法
![有限长单位脉冲响应FIR滤波器的设计方法](https://img.taocdn.com/s3/m/b5bc235ea1c7aa00b42acb50.png)
1 e jN 1 e j
j
e
N 1 2
sin(N
/
2)
sin( / 2)
用幅度函数和相位函数来表示,则有
W (e j ) WR ( )e j
其线性相位部分
则是表示延时一半长度
对频响起作用的是它的幅度函数
WR
sinN / 2 sin / 2
矩形窗函数及其幅度函数(见P94图4.4)
§4.2 窗口设计法(时域)
• 窗函数设计方法的基本思想 • 矩形窗及其对滤波器的频响影响 • 窗函数设计法(步骤举例)
§4.2 窗口设计法(时域)
如果希望得到的滤波器的理想频率响应为 FIR滤波器的设计就在于寻找一个传递函数
,那么
去逼近
,逼近方法有三种:
窗口设计法(时域逼近)
频率采样法(频域逼近)
,问题是怎样用一个有限长的序列去近似无限长的hd(n)。最 简单的办法是直接截取一段 hd(n) 代替 h(n) 。这种截取可以 形象地想象为h(n)是通过一个“窗口”所看到的一段hd(n), 因此 ,h(n)也可表达为hd(n)和一个“窗函数”的乘积,即
h(n)=w(n) hd(n)
在这里窗口函数就是矩形脉冲函数RN(n),当然以后我们 还可看到,为了改善设计滤波器的特性,窗函数还可以有其 它的形式,相当于在矩形窗内对hd(n)作一定的加权处理。
理想频响也可以写成幅度函数和相位函数的表示形式
Hd(ejω)=Hd(ω)e-jωα
其中幅度函数为
1
Hd () 0
| | c c | |
两个信号时域的乘积对应于频域卷积,所以有
H
(e
j
)
Hd
(e
FIR数字滤波器的设计
![FIR数字滤波器的设计](https://img.taocdn.com/s3/m/cdac3380ce2f0066f4332203.png)
第九章 FIR 数字滤波器的设计有限长单位脉冲响应滤波器的特点:线性相位滤波. §1. 线性相位FIR 数字滤波器、 特点 1. 线性相位FIRDF 含义设滤波器的脉冲响应为()h n , 长为N . 则10()()N j j n H e h n e ωω--==∑,再表成()()()j j g H e H e ωθωω-=其中()g H ω(可正负,|()|0j H e ω≠≥)称为幅度特性函数,()θω称为相位特性函数.注: 不是 arg[()]()()j j j j H e H e H e e ωωω=如4()()x n R n =的3/2sin(2)()sin(/2)j j X e e ωωωω-=它的()g H ω为sin(2)sin(/2)ωω, ()θω为32ω.若()θωωτ=-,τ是与采样点数N 有关的常数,则称滤波器是线性相位的.系统的群时延定义为:()d ()/d τωθωω=-. 对线性相位滤波器, 群时延是常数.2. 线性相位的条件(1) ()h n 的特点 设滤波器是线性相位的, 则应有10()()()N j j n j g n H e h n e H e ωωωτω---===∑即1()(cos sin )()(cos sin )N gn h n n j n Hj ωωωωτωτ-=-=-∑从而有1010()cos ()cos ()sin ()sin N g n N g n H h n n H h n nωωτωωωτω-=-===∑∑上面二式相除且整理为11()cos sin ()sin cos N N n n h n n h n n ωωτωωτ--===∑∑移项化简为1()sin ()0N n h n n ωτ-=-=∑求得一种情形:当()sin ()h n n ωτ-关于12N τ-=奇对称时,上式为零. ()h n ⇒是偶对称的. 即满足()(1),01h n h N n n N =--≤≤-.此时()(1)/2N θωω=--.在()h n 偶对称的条件下, 再分13N = 和 12N =(2) ()g H ω的特点数学推导见参考文献[1], 下面只给出结论. 当N 是奇数时,0 612-0.100.10.25 611-0.10.10.2(1)/2111()2cos 22N g n N N H h h n n ωω-=--⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭∑当N 是偶数时,(1)/2111()2cos 22N g n N H h n n ωω-=-⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭∑所以在()h n 偶对称的条件下, 滤波器有两种形式0.51 1.5200.5100.51 1.52-1-0.500.5113N =12N =(对13=N ,是低通滤波器, 可转换成高通,带通,带阻滤波器)(对12=N 也是低通滤波器,但不可转换成高通,带阻滤波器).(3) 零点分布特点 (()h n 偶对称) 110()()(1)----====--∑∑N N nn n n H z h n zh N n z1(1)(1)1()()N N m Nm h m z z H z -------===∑ 由此可得, 对0k z ≠, 若()0=k H z , 则1()0-=kH z .由()h n 是实数列, 得()H z 是实系数的, 所以, 有三种情形的零点. 例如 hn=[1 3 5 3 1]; zplane(hn,1);(4) 极点均在0z =, 且为1N -阶的, 系统必稳定. 因为 11()[(0)(1)]/N N H z h z h N z --=++-.(5)网络结构特点由()h n 对(1)/2=-n N 的对称性, 推得 当N 为偶数时,-101-1-0.50.514Real PartI m a g i n a r y P a r t/21(1)0()()[]N nN n n H z h n zz -----==+∑当N 为奇数时,1(1)/21(1)21()()[]2N N nN n n N H z h n z zh z--------=-⎛⎫=++ ⎪⎝⎭∑例如当4=N 时,1(3)0()()[]---==+∑n n n H z h n z z312(0)[1](1)[]---=+++h z h z z . 可有如下网络结构.直接型 省了2个乘法器当5=N 时, 情形类似, 见书P185. §2 用窗函数设计FIR 数字滤波器 线性相位的FIR 时域要求是()h n 对称性. 本节讨论如何在幅频特性上逼近期望滤波器.1-z()y n ()x n 1z -(0)h 1z -1z -(1)h (2)h (3)h ()x n ()y n (0)h (1)h 1-z 1-z以低通为例. 设()j d H e ω, 则-1()()d 2=⎰j j n d h n H e e πωωπωπ ()j d H e ω一般为片断函数, 故()d h n 无限长,需处理.1. 基本方法(1) 提出希望频率响应函数 线性相位, 具有片断特点, 即||()0||-⎧≤⎪=⎨<≤⎪⎩j j cd ce H e ωτωωωωωπ(2) 算出O0.25-π|()|j d H e ω0.25πω1π-π-1()()d 2=⎰j j nd h n He e πωωπωπ1d 2--=⎰c cj j ne e ωωτωωωπ s i n (())()-=-c n n ωτπτ(无限长)(3) 加窗()w n ,长N , 得()()()=d h n h n w n (*)要线性相位, 就要()h n 关于(1)/2-N 偶对称, 而()d h n 关于τ偶对称, 故要求10203000.510102030-0.100.10.20.3(1)/2=-N τ所以要求()w n 关于(1)/2=-N τ偶对称.10203000.51102030-0.10.10.20.3再回过来检验()j H e ω是否满足精度要求.1230.51O0.25-π|()|j d H e ω0.25πω1π-π()j H e ω00.51⇒若基本满足, 则依截取的()h n , 制硬件, 编软件.2. 窗函数法的性能分析由(*)式知, 取点一样时, 逼近性质与窗形(值)有关. 下面分析当()()=N w n R n 时的频率性质. 由()()()=d R h n h n w n , 得1()()()2=*j j j d R H e H e W e ωωωπ(1)/2s i n (/2)()F T [()]s i n (/2)--==j j N R RN W e w n e ωωωω()-=j j Rg W e e ωωτ. 其中sin(/2)()sin(/2)=j Rg N W e ωωω,12-=N τ. 代入卷积()1()()()d 2--=⎰j j j d R H e H e W e πωθωθπθπ ()1()e ()e d 2---=-⎰j j dg Rg H W πθτωθτπθωθθπ1e ()()d 2--=-⎰j dg Rg H W πωτπθωθθπ1e ()()2-=*j dg Rg H W ωτωωπ()e ()=j g H θωω,故1()()()2=*g dg Rg H H W ωωωπ,(1)()2--=N ωθω. 相位是线性的. 实际幅度=希望幅度*窗函数幅度. 卷积=对每个ω, 求一积分, 其值记为()g H ω.故有如下图形演示.O -c ω()dg H θωθ1π-πcω-2.5-2-1.5-1-0.50.511.52-100102030θO2/Nπ2/-N π()dg W θ2Nπ⨯主瓣宽度2/Nπ旁瓣宽度2/右图为当/4,31c N ωπ==时,|()||()|j g H H e ωω=的幅频图.阻带最小衰减21dB, 一般不 满足实际工程需要.-1.5-1-0.50.51 1.50.51w-...+147697764.69733060586876851814058 cos(.50000000000000000000000000000000 w)23-2.5-2-1.5-1-0.500.511.52-100102030O ()dg H θc ωω=θ1π-π()-Rg W ωθO|()/(0)|dg dg H H ωω122/B N∆π=⨯加窗后滤波器过渡带宽窗函数的频域主瓣宽00.250.40.60.81-80-60-40-200≈过渡带宽0.13过渡带宽4/310.414/310.13π≈=⇔=(归一化), 这可以通过增加N 来减小. 这是窗函数设计的一个 指标. 3.典型窗函数下面给出各种窗函数的表达式、时域波形、幅度特性,以及理想滤波器加窗后的波形和幅度特性. 以下均设低通滤器(e )j d H ω的/2,31c N ωπ==. (1) 矩形窗()R N w R n =, 已求得sin(/2)()sin(/2)=j Rg N W e ωωω,12-=N τ矩形波形 矩形波形的幅频特性1020300.5100.51-60-40-200%矩形窗时域波形N=31; w=rectwin(N);n=0:30;subplot(1,2,1); stem(n,w);axis([0 33 0 1.3]);grid on ; %矩形窗频域特性[hw,w]=freqz(w,1);subplot(1,2,2);13dBn α=-旁瓣峰值plot(w/pi,20*log10(abs(hw)/abs(hw(1)))); axis([0 1 -60 0]);grid on;pause;%理想滤波器加窗后采样序列wc=pi/2;N=31;n=0:30;t=(N-1)/2;hdn=sin(wc*(n-t))./(pi*(n-t));hdn(16)=0.5;%补点;subplot(1,2,1);stem(n,hdn);axis([0 33 -0.2 0.8]);grid on; %滤波器加窗后的频域特性[hw,w]=freqz(hdn,1);subplot(1,2,2);plot(w/pi,20*log10(abs(hw)/abs(hw(1)))); axis([0 1 -60 8]);grid on;理想滤波器时域采样 加窗后滤波器的频率特性102030-0.200.20.40.600.51-60-40-20过渡带宽度4/31,B ∆π=最小衰减21dB s α=-. 当21,31,63N =时矩形窗的幅频特为0.10.2-50-40-30-20-10000.10.2-50-40-30-20-10000.10.2-50-40-30-20-1004/B N ∆π=与N 成反比, 要改21dB s α=-,需另选.(2) 三角窗(Bartlett Window)21012()212112B n N n N w n n N n N N -⎧≤≤⎪⎪-=⎨-⎪-<≤-⎪-⎩2(1)/22sin(/4)(e )esin(/2)j j N B N W N ωωωω--⎡⎤=⎢⎥⎣⎦22sin(/4)()sin(/2)B N W N ωωω⎡⎤=⎢⎥⎣⎦01020300.5100.51-100-50-250102030-0.200.20.40.600.51-40-20各指标为:25dB,2(4/),25db n s B N α∆πα=-==-. (3) 升余弦窗(汉宁窗, hanning window)2()0.51cos ()1hn N n w n R n N π⎡⎤⎛⎫=- ⎪⎢⎥-⎝⎭⎣⎦,010203000.5100.51-100-50102030-0.200.20.40.600.51-80-60-40-200各指标为:31dB,2(4/),44db n s B N α∆πα=-==-(4) 改进升余弦窗(海明窗, hanning window)2()0.540.46cos ()1hm N n w n R n N π⎡⎤⎛⎫=- ⎪⎢⎥-⎝⎭⎣⎦, 41dB,2(4/),53db n s B N α∆πα=-==-01020300.5100.51-100-50102030-0.200.20.40.600.51-80-60-40-200(5) 布莱克曼窗(blackman window)24()0.420.5cos 0.08coscos ()11bl N n n w n R n N N ππ⎡⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦, 01020300.5100.51-100-60102030-0.200.20.40.600.51-100-50各指标为: 57dB,2(6/),74db n s B N α∆πα=-==-.为便于选择使用, 将5种窗函数基本参数列于下表.类型 窗函数的 旁瓣峰值n α过渡带宽度B ∆加窗后滤波器的 阻带最小衰减s αrectwin -13 4π/N -21 bartlet 三角 -25 8π/N -25 hanning -31 8π/N -44 hamming -41 8π/N -53 blackman-5712π/N-74如阻带最小衰减60dB s α≥,过渡带宽度0.1B ∆π≤. 则选布莱克曼窗, 且由12/0.1N ππ≤, 得120N =. 事实上, 还有很多窗形可供选择. 见P193. 4.设计步骤(1) 由阻带指标选窗型w , 由过渡带宽度选点数N , (2) 构造要逼近的()j d H e ω, 构造c ω(对低通)应使()(0)/26dB g c g H H ω≈⇔(3) 计算-1()()d 2j j n d d h n H e e πωωπωπ=⎰ (4) 加窗()()()d h n h n w n =.例1 用窗函数法设计线性相位高通FIRDF, 指标为 通带截止频率:/2p ωπ=; 通带最大衰减:1dB p α=. 阻带截止频率:/4s ωπ=;阻带最小衰减:40dB s α=解(1)根据阻带指标, 可选汉宁和海明窗, 我们选海明窗, 由84p s B N ππ∆ωω=≤-=, →32N ≥, 对高通滤波器, 必须取奇数33N =.故有 33()0.540.46cos ()16hm n w n R n π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦. (2) 16τ=,/229/66c p B ωω∆π=-=, 则要逼近()00j j c d ce H e ωτωωωπωω-⎧≤≤=⎨≤<⎩(全通-低通) 1O πωp ωs ω|()|j H e ω(3) 求()d h n sin(())sin(())()()c n n n n ωτπτπτπτ--=--- 2966sin[()](16)()n n n πτδπτ-=---表示全通滤波器 低通滤波器 (4) 加窗 ()()()d h n h n w n =(见书, 略) 上述过程可用Matlab 中的命令fir1来实现. 格式1: hn=fir1(N,wc,’ftype ’,window(N+1)); ftype 可选high, stop; window 窗名, 默认hamming. 格式2: hn=fir1(N,wc); 阶数为N, 6dB 截止频率wc16()FT[(16)]j j H en eωωδ-=-=(0~1)的低通滤波器.(注h(n)的长度为N+1)当wc=[wc1,wc2]时, 为带通滤波器.例如上例的命令为(注设计时,对 作归一化)wc=29/66; N=32;%N=h(n)的长度-1hn=fir1(N,wc, 'high'); subplot(1,2,1);n=0:32; stem(n,hn);axis([0 32 -0.4 0.6]);grid on; [hw,w]=freqz(hn,1); subplot(1,2,2);plot(w/pi,20*log10(abs(hw)));axis([0 1 -80 5]);grid on; 注对高通,带阻,阶数必须为偶数.102030-0.4-0.200.20.400.51-80-60-40-200例2 用窗函数法设计一个FIR 带通滤波器, 指标为 阻带下截止频率:0.2ls ωπ=;阻带最小衰减60dB s α= 通带下截止频率:0.35lp ωπ=;通带最大衰减1dB p α= 通带上截止频率:0.65up ωπ=; 阻带上截止频率:0.8us ωπ=;解 由阻带衰减指标, 选blackman 窗, 由过度带宽120.350.20.15lp ls B Nπ∆ωωπππ=≤-=-=, 得80N =, 通带区间约定用c ω表示, 计算如下,22c lp up B B ∆∆ωωωπ⎡⎤=-+⎢⎥⎣⎦程序命令为wls=0.2*pi;wlp=0.35*pi;wup=0.65*pi; B=wlp-wls; N=ceil(12*pi/B); wp=[wlp/pi-6/N,wup/pi+6/N];hn=fir1(N-1,wp,blackman(N));subplot(1,2,1); n=0:79; stem(n,hn); axis([0 80 -0.4 0.4]);grid on;[hw,w]=freqz(hn,1);subplot(1,2,2); plot(w/pi,20*log10(abs(hw))); axis([0 1 -100 5]);grid on;20406080-0.4-0.200.20.400.20.40.60.81-100-80-60-40-200例3 用窗函数法设计FIR 低通滤波器, 实现对模拟信号采样后进行数字低通滤波, 对模拟信号的指标通带截止频率:2kHz p f =; 阻带截止频率:3kHz s f =;阻带最小衰减:40dB s α=;采样频率:10kHz s F =. 选合适窗函数, 求出()h n ,并画出幅频衰减曲线和相频特性曲线.解 (1) 转换成数字频率为 通带数字截止频率:240000.410000p p sf F ππωπ===;阻带数字截止频率: 260000.610000s s s f F ππωπ===;阻带最小衰减:40dB;过渡带宽度:0.2s p B ωωπ=-=.(2) 由衰减:40dB, 选hamming 窗, 由8N B π≤,得840N B N π≥⇒=.(3) 确定/20.40.10.5c p B ωωπππ=+=+=, 命令如下:fp=2000;fs=3000;Fs=10000; wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;B=ws-wp;N=ceil(8*pi/B);wc=(wp+B/2)/pi; hn=fir1(N-1,wc);n=0:N-1;subplot(1,2,1);stem(n,hn,'.'); grid on; [hw,w]=freqz(hn,1); subplot(1,2,2);plot(w/pi,20*log10(abs(hw)));grid on; axis([0 1 -100 4]);0.20.40.60.81-100-80-60-40-200010203040-0.200.20.40.6w=-2.2:0.01:2.2;wg=sin(31*w/2)./sin(w/2);wg(221)=31;plot(w,wg);axis([-2.5 2.2 -10 32]);%理想滤波器的频域特性.ezplot(int('sin((w-x)*16)/sin((w-x)/2)/6.28',-pi/4,pi/4),[-1.7 1.7]);加窗后的幅度函数的频域特性.附录1对称性数据P183n13=0:1:12;%P183h13=[-0.05 -0.03 0 0.08 0.16 0.25 0.28 0.25 0.16 0.08 0 -0.03 -0.05]; subplot(1,2,1);stem(n13,h13);axis([0 13 -0.1 0.3])n12=[0:1:11];h12=[-0.05 -0.03 0 0.08 0.16 0.25 0.25 0.16 0.08 0 -0.03 -0.05]; subplot(1,2,2);stem(n12,h12);axis([0 13 -0.1 0.3])2对称性数据P186N=31;n=0:30;hd=sin(0.25*pi*(n-15))./(pi*(n-15));hd(16)=0.25;subplot(1,2,1);stem(n,ones(1,N));axis([0 31 0 1.3]); subplot(1,2,2);stem(n,hd);axis([0 31 -0.1 0.3]);plot(n,hd); axis([0 30 -0.1 0.27]); %wc=0.25pi加图hk=fft(hd,128); k=0:63; plot(k/64*pi,abs(hk(1,1:64)));axis([0 pi 0 1.1])。
有限脉冲响应数字滤波器设计实验报告
![有限脉冲响应数字滤波器设计实验报告](https://img.taocdn.com/s3/m/c95c42007cd184254b35355c.png)
成绩:《数字信号处理》作业与上机实验(第二章)班级:学号:姓名:任课老师:完成时间:信息与通信工程学院2014—2015学年第1 学期第7章有限脉冲响应数字滤波器设计1、教材p238:19.设信号x(t) = s(t) + v(t),其中v(t)是干扰,s(t)与v(t)的频谱不混叠,其幅度谱如题19图所示。
要求设计数字滤波器,将干扰滤除,指标是允许|s(f)|在0≤f≤15 kHz频率范围中幅度失真为±2%(δ1 = 0.02);f > 20 kHz,衰减大于40 dB(δ2=0.01);希望分别设计性价比最高的FIR和IIR两种滤波器进行滤除干扰。
请选择合适的滤波器类型和设计方法进行设计,最后比较两种滤波器的幅频特性、相频特性和阶数。
题19图(1)matlab代码:%基于双线性变换法直接设计IIR数字滤波器Fs=80000;fp=15000;fs=20000;rs=40;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;Rp=-20*log10(1-0.02);As=40;[N1,wp1]=ellipord(wp/pi,ws/pi,Rp,As);[B,A]=ellip(N1,Rp,As,wp1);[Hk,wk1]=freqz(B,A,1000);mag=abs(Hk);pah=angle(Hk);%窗函数法设计FIR 数字滤波器 Bt=ws-wp;alph=0.5842*(rs-21)^0.4+0.07886*(rs-21); N=ceil((rs-8)/2.285/Bt); wc=(wp+ws)/2/pi;hn=fir1(N,wc,kaiser(N+1,alph)); M=1024;Hk=fft(hn,M); k=0:M/2-1;wk=(2*pi/M)*k;%画出各种比较结果图 figure(2);plot(wk/pi,20*log10(abs(Hk(k+1))),':','linewidth',2.5); hold onplot(wk1/pi,20*log10(mag),'linewidth',2); hold offlegend('FIR 滤波器','IIR 滤波器');axis([0,1,-80,5]);xlabel('w/\pi');ylabel('幅度/dB'); title('损耗函数'); figure(3)plot(wk/pi,angle(Hk(k+1))/pi,':','linewidth',2.5); hold onplot(wk1/pi,pah/pi,'linewidth',2); hold offlegend('FIR 滤波器','IIR 滤波器');xlabel('w/\pi');ylabel('相位/\pi'); title('相频特性曲线');(2)两种数字滤波器的损耗函数和相频特性的比较分别如图1、2所示:图1 损耗函数比较图 图2 相频特性比较图0.10.20.30.40.50.60.70.80.91-80-70-60-50-40-30-20-100w/π幅度/d B损耗函数FIR 滤波器IIR 滤波器0.10.20.30.40.50.60.70.80.91-1-0.8-0.6-0.4-0.200.20.40.60.81w/π相位/π相频特性曲线FIR 滤波器IIR 滤波器(3)IIR数字滤波器阶数:N=5FIR数字滤波器阶数:N=36(4)运行结果分析:由图2及阶数可见,IIR阶数低得多,但相位特性存在非线性失真,FIR具有线性相位特性。
数字信号处理实验(吴镇扬)答案4
![数字信号处理实验(吴镇扬)答案4](https://img.taocdn.com/s3/m/317d104e51e79b89680226e7.png)
实验四 有限长单位脉冲响应滤波器设计朱方方 03 通信四班(1) 设计一个线性相位FIR 高通滤波器,通带边界频率为π,阻带边界频率为π,阻带衰减不小于40dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
解:(1)求数字边界频率:0.6 , 0.4c r ωπωπ== (2)求理想滤波器的边界频率:0.5n ωπ=(3)求理想单位脉冲响应:[]d sin ()sin[()]()()1n n n n n n h n n παωααπαωαπ⎧---≠⎪⎪-=⎨⎪-=⎪⎩(4) 选择窗函数。
阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤波器的过渡带宽为ππ=π,因此6.210.231 , 152N N N ππα-=⇒=== (5) 求FIR 滤波器的单位脉冲响应h(n):[]31d sin (15)sin[0.5(15)]1cos ()15()()()15(15)115n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪ ⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序:clear;N=31; n=0:N-1;hd=(sin(pi*(n-15))-sin*pi*(n-15)))./(pi*(n-15)); hd(16)=; win=hanning(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB');grid;title('FIR 高通滤波器,hanning 窗,N=31');51015202530nh (n )FIR 高通滤波器的单位脉冲响应h(n)0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 高通滤波器,hanning 窗,N=31分析:由图知阻带衰减最小值大于40,满足要求。
课后习题及答案_第7章有限脉冲响应数字滤波器设计--习题答案
![课后习题及答案_第7章有限脉冲响应数字滤波器设计--习题答案](https://img.taocdn.com/s3/m/41b96d2fed630b1c59eeb550.png)
∑ h ( n )e
n =0
N −1
− j ωm
1 [1 + 0.9e − jω + 2.1e − j2ω + 0.9e − j3ω + e − j4ω ] 10 1 j2ω (e + 0.9e jω + 2.1 + 0.9e − jω + e − j2ω )e − j2ω 10
1
=
1 ( 2.1 + 1.8 cos ω + 2 cos 2ω )e − j2ω 10
其中, a=(N-1)/2=10。 (2) 由 Hd(ejω)求得 hd(n):
0
|ω | π
π 4
π <| ω | 4
π sin (n − 10) π − 4 1 4 hd (n) = e − jω10 e jωn dω = ∫ −π / 4 2π π(n − 10)
(3) 加窗得到 FIR 滤波器单位脉冲响应 h(n): · 升余弦窗:
4π N
H(ejπ)=0,
不能实现高
π , 即 N≥40。取 N=41。 10
hd (n) =
1 π H d (e jω )e jω n dω ∫ −π 2π ωc + B 1 −ωc = e − jω a e jω m dω + ∫ω e − jω a e jω n dω ∫ ω − ( + B ) c 2π c
4
和[h2(n)]也可以得到同样的结论。
jθ ( ω ) jω 设 H1 (e ) = FT[h1 (n)] = H 1g (ω )e 1
H 2 (e jω ) = FT[h2 (n)] = H 2g (ω )e jθ 2 (ω )
dsp实验报告-有限脉冲响应滤波器(FIR)实验
![dsp实验报告-有限脉冲响应滤波器(FIR)实验](https://img.taocdn.com/s3/m/891348760b1c59eef8c7b451.png)
实验四.数字信号处理算法实验实验4.1 :有限脉冲响应滤波器(FIR )算法实验一.实验目的1.掌握窗函数法设计FIR 滤波器的Matlab 实现,为CCS 提供滤波系数。
2.掌握采用C 语言在VC5509开发板上实现混频信号的FIR 滤波。
二.实验设备计算机,ICETEK-VC5509-A 实验箱及电源。
三.实验原理1. 窗函数法设计FIR 滤波器(详细理论请看《数字信号处理》原理书籍) 本实验要求:设计一个低通滤波器,通带截止频率fp=10kHz ,阻带截止频率fs1=22kHz ,阻带衰减ap=75dB ,采样频率fs=50kHz,计算出滤波系数fHn,并对混频信号(高频+低频正弦波)fIn 进行滤波,得输出波形fOut 。
解:过渡带宽度=fs1-fp=12kHz ;截止频率:f1=fp+(过渡带宽度)/2=16kHz f1对应的数字频率:Ω1=2πf1/fs=0.64π(rad) -理想低通滤波器单位脉冲响应:hd[n]=sin(0.64π(n-a))/(π(n-a)) 其中a=(N-1)/2 (n=0~N-1)-根据阻带衰减要求选择布莱克曼窗,窗函数长度N 为: N=5.98fs/过渡带宽度≈25则窗函数为:w[n]=0.42-0.5cos(2πn/24)+0.08cos(4πn/24) 滤波器脉冲响应为:h[n]=hd[n]w[n] (n=0~N-1) <1>-根据上面各式计算出h[n]。
2. FIR 滤波FIR 滤波器的差分方程为:1()()N i i y n h x n i -==-∑ <2>其中,h i ----滤波器系数;x(n)---滤波器的输入;y(n)--- 滤波输出。
根据公式<1><2>,得本例对应FIR 滤波器的差分方程为: y[n]=-0.001x[n-2]-0.002x[n-3]-0.002x[n-4]+0.01x[n-5]-0.009x[n-6]-0.018x[n-7]-0.049x[n-8]-0.02x[n-9] +0.11x[n-10]+0.28x[n-11]+0.64x[n-12] +0.28x[n-13]-0.11x[n-14]-0.02x[n-15]+0.049x[n-16]-0.018x[n-17]-0.009x[n-18]+0.01x[n-19] -0.002x[n-20]-0.002x[n-21]+0.001x[n-22] (n=0,1,2,...)采用线性缓冲区法(原理见备课笔记)解此差分方程,得FIR 滤波结果y(n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五有限长单位脉冲响应滤波器设计一、实验目的1、掌握用窗函数法、频率采样法以及优化设计法设计FIR滤波器的原理及方法,熟悉相应的MATLAB编程。
2、熟悉线性相位FIR滤波器的幅频特性和相频特性。
3、了解各种不同窗函数对滤波器性能的影响。
二、实验原理window=ones(1, N): 产生N点矩形窗,行向量。
window=hann(N): 产生N点汉宁窗,列向量。
window=hanning(N): 产生N点非零汉宁窗,列向量。
等价于去除hann(N+2)的第一个零元素和最后一个零元素,得到的N点非零窗函数。
window=hamming(N): 产生N点海明窗,列向量。
window=blackman(N): 产生N点布莱克曼窗,列向量。
window=kaiser(N, beta): 产生参数为beta的N点凯塞窗,列向量。
[M, Wd, beta, ftype]=kaiserord(f, a, dev, fs): 凯塞窗参数估计。
f为一组边界频率,最高频率为fs/2。
a为f中各个频带的幅度值,通带取1,阻带取0。
如果f中有2个元素,则形成3个频带,其中第1个和第3个是通带或阻带,第2个是过渡带,a中也有2个元素,指明第1个和第3个频带是通带还是阻带;如果f中有4个元素,则形成5个频带,其中1,3和5是通带或阻带,2和4是过渡带,a中有3个元素,指明1,3和5是通带还是阻带。
dev的维数与a相同,指明每个频带上的波动值。
fs为采样频率。
M为FIR滤波器的阶数,M=N-1。
Wd为归一化边界频率,等于数字边界角频率除以π,或者边界频率除以fs/2。
beta就是凯塞窗的参数β。
ftype为滤波器的类型。
b = fir1(M, Wd, 'ftype', window): 用窗函数法求FIR滤波器的系数b(单位脉冲响应)。
M为滤波器的阶数,M=N-1。
Wd为一组归一化边界频率,通带和阻带间隔分布,无过渡带;只有一个元素,表示低通或高通滤波器;有两个元素表示带通和带阻滤波器;有三个及以上元素,表示多带滤波器。
'ftype'表示滤波器类型,'high'表示高通滤波器,'stop'表示带阻滤波器,'DC-0'表示多带滤波器的第一个频带为阻带,'DC-1'表示多带滤波器的第一个频带为通带。
window为窗口类型,缺省为海明窗。
b = fir2(M, f, m, window): 用频率采样法求FIR滤波器的系数b。
M为滤波器的阶数,M=N-1。
f为一组归一化频率,第一个元素必须为0,最后一个元素必须为1(对应奈奎斯特频率,即采样频率的一半),中间的元素按升序排列。
m的维数与f相同,指明f中每个频率上的理想幅度。
window 为窗口类型,缺省为海明窗。
Fir2可以实现任意幅度特性的滤波器。
三、实验容1、用窗函数法设计一个线性相位FIR 高通滤波器,通带边界频率为0.7π,阻带边界频率为0.5π,要求阻带衰减不小于50dB ,窗函数从矩形窗、汉宁窗、海明窗和布莱克曼窗中选取,且要求滤波器的阶数最小。
给出该滤波器的单位脉冲响应h (n )的解析式,并用MATLAB 绘出时域波形和幅频特性。
2、用窗函数法设计一个线性相位FIR 带通滤波器,通带边界频率为3kHz 和7kHz ,阻带边界频率为2kHz 和9kHz ,采样频率为20kHz ,要求阻带衰减不小于40dB ,窗函数从矩形窗、汉宁窗、海明窗和布莱克曼窗中选取,且要求滤波器的阶数最小。
给出该滤波器的单位脉冲响应h (n )的解析式,并用MATLAB 绘出时域波形和幅频特性。
3、用窗函数法设计一线性相位FIR 带阻滤波器,通带边界频率为600Hz 和1400Hz ,阻带边界频率为700Hz 和1200Hz ,采样频率为4000Hz ,要求阻带衰减不小于50dB ,窗函数从矩形窗、汉宁窗、海明窗和布莱克曼窗中选取,且要求滤波器的阶数最小。
给出该滤波器的单位脉冲响应h (n )的解析式,并用MATLAB 绘出时域波形和幅频特性。
4、分别用矩形窗、汉宁窗、海明窗和布莱克曼窗设计FIR 低通滤波器,理想滤波器的边界频率为0.8π,N=51,用Fir1函数设计。
根据所设计滤波器的阻带最小衰减值确定实际阻带边界频率。
5、用频率采样法设计一个线性相位低通滤波器,N =40,通带边界频率为π/4,过渡带设置一个采样点|H (k )|=0.5,给出单位脉冲响应h (n )的序列值,并作出幅频响应。
6、用频率采样法设计一个线性相位高通滤波器,通带边界频率为2π/3,过渡带设置一个采样点|H (k )|=0.5,分别求N =31和N =32时的单位脉冲响应h (n )的序列值,并分别作出幅频响应。
7、用频率采样法设计一个多带线性相位滤波器,理想幅频特性如下图所示,N =50,过渡带设置一个采样点,过渡点的值设为0.5,窗函数选矩形窗。
给出该滤波器的单位脉冲响应h (n )的解析式,并用MATLAB 绘出时域波形和幅频特性。
0.10.20.30.40.50.60.70.80.9100.20.40.60.811.21.41.61.8ω/π|H d(e j ω)|理想滤波器的幅频特性四、实验结果与分析1. 解:求通带和阻带的数字边界频率:πωπω5.07.0r c ==,求理想高通滤波器的边界频率。
理想高通滤波器的边界频率是实际滤波器幅度函数正负肩峰频率的中心,但这里不知道正负肩峰的频率,因此用通带和阻带边界频率的中心近似:πωωω6.02n =+≈rc选择窗函数和窗口长度。
阻带衰减不小于50dB ,因此选择海明窗(其阻带衰减为53dB ,满足衰减要求)。
滤波器的过渡带宽为πωω2.0c =-r ,因此窗口长度为:..N Nππ=⇒=660233 线性相位延迟常数为:N α-==1162根据理想边界频率n ω和线性相位延迟常数α,求理想单位脉冲响应d ()h n :⎩⎨⎧=⎰+⎰=≠----=-----a n a n w a n a n an a n j a n j d nnnnd e d e n h )(])sin[(])sin[(1)()(][21)(πππωωπωωωπωωπ窗函数与理想单位脉冲响应相乘,得到线性相位FIR 低通滤波器的单位脉冲响应:⎩⎨⎧==≠-----=16)(*)16()]16(6.0sin[)]([s *)]16cos(46.054.0[164.0)()()(h n n R n n a n in n n d Nn h n w n ππππ时域波形:nh (n )幅频特性:频率/Hz幅度/d B线性相位高通滤波器FIR ,海明窗,N=33程序:N=33; n=0:1:N-1; wn=0.6*pi; a=(N-1)/2;hd=(sin(pi*(n-a))-sin((n-a)*wn))./(pi*(n-a)); hd(a+1)=0.4; win=hamming(N); h=win'.*hd; figure; stem(n,h); xlabel('n'); ylabel('h(n)'); grid;title('线性相位高通滤波器FIR 的单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure; plot(w/pi,H); axis([0 1 -100 0]); xlabel('频率/Hz'); ylabel('幅度/dB');title('线性相位高通滤波器FIR ,海明窗,N=33'); 2.解:求通带和阻带的数字边界频率:πωπωπωπω9.0,2.0,7.0,3.02121====r r c c求理想带滤波器的边界频率。
理想带通滤波器的边界频率是实际滤波器幅度函数正负肩峰频率的中心,但这里不知道正负肩峰的频率,因此用通带和阻带边界频率的中心近似:πωωωπωωω8.02,25.0222211c 1=+==+=r c r选择窗函数和窗口长度。
阻带衰减不小于40dB ,且阶数最小,因此选择汉宁窗(其阻带衰减为44dB ,满足衰减要求)。
滤波器的过渡带宽为,1.011c 1πωωω=-=∆rπωωω2.0222=-=∆c r ,选择较小过渡带宽,因此窗口长度为:31N 0.2N6.2=⇒=ππ线性相位延迟常数为:1521=-=N α 根据理想边界频率n ω和线性相位延迟常数α,求理想单位脉冲响应d ()h n :⎩⎨⎧=+=≠----=-----⎰⎰ααπωαωααπωωαωωωαωωωωωπn n n n n n j n j d d e d e n h )(])sin[(])sin[()()(12122112][21)( 窗函数与理想单位脉冲响应相乘,得到线性相位FIR 带通滤波器的单位脉冲响应:⎩⎨⎧==≠-----=15)15()]15(25.0sin[)]15(8.0sin[)]15cos(5.05.0[1555.0)()()(h n n n n n n d n h n w n ππππ 时域波形:51015202530nh (n )线性相位带通滤波器FIR 的单位脉冲响应h(n)幅频特性:-100-90-80-70-60-50-40-30-20-100频率/Hz幅度/d B线性相位带通滤波器FIR ,汉宁窗,N=31程序:N=31; n=0:1:N-1; w1=0.25*pi; w2=0.8*pi; a=(N-1)/2;hd=(0.5-0.5.*cos(pi/15*n)).*(sin(w2*(n-a))-sin(w1*(n-a)))./(pi*(n-a)); hd(a+1)=0.55; win=hanning(N); h=win'.*hd; figure; stem(n,h); xlabel('n'); ylabel('h(n)'); grid;title('线性相位带通滤波器FIR 的单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H));figure; plot(w/pi,H); axis([0 1 -100 0]); xlabel('频率/Hz'); ylabel('幅度/dB');title('线性相位带通滤波器FIR ,汉宁窗,N=31'); 3.解:求通带和阻带的数字边界频率:πωπωπωπω6.0,35.0,7.0,3.02121====r r c c求理想带滤波器的边界频率。