三极管控制电路原理解析图文稿
8050三级管开关电路图大全(七款8050三级管开关电路设计原理图详解)
![8050三级管开关电路图大全(七款8050三级管开关电路设计原理图详解)](https://img.taocdn.com/s3/m/ab4c34e5760bf78a6529647d27284b73f24236d7.png)
8050三级管开关电路图大全(七款8050三级管开关电路设计原理图详解)三极管8050是非常常见的NPN型晶体三极管,在各种放大电路中经常看到它,应用范围很广,主要用于高频放大。
也可用作开关电路。
8050三极管引脚图工作原理三极管8050是一种控制元件,主要用来控制电流的大小,有三个极,分别叫做集电极C、基极B、发射极E。
以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),利用8050三极管工作理,当基极电压UB有一个微小的变化时,基极电流Ib也会随之有一小的变化,受基极电流Ib的控制,集电极电流Ic会有一个很大的变化,基极电流Ib越大,集电极电流Ic也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。
但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。
Ic的变化量与Ib变化量之比叫做三极管的放大倍数β(β=ΔIc/ΔIb,Δ表示变化量。
),三极管的放大倍数β一般在几十到几百倍。
三极管在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置,否则会放大失真。
在三极管8050的集电极与电源之间接一个电阻,可将电流放大转换成电压放大:当基极电压Ub升高时,Ib变大,Ic也变大,Ic在集电极电阻Rc的压降也越大,所以三极管集电极电压Uc会降低,且Ub 越高,Uc就越低,ΔUc=ΔUb。
对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。
8050三级管开关电路图(一)1、用NPN三极管做开关电路控制led的电路图:2、一般控制LED,考虑到电压输入增高时电量充沛,令LED发光,输入电压低时节省电量。
10K取样电位器可以任意调节需要控制的电压,所有电阻按电源电压高低作相应改变使电路正常工作。
3、留有输出端,供反向控制(输入高时、输出低)使用。
8050三级管开关电路图(二)8050三级管开关电路图(三)当单片机检测到有按键被按下后立即执行一个10毫秒的延时程序,然后再在检测该引脚是否仍然为闭合状态?如果仍然为闭合说明确认该键被按下立即执行相应的处理程序,否则可能是干扰,丢弃这次检测结果。
三极管工作原理(详解)课件
![三极管工作原理(详解)课件](https://img.taocdn.com/s3/m/802e8f12bf23482fb4daa58da0116c175e0e1e6f.png)
动态范围是指三极管能够放大的最小 信号和最大信号范围。在实际应用中, 三极管需要在一定的动态范围内工作, 以保证其正常性能。
放大பைடு நூலகம்数
三极管的放大倍数称为β值,它表示 集电极电流变化量与基极电流变化量 之比。放大倍数是三极管性能的重要 指标之一。
载流子的传
空穴与电子
在半导体材料中,空穴和电子是两种重要的载流子。空穴实际上是半导体原子缺失的电子 ,而电子则是自由移动的负电荷。
注意散热
对于大功率三极管,需要特别注意散热问题,采取适当的散热措施, 以防止过热损坏。
三极管的常见故障与排除方法
常见故障
三极管常见的故障包括开路、短路、性能不良等。
排除方法
针对不同的故障,可以采用相应的排除方法,如更换、调试 、修复等。同时,还需要注意检查外围电路,以确定故障是 否由外围电路引起。
超大规模集成电路的发展,三 极管的应用更加广泛,涉及到 通信、计算机、消费电子等多
个领域。
三极管的研究现状与进展
新材料
新型半导体材料如硅碳化物、氮化镓等具有更高的电子迁移率和 耐压能力,能够提高三极管的性能。
新结构
新型三极管结构如FinFET、GaN HEMT等能够提高三极管的开 关速度和降低能耗。
04
三极管的应用
放大电路中的应用
01
02
03
信号放大
三极管作为放大元件,通 过输入信号控制三极管的 电流放大,实现信号的线 性放大。
功率放大
利用三极管的电流放大作 用,将微弱的信号放大为 较大的功率信号,用于驱 动负载。
集成放大器
将多个三极管集成在一个 芯片上,实现多级放大, 提高放大倍数和稳定性。
06
图说三极管工作原理(以NPN为例)
![图说三极管工作原理(以NPN为例)](https://img.taocdn.com/s3/m/553d21c9b04e852458fb770bf78a6529657d355d.png)
图说三极管工作原理(以NPN为例)
如图所示为三极管电路图,以NPN为例:
Ib:指代基极B流到发射极E的电流。
Ic:指代集电极C流到发射极E的电流。
基本表现原理:
放大:集电极流出的电流会受到基极电流的控制,基极电流很小的变化就会引起集电极
电流很大的变化,且这种变化满足一定的比例关系,一般Ic=nIb,我们称这个n就是放大系数。
根据公式U=R*I,那么此时的Rc上的电压就会变大,我们就可以把找个时候的电压信号取出来,
输出到它用,这个状态我们称之为三极管的放大状态。
截止:试想基极B与发射极C间表现为一个二极管,那么三级管的放大状态一定会满足一定条件的,
二极管的开启电压0.6--0.7v,小于这个电压,我们称三极管工作在截止区。
饱和:当Ic增大到一定程度后,再增大Ib,Ic也不会增大了,因为有电源电压在那里,况且Rc电阻固定,
最大电流也超不过(电源电压/Rc),这个时候我们成三极管工作于饱和状态。
利用截止和饱和我们可以当开关使用。
三极管的工作原理详解,图文案例,立马教你搞懂
![三极管的工作原理详解,图文案例,立马教你搞懂](https://img.taocdn.com/s3/m/c479aa58571252d380eb6294dd88d0d233d43c93.png)
三极管的工作原理详解,图文案例,立马教你搞懂大家好,我是李工,希望大家多多支持我。
今天给大家讲一下三极管。
什么是三极管?三极管全称是“晶体三极管”,也被称作“晶体管”,是一种具有放大功能的半导体器件。
通常指本征半导体三极管,即BJT管。
典型的三极管由三层半导体材料,有助于连接到外部电路并承载电流的端子组成。
施加到晶体管的任何一对端子的电压或电流控制通过另一对端子的电流。
三极管实物图三极管有哪三极?•基极:用于激活晶体管。
(名字的来源,最早的点接触晶体管有两个点接触放置在基材上,而这种基材形成了底座连接。
)•集电极:三极管的正极。
(因为收集电荷载体)•发射极:三极管的负极。
(因为发射电荷载流子)三极管的分类三极管的应用十分广泛,种类繁多,分类方式也多种多样。
根据结构•NPN型三极管•PNP型三极管根据功率•小功率三极管•中功率三极管•大功率三极管根据工作频率•低频三极管•高频三极管根据封装形式•金属封装型•塑料封装型根据PN结材料锗三极管硅三极管除此之外,还有一些专用或特殊三极管三极管的工作原理这里主要讲一下PNP和NPN。
PNPPNP是一种BJT,其中一种n型材料被引入或放置在两种p型材料之间。
在这样的配置中,设备将控制电流的流动。
PNP晶体管由2个串联的晶体二极管组成。
二极管的右侧和左侧分别称为集电极-基极二极管和发射极-基极二极管。
NPNNPN中有一种 p 型材料存在于两种 n 型材料之间。
NPN晶体管基本上用于将弱信号放大为强信号。
在 NPN 晶体管中,电子从发射极区移动到集电极区,从而在晶体管中形成电流。
这种晶体管在电路中被广泛使用。
PNP和NPN 符号图三极管的3种工作状态分别是截止状态、放大状态、饱和状态。
接下来分享我在微信公众号看到的一种通俗易懂的讲法:三极管工作原理-截止状态三极管的截止状态,这应该是比较好理解的,当三极管的发射结反偏,集电结反偏时,三极管就会进入截止状态。
这就相当于一个关紧了的水龙头,水龙头里的水是流不出来的。
三极管电路的基本分析方法演示文稿
![三极管电路的基本分析方法演示文稿](https://img.taocdn.com/s3/m/247cc2eb80c758f5f61fb7360b4c2e3f572725fa.png)
UBEQ、IBQ、ICQu、oU=CuEQce),而且Uim不能太
大。
O uCE UCEQ uOo
O
t ib
t ic
t
uce =-icRC t t
第十一页,共25页。
三极管的交流通路
交流电流的流通 路径
对交流信 号短路
C1
ii
RB
ui
+
VBB–
ib
内阻小,对交 流信号短路
不接负载时,交、直流负载线重合,V CC= VCC
不发生饱和失真的条件: IBQ + I bm IBS
第十八页,共25页。
第 2 章 半导体三极管
饱和失真的本质:
C1+ +
ui
RC
RB iB
iC
+C2
V
+VCC +
RL uo
负载开路时: 受 RC 的限制,iB 增大,iC 不可能超过 VCC/RC 。
第 2 章 半导体三极管
二、工程近似分析法
iC
IBQVBBRUBBE(on)
RB iB
+ 1 k
VBB+–
1135Vk+uBE
uCE
–
5
V
RC + –VCC
30.70.02(mA ) 115
= 100
ICQ IBQ
要么已知,要么由输出特 性曲线求得。
100 0.02 2(m)A
U CE V Q C CICR Q C
从输入当端输口入看交进流信去号,很相小时当,于可电将阻静态r工be作点Q附近一段曲线当作
u U 2m 6 V 直线,因b此e ,当uCE为常数T 时,输入电压的变化量ΔuBE(即交流量
三极管的工作原理,详细、通俗易懂、图文并茂
![三极管的工作原理,详细、通俗易懂、图文并茂](https://img.taocdn.com/s3/m/a08a073f376baf1ffc4fad4b.png)
三极管的工作原理,详细、通俗易懂、图文并茂一、很多初学者都会认为三极管是两个PN 结的简单凑合(如图1)。
这种想法是错误的,两个二极管的组合不能形成一个三极管。
我们以NPN 型三极管为例(见图2 ),两个PN 结共用了一个P 区——基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的PN 结的特性。
三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。
二、三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。
从应用的角度来讲,可以把三极管看作是一个电流分配器。
一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图 3 ),用式子来表示就是β 和α 称为三极管的电流分配系数,其中β 值大家比较熟悉,都管它叫电流放大系数。
三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。
例如,基极电流的变化量ΔI b =10 μA ,β =50 ,根据ΔI c =βΔI b 的关系式,集电极电流的变化量ΔI c =50×10 =500μA ,实现了电流放大。
三、三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供I b 、I c 和I e 这三个电流。
为了容易理解,我们还是用水流比喻电流(见图 4 )。
这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。
如果细管子中没有水流,粗管子中的闸门就会关闭。
注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。
由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。
三极管的基极 b 、集电极 c 和发射极e 就对应着图4 中的细管、粗管和粗细交汇的管子。
三极管的实际应用及原理图
![三极管的实际应用及原理图](https://img.taocdn.com/s3/m/27857f4c6d85ec3a87c24028915f804d2b1687a7.png)
三极管的实际应用及原理图引言三极管是一种重要的电子元件,它在电子技术中有着广泛的应用。
本文将介绍三极管的原理和常见的实际应用,并提供相关的原理图。
一、三极管的原理三极管是一种半导体器件,由三个区域的P-N结组成,分别为发射极(Emitter)、基极(Base)和集电极(Collector)。
根据控制电流的不同,三极管可以工作在放大、开关和稳压等不同的工作模式。
1. 放大模式在放大模式下,三极管的基极-发射极电流(Ib)较小,而集电极-发射极电流(Ic)较大,可以放大输入信号的电流和电压。
三极管的放大倍数由其参数和电路连接方式决定。
2. 开关模式在开关模式下,当基极电流为零或较小时,三极管处于关断状态,集电极电流(Ic)非常小。
当基极电流较大时,三极管进入饱和状态,集电极电流(Ic)最大,可以用作开关控制器件。
3. 稳压模式在稳压模式下,三极管可以用作稳压器的关键组成部分。
通过合理选择三极管的参数和电路连接方式,可以实现对电源电压的稳定输出。
二、三极管的实际应用三极管作为一种重要的电子元件,在各种电子电路中都有着广泛的应用。
1. 放大器三极管常用于放大电路中,可以放大微弱的音频、视频或射频信号。
放大器的设计基于三极管的放大特性,通过调整电路参数实现对输入信号的放大。
•低频放大器:常用于音频放大器,提高音频信号的功率和音质。
•射频放大器:常用于无线电通信设备中,放大射频信号以增强信号传输能力。
•视频放大器:常用于电视、摄像机等视频设备中,放大视频信号以提高图像质量。
2. 开关控制器三极管的开关特性使其在各种开关电路中得到广泛应用。
•电子开关:三极管可用作电子设备的开关,如计算机电源、电子继电器等。
•脉冲宽度调制(PWM):三极管可用于实现PWM控制,如电机速度控制、LED亮度调节等。
3. 稳压器稳压器常用于提供稳定的电源电压。
•线性稳压器:采用三极管作为调节元件,通过调整三极管的工作状态来实现对电源电压的稳定输出。
三极管开关电路-自控电路原理
![三极管开关电路-自控电路原理](https://img.taocdn.com/s3/m/7c60ad5077232f60ddcca10f.png)
三极管开关电路-自控电路原理时间:2010-03-05 00:26:34 来源:作者:能不能用干簧管开关直接控制电动机的转与停呢?玩具电动机是常用的动力装置,它能够把电能转换为机械能,可用于小电风扇转动、小离心水泵抽水等执行功能。
通常玩具直流电动机工作电压低,虽然在1.5~3V就可以启动,但起动电流较大(1~2安培),如果用触点负荷仅为几十毫安的干簧管进行开关控制,将大大缩短其使用寿命。
因此,在自动控制电路中,常使用电子开关来控制电动机的工作状态。
三极管电子开关电路见图1 。
VT基极限流电阻器R如何确定呢?根据三极管的电流分配作用,在基极输入一个较弱的电流IB,就可以控制集电极电流IC有较强的变化。
假设VT电流放大系数hfe≈250,电动机起动时的集电极电流IC=1.5A,经过计算,为使三极管饱和导通所需的基极电流IB≥(1500mA/250)×2=12mA。
在图1电路中,电动机空载时运转电流约为500mA,此时电源(用两节5号电池供电)电压降至2.4V,VT基极-发射极之间电压VBE≈0.9V。
根据欧姆定律,VT基极限流电阻器的电阻值R=(2.4-0.9)V/12mA≈0.13kΩ。
考虑到VT在IC较大时,hfe要减小,电阻值R还要小一些,实取100Ω。
为使电动机更可靠地启动,R甚至可减少到51Ω。
在调试电路时,接通控制开关S,电动机应能自行启动,测量VT集电极—发射极之间电压VCE≤0.35V,说明三极管已饱和导通,三极管开关电路工作正常,否则会使VT过热而损坏。
自动灭火的热量自动控制电路见图2。
该电路是将图1中的控制开关S换成双金属复片开关ST,就成为热控电路了。
当蜡烛火焰烧烤到双金属复片时,复片趋于伸直状态,使得开关ST接通,电动机启动,带动小风扇叶片旋转,对准蜡烛吹风,自动将火焰熄灭;当双金属片冷却后,开关断开,小电风扇自动停转,完成了自动灭火的程序。
自动停车的磁力自动控制电路见图3。
NPN PNP三极管开关电路
![NPN PNP三极管开关电路](https://img.taocdn.com/s3/m/bdec341252d380eb62946d83.png)
图1 NPN PNP三极管反相器电路vin无输入电位Q1截止。
Vin高电平时Q1导通,Q2基极得高电位,Q2截止。
图2 两只NPN三极管反相器电路vin无输入电位Q1截止,Q2导接入高电平Q1导通,促使Q2基极电位下级,Q2截止。
图3 PNP三极管开关电路当输入端悬空时Q1截止。
VIN输入端接入低电平时,Q1导通,继电器吸合。
图4 PNP三极管开关电路当vin无输入电位时Q1截止。
Vin接入Q1导通,继电器吸合
图5 三极管上拉电阻:当有高电位输入时Q 导通,因E-C 导通,又因有负载电阻,所以输出看作是低电平。
图6 三极管上拉电阻:当有高电位输入时Q 导通,因E-C 导通,又载电阻,所以输出看作是高电平。
图7 光藕控制NPN 三极管: 图8 光藕控制NPN 三极管:
图9 光藕控制PNP三极管:图10 光藕控制PNP三极管:。
三极管工作原理图解
![三极管工作原理图解](https://img.taocdn.com/s3/m/70f12b2f178884868762caaedd3383c4ba4cb46f.png)
c
NPN三极管的工作原理和PNP三极管是一样的,只是偏压方向,电流方 向均相反,电子 和空穴的角色互换。PNP三极管是利用Veb控制由射区经基区,入射到集电区的正电子 (空穴),而NPN三极管则是利用Vbe控制由射区经基区、入射到集电区的负电子(自由电 子)。
N
N
P
b
c
e
N
N
P
b
e
c
一
一
一
一
为方便理解:以下正电子(空穴) 负电子(自由电子)。 当NPN三极管(图1)b极没有电压输入时,c极与e极之间没有电流通过。 c极与e之间关闭, 三极管处于截止状态。 当NPN三极管(图2)b极输入一个正电压,由于电厂作用,e极N区负电子被b极P区正电 子吸引出来涌向(扩散)到基区,因为基区做的很薄,所以只有一部分负电子与正电子碰撞 (复合)产生基极电流,另一部分负电子则在集电结附近聚集,由于电场作用聚集在集电 结的负电子穿过(漂移)集电结,到达集电区后与聚集在c极(N型半导体端)正电子碰撞 产生集电极电流。从此可见,基极电流越大,集电极电流越大,即集电极输入一个小的电 流,集电极就可得到一个大的电流。三极管此刻处于放大状态。 需要注意,当基极电流到达一定程度,集电极电流不再升高。这时三极管失去电流放大作 用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。此刻 三极管处于饱和状态。
图1
图2
一
一
一
P
P
N
b
e
一
一
一
P
P
N
b
e
图3
图4
以上为PNP型三极管工作流程图 和NPN相比有以下相同和不同之处: 1、NPN集电极电流产生为Ibe,PNP集电极电流产生为Ieb. 2、NPN发射区发射负电子,PNP发射区发射正电子。 3、NPN集电区收集负电子,PNP集电区收集正电子。 4、NPN电流方向为Ice,PNP电流方向为Iec.
三极管的结构及工作原理解读ppt课件
![三极管的结构及工作原理解读ppt课件](https://img.taocdn.com/s3/m/16ebf064443610661ed9ad51f01dc281e43a5642.png)
2
1
T
1
3
1
T
2
1
3
(a)
(b)
唐东自动化教研室
电子技术基础 主编 吴利斌
例2图所示的电路中,晶体管均为硅管,β=30,试分析各晶体管的
工作状态。 解: (1)因为基极偏置电源+6V大于管子的导通电压,
故管子的发射结正偏,管子导通,基极电流:
+6V 5K IB
+10V 1K IC
-2V 5K IB
IC
10 0.3
+2V
9.7mIBA
5K
1K IC
因为IC ICS ,所以饱和
(a)
(b)
(c)
(2)因为基极偏置电源-2V小于管子的导通电压,管
子的发射结反偏,管子截止,所以管子工作在截止区。
(3)因为基极偏置电源++21V0V大于管子的导通电压+,10故V管
+10
子的发射结正偏,管子导通基极电流::
UCC
继续增
增大大UUCCCC 0
U特U特C性EC性=E曲0=曲.15线VV线的的 UCE>1V的 特性曲线
UBE /V
继续增大UCC使UCE=1V以上的多个值,结果发现:之后 的所有输入特性几乎都与UCE=1V的特性相同,曲线基本不 再变化。
实用中三极管的UCE值一般都超过1V,所以其输入特性通 常采用UCE=1V时的曲线。从特性曲线可看出,双极型三极 管的输入特性与二极管的正向特性非常相似。
电区而形成集电极电流IC 。之后即 使UCE继续增大,集电极电流IC也不 会再有明显的增加,具有恒流特性。
0
IB=0 UCE / V
三极管放大原理(图文+形象)
![三极管放大原理(图文+形象)](https://img.taocdn.com/s3/m/d4856a3b4431b90d6c85c7cf.png)
一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。
而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
图一:晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)及基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib 式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib 式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。
一个实用三极管开关电路的分析
![一个实用三极管开关电路的分析](https://img.taocdn.com/s3/m/a0c4e63303768e9951e79b89680203d8cf2f6a58.png)
一个实用三极管开关电路的分析
一、电路概述
三极管开关电路是由三极管、电阻和电容构成的电路,它可以实现一
个单向的开关控制,即控制电路中的电流及电压。
本电路是一个标准的三
极管开关电路,控制在三极管的基极,通过三极管的发射极控制电路中的
电流及电压,当三极管处于导通状态时,电路中可以流过电流,从而控制
电压电流的大小。
二、三极管开关电路结构
这里采用的是三极管NPN型开关,电源电压为5V,其中R1,R2分别
是2.2k和1k的电阻,C1是一个电容,用来控制三极管的开关时间,其
它部件和电路参数的参数也如上图所示。
三、电路工作原理
当电路处于关闭状态时,电源供电至R1和R2,由R2引出的电流流
过三极管,到达三极管的基极,此时由于基极电压太低,使得三极管处于
非导通状态,三极管的发射极及接口端不能连接,此时电路处于关断状态,此时电流不能流过电路,实现控制电流和电压的功能。
当电路处于导通状态时,当接口端通过按钮接入信号信号时,三极管
的基极电压会升高,使得三极管处于导通状态,此时发射极可以和接口端
连接,从而形成一个闭合电路,电流可以流过电路,电压可以较大或较小,实现控制电流和电压的功能。
三极管控制电路原理解析
![三极管控制电路原理解析](https://img.taocdn.com/s3/m/0c185406c1c708a1294a444a.png)
三极管控制电路原理解析Revised by Chen Zhen in 2021三极管控制电路原理解析2011年03月27日星期日上午 11:56标签:三极管简介:三极管的种类很多,并且不同型号各有不同的用途。
三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。
实际上箭头所指的方向是电流的方向。
图1双极面结型晶体管有两个类型:npn和pnp。
npn类型包含两个n型区域和一个分隔它们的p型区域;pnp类型则包含两个p型区域和一个分隔它们的n型区域,图2和图3分别是它们的电路符号。
以下的说明将集中在npn BJT。
图2: npn BJT?的电路符号图3: pnp BJT?的电路符号BJT工作于三种不同模式:截止模式、线性放大模式及饱和模式,见图4。
图4 四种工作模式BJT在电子学中是非常重要的元件。
它们被广泛应用在其他展品中,特别是模拟电路里的放大器和数码电路里的电子开关。
开关电路原则a.BJT三极管Transistors只要发射极e?对电源短路就是电子开关用法N管发射极E?对电源负极短路.低边开关;b-e正向电流饱和导通P管发射极E?对电源正极短路.高边开关;b-e反向电流饱和导通b.FET场效应管MOSFET只要源极S?对电源短路就是电子开关用法N管源极S?对电源负极短路.低边开关 ;栅-源正向电压导通P管源极S?对电源正极短路.高边开关;栅-源反向电压导通总结:低边开关用NPN管高边开关用PNP管三极管b-e必须有大于C-E饱和导通的电流场效应管理论上栅-源有大于漏-源导通条件的电压就就OK假如原来用NPN三极管作ECU氧传感器加热电源控制低边开关则直接用N-Channel?场效应管代换 ;或看情况修改下拉或上拉电阻基极--栅极集电极--漏极发射极--源极NPN和PNP?开关三极管(1)我把NPN三极管看成一个三个脚继电器.基极-----就是一个小电流的.继电器的信号吧集电极-----可以说是正极吧发射极------可以说负极吧有一个小电流流入了基极的话那么集电极和发射极就会通.(2)PNP三极管看成一个三个脚继电器.基极-----就是一个小电流的继电器信号集电极-----可以说是正极吧发射极------可以说负极吧有一个小电流流出了基极的话,那么集电极和发射极就会通.三极管VS场效应管三极管BJT--------TRANSISTORS?-----------电流驱动场效应管-----FET -------------------------电压驱动MOS场效应管MOSFET ................电压驱动。
三极管组成的光控开关电路原理图
![三极管组成的光控开关电路原理图](https://img.taocdn.com/s3/m/5f3a60e2900ef12d2af90242a8956bec0975a584.png)
三极管组成的光控开关电路原理图什么是光控开关光控开关/光控时控器采用先进的嵌入式微型计算机控制技术,融光控功能和普通时控器两大功能为一体的多功能高级时控器(时控开关),根据节能需要可以将光控探头(功能)与时控功能同时启用,将达到最佳节能效果。
是路灯、景观灯、广告灯箱、霓虹灯等设备的最佳节能控制装置;可广泛应用于街道、铁路、车站、航道、学校及供电部门等一切需要时间控制的应用场所。
现在国内主要的品牌有灯联网、艾贝斯等,代表型号有ET101.1、ET102.1等。
光控开关功能和用途本系列智能光控开关,可以根据用户设定的时间(光照度门限)值,自由控制用电器的电源开关。
广泛用于路灯、霓虹灯、广告灯等需要按时间控制电源开关的用电设备。
用户可以根须需求设定四组开关灯时间,可以实现多时段开关灯。
用户也可以利用光控探头采集当地光照度,实现根据光照度开关灯。
四款光控开关电路图电路图一:光控开关在室内5~6 米范围内,可用手电光进行遥控,可以很方便地开启或关闭家用电器。
工作原理:电路如图192 所示。
由三极管VT1、光电二极管等组成光接收电路。
每接收到光照一次,就使由三极管VT2、VT3组成的双稳态电路发生翻转,通过三极管VT4 去驱动继电器K 工作,以控制家用电器的电源开关。
电路图二:声光控节能灯座节电效果显著,采用该灯座白天灯不亮,夜间有声音灯即亮该灯座电路简洁,声控部分采用了驻极体话筒,电路见附图所示220V电源经桥式整流220kΩ电阻降压100μF电容滤波后得到5V电压供给数字集成电路HD14011工作白天有光照时,光电二极管2CU呈低阻状态,IC的{1} {2}脚为低电位,{3}脚为高电位,白天不论有无声音,即不论{4}脚电位如何,{13}脚始终钳位于高电位,{12}脚也为高电位因此{11}脚为低电位,可控硅截止,灯泡不亮夜晚无光照时,U呈高阻状态,{3}脚为低电位,这时若有人发出声响,驻极体话筒拾取信号,经{5} {6}脚输入到放大器放大后由臆脚输出当{4}脚为低时,{13}脚也为低,{11}脚为高,触发可控硅BT169导通,灯泡点亮同时10μF电容充电,充电之初{8} {9}脚为高电位,使{12}脚为低电位声音过后,{13}脚恢复高电位,但由于{12}脚为低电位,所以{11}脚继续保持高电位,灯继续点亮10μF电容继续充电几十秒钟后,{8} {9}脚为低电位,{11}脚也翻转为低电位,可控硅截止,灯灭。
多图详解三极管基本知识及电子电路图
![多图详解三极管基本知识及电子电路图](https://img.taocdn.com/s3/m/649618d89fc3d5bbfd0a79563c1ec5da50e2d6e3.png)
多图详解三极管基本知识及电子电路图广义上,三极管有多种,常见如下图所示。
狭义上,三极管指双极型三极管,是最基础最通用的三极管。
本文所述的是狭义三极管,它有很多别称:三极管的发明晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。
真空电子管存在笨重、耗能、反应慢等缺点。
二战时,军事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战结束后获得。
早期,由于锗晶体较易获得,主要研制应用的是锗晶体三极管。
硅晶体出现后,由于硅管生产工艺很高效,锗管逐渐被淘汰。
经半个世纪的发展,三极管种类繁多,形貌各异。
小功率三极管一般为塑料包封;大功率三极管一般为金属铁壳包封。
三极管核心结构核心是“PN”结是两个背对背的PN结可以是NPN组合,也或以是PNP组合由于硅NPN型是当下三极管的主流,以下内容主要以硅NPN型三极管为例!NPN型三极管结构示意图硅NPN型三极管的制造流程管芯结构切面图工艺结构特点:发射区高掺杂:为了便于发射结发射电子,发射区半导体掺浓度高于基区的掺杂浓度,且发射结的面积较小;基区尺度很薄:3~30μm,掺杂浓度低;集电结面积大:集电区与发射区为同一性质的掺杂半导体,但集电区的掺杂浓度要低,面积要大,便于收集电子。
三极管不是两个PN结的间单拼凑,两个二极管是组成不了一个三极管的!工艺结构在半导体产业相当重要,PN结不同材料成份、尺寸、排布、掺杂浓度和几何结构,能制成各样各样的元件,包括IC。
三极管电路符号三极管电流控制原理示意图三极管基本电路外加电压使发射结正向偏置,集电结反向偏置。
集/基/射电流关系:IE = IB + ICIC = β * IB如果 IB = 0, 那么 IE = IC = 0三极管特性曲线输入特性曲线集-射极电压UCE为某特定值时,基极电流IB与基-射电压UBE 的关系曲线。
UBER是三极管启动的临界电压,它会受集射极电压大小的影响,正常工作时,NPN硅管启动电压约为0.6V;UBE<uber时,三极管高绝缘,ube>UBER时,三极管才会启动;</uber时,三极管高绝缘,ube>UCE增大,特性曲线右移,但当UCE>1.0V后,特性曲线几乎不再移动。
三极管工作原理详解演示文稿
![三极管工作原理详解演示文稿](https://img.taocdn.com/s3/m/57f2c061793e0912a21614791711cc7931b778b1.png)
第28页,共37页。
4.2.3 两种实用放大电路
1.直接耦合放大电路
问题: 1、两种电源
将两个电源合 二为一
2、信号源与放大电路不“共地”
共地,且要使信号驮 载在静态之上
静态时, UBEQURb1
动态时, uBE=uI+URb1
第29页,共37页。
讨论1 放大电路的组成原则
静态工作点合适:合适的直流电源
4.5.2 共基极放大电路
1.静态工作点
直流通路与射极偏置电路相同
VBQ Rb1Rb2Rb2VCC
ICQIEQVBQRV e BEQ
VCEQ VCCICQ RcIEQ Re VCCICQ (RcRe)
I BQ
I CQ β
第34页,共37页。
4.5.3 放大电路三种组态的比较
1.三种组态的判别
以输入、输出信号的位置为判断依据: 信号由基极输入,集电极输出——共射极放大电路 信号由基极输入,发射极输出——共集电极放大电路 信号由发射极输入,集电极输出——共基极电路
VBQ与温度无关 Re取值越大,反馈控制作用越强 一般取 I1 =(5~10)IBQ , VBQ =3~5V
第31页,共37页。
1. 基极分压式射极偏置电路
(2)放大电路指标分析
①静态工作点
VBQ Rb1Rb2Rb2VCC
ICQIEQVBQRV e BEQ
V C E V C Q I C C R c Q I E R e Q V C I C C ( R c Q R e )
只有电流放大作用,没有电压放大,有电压跟随作用。在三种组态中,输入电 阻最高,输出电阻最小,频率特性好。可用于输入级、输出级或缓冲级。 共基极放大电路:
只有电压放大作用,没有电流放大,有电流跟随作用,输入电阻小,输出电阻 与集电极电阻有关。高频特性较好,常用于高频或宽频带低输入阻抗的场合,模 拟集成电路中亦兼有电位移动的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管控制电路原理解
析
文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
三极管控制电路原理解析
2011年03月27日星期日上午 11:56
标签:
三极管简介:
三极管的种类很多,并且不同型号各有不同的用途。
三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。
实际上箭头所指的方向是电流的方向。
图1
双极面结型晶体管有两个类型:npn和pnp。
npn类型包含两个n型区域和一个分隔它们的p型区域;pnp类型则包含两个p型区域和一个分隔它们的n型区域,图2和图3分别是它们的电路符号。
以下的说明将集中在npn BJT。
图2: npn BJT?的电路符号
图3: pnp BJT?的电路符号
BJT工作于三种不同模式:截止模式、线性放大模式及饱和模式,见图4。
图4 四种工作模式
BJT在电子学中是非常重要的元件。
它们被广泛应用在其他展品中,特别是模拟电路里的放大器和数码电路里的电子开关。
开关电路原则
a.
BJT三极管Transistors只要发射极e?对电源短路就是电子开关用法N管发射极E?对电源负极短路.
低边开关;b-e正向电流饱和导通
P管发射极E?对电源正极短路.
高边开关;b-e反向电流饱和导通
b.
FET场效应管MOSFET只要源极S?对电源短路就是电子开关用法
N管源极S?对电源负极短路.
低边开关 ;栅-源正向电压导通
P管源极S?对电源正极短路.
高边开关;栅-源反向电压导通
总结:
低边开关用NPN管
高边开关用PNP管
三极管b-e必须有大于C-E饱和导通的电流
场效应管理论上栅-源有大于漏-源导通条件的电压就就OK
假如原来用NPN三极管作ECU氧传感器加热电源控制低边开关
则直接用N-Channel?场效应管代换 ;或看情况修改下拉或上拉电阻基极--栅极
集电极--漏极
发射极--源极
NPN和PNP?开关三极管
(1)我把NPN三极管看成一个三个脚继电器.
基极-----就是一个小电流的.继电器的信号吧
集电极-----可以说是正极吧
发射极------可以说负极吧
有一个小电流流入了基极的话那么集电极和发射极就会通.
(2)PNP三极管看成一个三个脚继电器.
基极-----就是一个小电流的继电器信号
集电极-----可以说是正极吧
发射极------可以说负极吧
有一个小电流流出了基极的话,那么集电极和发射极就会通.三极管VS场效应管
三极管BJT--------TRANSISTORS?-----------
电流驱动
场效应管-----FET -------------------------
电压驱动
MOS场效应管MOSFET ................
电压驱动。