光谱分析原理及其方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光谱分析原理及其方法

摘要:在电磁辐射条件下,某种物质的某些粒子的能级发生改变,因而产生吸收、发射或散射辐射等行为,使电磁辐射的强度随波长而变化,从而能够定性、定量此种物质。根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析。其优点是灵敏,便宜,易操作,迅速。由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成。这种方法叫做光谱分析。做光谱分析时,可以利用发射光谱,也可以利用吸收光谱。这种方法的优点是非常灵敏而且迅速。某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来。本文从光谱分析的分类;光谱分析方法的原理,操作步骤以及样品制备;各种分析方法的应用和特点进行概述。并对光谱分析技术在化学领域中的重要作用做出探讨。

关键词:光谱分析;分子光谱;红外光谱;紫外光谱;核磁共振;原子光谱;原子荧光光谱

光谱分析在科学技术中有广泛的应用。例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析。在历史上,光谱分析还帮助人们发现了许多新元素。例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的。光谱分析对于研究天体的化学组成也很有用。十九世纪初,在研究太阳光谱时,发现它的连续光谱中有许多暗线。最初不知道这些暗线是怎样形成的,后来人们了解了吸收光谱的成因,才知道这是太阳内部发出的强光经过温度比较低的太阳大气层时产生的吸收光谱。仔细分析这些暗线,把它跟各种原子的特征谱线对照,人们就知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素。根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。分子光谱中常见的是红外光谱(IR)、紫外光谱(Uv-Vis)、核磁共振(NMR),核磁共振中常见的是氢核磁共振(1HNMR)和碳核磁共振(12CNMR)。(资料来源于百度百科)

1.分子光谱法

分子光谱法是由分子中电子能级,振动和转动能级的变化产生的,表现为带色谱。基于物质分子与电磁辐射作用时,物质内部发生了量子化的能级之间的跃迁,测量由此产生的反射,吸收或散射辐射的波长和强度而进行分析的方法,称为分子光谱分析法。如紫外可见分光光度法,分子荧光光谱法,红外及拉曼光谱法,核磁共振波谱法等[1]。

1.1紫外-可见分光光度法(Uv-Vis)

组成:光源、单色器、样品池、检测器。光源:①能提供连续的辐射;②光强度足够大;

③在整个光谱区内光谱强度不随波长有明显变化;④光谱范围宽;⑤使用寿命长,价格低。钨灯——可见光区320~2500nm,氢灯或氘灯——紫外光区195-375nm,U3010(碘钨灯、氘灯)波长范围190-900nm。单色器:包括狭缝、准直镜、色散元件。吸收池:玻璃——由于吸收紫外UV光,仅适用于可见光区;石英——适用于紫外和可见光区。检测器(将光信号转变为电信号的装置):光电管;光电倍增管;二极管阵列检测器。记录装置:讯号处理和显示系统。紫外可见分光光度法(Uv-Vis法)具有设备简单、适用性广、准确度和精密度高等特点。在有机化学、生物化学、食品检验、医疗卫生、环境保护、肿瘤诊断、生命科学等各个领域和科研生产工作中都已得到了广泛的应用。

1.1.1紫外-可见分光光度法原理

紫外可见分光光度法的定量分析基础是朗伯一比尔(Lambert—Beel-)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下:

A=abc

式中:A—吸光度;a—摩尔吸光系数;b—吸收介质的厚度;c—吸光物质的浓

紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长

长(频率小)的光线能量小,波长短(频率大)的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。

1.1.2紫外-可见光分光光度计操作步骤以及样品要求

操作规程:①打开仪器开关,仪器使用前应预热30分钟。②转动波长旋钮,观察波长显示窗,调整至需要的测量波长。③根据测量波长,拨动光源切换杆,手动切换光源。200-339nm使用氘灯,切换杆拨至紫外区;340nm-1000nm使用卤钨灯,切换杆拨至可见区。

④调T零在透视比(T)模式,将遮光体放入样品架,合上样品室盖,拉动样品架拉杆使其进入光路。按下“调0%”键,屏幕上显示“000.0”或“-000.0”时,调T零完成。⑤调100%T/ OA先用参比(空白)溶液荡洗比色皿2-3次,将参比(空白)溶液倒入比色皿,溶液量约为比色皿高度的3/4,用擦镜纸将透光面擦拭干净,按一定的方向,将比色皿放入样品架。合上样品室盖,拉动样品架拉杆使其进入光路。按下“调100%”键,屏幕上显示“BL”延时数秒便出现“100.0”(T模式)或“000.0”、“-000.0”(A模式)。调100%T/ OA完成。⑥测量吸光度:参照操作步骤③、步骤④。在吸光度(A)模式,参照步骤⑤调100%T/ OA。用待测溶液荡洗比色皿2-3次,将待测溶液倒入比色皿,溶液量约为比色皿高度的3/4,用擦镜纸将透光面擦拭干净,按一定的方向,将比色皿放入样品架。合上样品室盖,拉动样品架拉杆使其进入光路,读取测量数据。⑦测量透视比:参照操作步骤③、步骤④。在透视比(T)模式,参照步骤⑤调100%T/ OA。用待测溶液荡洗比色皿2-3次,将待测溶液倒入比色皿,溶液量约为比色皿高度的3/4,用擦镜纸将透光面擦拭干净,按一定的方向,将比色皿放入样品架。合上样品室盖,拉动样品架拉杆使其进入光路,读取测量数据。⑧浓度测量:参照操作步骤③、步骤④。在透视比(T)模式,参照步骤⑤调100%T/ OA。用标准浓度溶液荡洗比色皿2-3次,将标准浓度溶液倒入比色皿,溶液量约为比色皿高度的3/4,用擦镜纸将透光面擦拭干净,按一定的方向,将比色皿放入样品架。合上样品室盖,拉动样品架拉杆使其进入光路。按下“功能键”切换至浓度(C)模式。按下“▲”或“▼”键,设置标准溶液浓度,并按下“确认”键。用待测溶液荡洗比色皿2-3次,将待测溶液倒入比色皿,溶液量约为比色皿高度的3/4,用擦镜纸将透光面擦拭干净,按一定的方向,将比色皿放入样品架。合上样品室盖,拉动样品架拉杆使其进入光路,读取测量数据。

注意事项:使用紫外光谱测量浓度时,需要制备不同浓度的标准品,并绘制标准曲线,然后根据所测的紫外吸收光谱曲线,计算得到结论。操作时,注意需要提前预热20分钟。样品制备好了以后不能长时间的放置。对于不同的物质,需要在特定的波长下进行吸收检测。对于样品检测时,需要及时冲洗干净玻璃皿。

1.1.3 紫外-可见分光光度法仪器与应用

紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门,紫外可见分光光度计督有广泛而重要的应用。紫外可见分光光度计有着较长的历史,其主要理论框架早已建立,制作技术相对成熟。但构成紫外可见分光光度计的光、机、电、算等任何一方面的新技术都可能再推动紫外可见分光光度计整体性能的进步。在追求准确、

相关文档
最新文档