用数学归纳法证明不等式问题

合集下载

不等式证明的基本方法

不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。

对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。

首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。

通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。

2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。

这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。

例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。

3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。

这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。

通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。

无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。

在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。

此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。

数学归纳法证明不等式

数学归纳法证明不等式

数学归纳法证明不等式归纳法由有限多个个别的特殊事例得出一般结论的推理方法。

那怎么用归纳法来证明不等式呢? 接下来店铺为你整理了数学归纳法证明不等式,一起来看看吧。

数学归纳法证明不等式的基本知识数学归纳法的基本原理、步骤和使用范围(1)在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊,归纳法是由特殊到一般.由一系列有限的特殊事例得出一般结论的推理方法,通常叫归纳法。

在归纳时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这时得出的结论不一定可靠。

数学问题中,有一类问题是与自然数有关的命题,因为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一定可靠的例如一个数列的通项公式是an=(n2-5n+5)2容易验证a1=1,a2=1,a3=1,a4=1,如果由此作出结论——对于任何n∈N+, an=(n2-5n+5)2=1都成立,那是错误的.事实上,a5=25≠1.因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑严谨性要求的新的方法——数学归纳法.(2)数学归纳法是一种重要的数学证明方法,其中递推思想起主要作用。

形象地说,多米诺骨牌游戏是递推思想的一个模型,数学归纳法的基本原理相当于有无限多张牌的多米诺骨牌游戏,其核心是归纳递推.一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用一下两个步骤:(1)证明当n=n0(例如n0=1或2等)时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于n0所有自然数都成立.这种证明方法称为数学归纳法.自然数公理(皮亚诺公理)中的“归纳公理”是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数n有关的命题.这里的n是任意的正整数,它可取无限多个值.附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个“直接后续”数,并且满足下列公理:①1是一个自然数;②在自然数集合中,每个自然数a有一个确定“直接后续”数a’;③a’≠1,即1不是任何自然数的“直接后续”数;④由a’ =b’推出a=b,这就是说,每个自然数只能是另一个自然数的“直接后续”数;⑤设M是自然数的一个集合,如果它具有下列性质:(Ⅰ)自然数1属于M,(Ⅱ)如果自然数a属于M,那么它的一个“直接后续”数a’也属于M,则集合M包含一切自然数.其中第5条公理又叫做归纳公理,它是数学归纳法的依据.(3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数n的命题都可以用数学归纳法证明.例如用数学归纳法证明(1+1)n(n∈N+)的单调性就难以实现.一般来说,n从k=n到k=n+1时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.数学归纳法证明不等式例题。

如何通过数学归纳法证明不等式

如何通过数学归纳法证明不等式

如何通过数学归纳法证明不等式数学归纳法是一种证明数学命题的常用方法,其基本思想是利用已知的某些命题推出新的命题。

在数学证明中,常常使用归纳法来证明一些不等式,这种方法既简单又直观,下面我们来探讨如何通过数学归纳法证明不等式。

一、归纳法的基本思想首先,我们来了解一下归纳法的基本思想。

设P(n)是一个依赖于自然数n的命题,则通过归纳法证明P(n)对于所有自然数n成立的一般方法为:1.证明当n=1时P(1)成立;2.假设当n=k时P(k)成立,即前提条件为P(k)成立;3.证明当n=k+1时P(k+1)成立,即由前提条件P(k)可以导出P(k+1)。

这就是数学归纳法的基本思想。

二、通过数学归纳法证明不等式接下来我们探讨如何通过数学归纳法证明不等式。

对于一些不等式,我们可以通过归纳法来证明它们的成立性。

1. 首先,我们需要确定适用于归纳法的不等式类型。

一般来说,递推式、等差数列、等比数列等都是适用于归纳法的不等式类型。

2. 其次,我们需要证明当n=1时不等式成立。

通常情况下,我们可以通过代数化简或数值计算的方法证明不等式在n=1时成立。

3. 第三步是归纳假设。

假设当n=k时不等式成立,即前提条件为不等式在n=k时成立。

4. 第四步是证明当n=k+1时不等式成立。

通过推导得出不等式在n=k+1时成立。

5. 最后需要证明这个不等式在所有自然数下成立。

通常情况下,我们可以通过归纳证明法的反证法来证明,如果该不等式在某个自然数下不成立,那么其前面的所有自然数也不成立,即矛盾。

因此,该不等式在所有自然数下成立。

比如,对于一个递推式an=a(n-1)+n,我们可以通过数学归纳法证明其大于等于n(n+1)/2。

具体证明如下:当n=1时,an=1,n(n+1)/2=1,因此不等式在n=1时成立。

假设当n=k时,an大于等于k(k+1)/2成立。

当n=k+1时,an=a(k+1-1)+(k+1)=ak+k+1。

根据归纳假设,ak 大于等于k(k+1)/2,于是k+ak大于等于k(k+1)/2+k+1=(k+1)(k+2)/2,因此,an大于等于(k+1)(k+2)/2。

数学归纳法证明不等式

数学归纳法证明不等式

数学归纳法证明不等式数学归纳法是一种证明数学命题的重要方法,它基于数学归纳的思想,通过证明一个命题在一些特定条件下成立,并且在此条件下该命题的下一步也具有同样的性质,从而证明该命题对于一切满足该条件的情况都成立。

在这里,我们将使用数学归纳法来证明一个不等式。

不等式是数学中常见的一种关系式,它描述了两个数或者更多数之间大小关系的性质。

在这里,我们将使用数学归纳法来证明一个形如:$2^n>n^2$的不等式,其中$n$是一个正整数。

首先,我们需要证明当$n=1$时,不等式$2^n>n^2$成立。

当$n=1$时,不等式变为$2^1>1^2$,显然成立。

其次,我们需要证明对于任意一个正整数$k$,如果当$n=k$时不等式$2^k>k^2$成立,那么当$n=k+1$时,不等式$2^{k+1}>(k+1)^2$也成立。

也就是说,我们需要证明如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

根据我们的假设,我们知道$2^k>k^2$。

将不等式两边都乘以2,我们得到$2^{k+1}>2k^2$。

由于$k$是一个正整数,所以$k^2>k$。

将这个不等式代入前面的结果中,我们得到$2^{k+1}>2k^2>k^2+k^2>k^2+k>(k+1)^2$。

也就是说,如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

通过对$n=1$和$n=k+1$的情况都进行证明,我们完成了对于任意正整数$n$的证明。

根据数学归纳法的原理,这意味着不等式$2^n>n^2$对于一切$n$都成立。

综上所述,我们使用数学归纳法成功地证明了不等式$2^n>n^2$,其中$n$是一个正整数。

数学归纳法证明不等式的两个技巧

数学归纳法证明不等式的两个技巧

数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。

它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。

下面将介绍两种常用的数学归纳法证明不等式的技巧。

技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。

例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。

基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。

技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。

然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。

例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。

根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。

根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。

综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。

这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。

高一数学用数学归纳法证明不等式举例试题

高一数学用数学归纳法证明不等式举例试题

高一数学用数学归纳法证明不等式举例试题1.用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()A.2k﹣1B.2k﹣1C.2k D.2k+1【答案】C【解析】考查不等式左侧的特点,分母数字逐渐增加1,末项为,然后判断n=k+1时增加的项数即可.解:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k.故选C.点评:本题是基础题,考查数学归纳法证明问题的第二步,项数增加多少问题,注意表达式的形式特点,找出规律是关键.2.用数学归纳法证明不等式成立,起始值至少应取为()A.7B.8C.9D.10【答案】B【解析】先求左边的和,再进行验证,从而可解.解:左边的和为,当n=8时,和为,故选B.点评:本题主要考查数学归纳法,起始值的验证,求解轭关键是发现左边的规律,从而解决问题.3.用数学归纳法证明2n≥n2(n∈N,n≥1),则第一步应验证.【答案】n=1时,2≥1成立.【解析】根据数学归纳法的步骤,结合本题的题意,是要验证n=1时,命题成立;将n=1代入不等式,可得答案.解:根据数学归纳法的步骤,首先要验证当n取第一个值时命题成立;结合本题,要验证n=1时,左=21=2,右=12=1,因为2>1成立,所以2n≥n2成立.故答案为:n=1时,2≥1成立.点评:本题考查数学归纳法的运用,解此类问题时,注意n的取值范围.4.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是【答案】1+2+3+4【解析】本题考查的知识点是数学归纳法的步骤,由等式,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案.解:在等式中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故答案为:1+2+3+4点评:在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.5.设,则f(k+1)﹣f(k)= .【答案】.【解析】把函数中的n换成k+1,k,再作差后即得所求.解:当n=k+1时,,当n=k时,,则f(k+1)﹣f(k)=﹣()=,故答案为:.点评:本题考查函数的值、数学归纳法,体现了换元的数学思想,注意式子的结构特征,特别是首项和末项.6.(2011•河池模拟)已知正项数列{an }满足:a1=1,且(n+1)an+12=nan2﹣an+1an,n∈N*(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{}的前n项积为Tn ,求证:当x>0时,对任意的正整数n都有Tn>.【答案】(Ⅰ)(Ⅱ)见解析【解析】(I)先对(n+1)an+12﹣nan2+an+1an=0进行化简得到,再由累乘法可得到数列的通项公式是an.(II)根据(I)求出Tn,利用数学归纳法证明即可,证明过程中注意数学归纳法的步骤和导数的灵活应用.解:(I)∵(n+1)an+12﹣nan2+an+1an=0∴(另解﹣an不合题意舍去),∴,即,(II)由(I)得:Tn=n!,当x>0时,Tn>等价于x n<n!e x①以下用数学归纳法证明:①当n=1时,要证x<e x,令g(x)=e x﹣x,则g′(x)=e x﹣1>0,∴g(x)>g(0)=1>0,即x<e x成立;②假设当n=k时,①式成立,即x k<k!e x,那么当n=k+1时,要证x k+1<(k+1)!e x也成立,令h(x)=(k+1)!e x﹣x k+1,则h′(x)=(k+1)!e x﹣((k+1)x k=(k+1)(k!e x﹣x k),由归纳假设得:h′(x)>0,∴h(x)>h(0)=(k+1)!>0,即x k+1<(k+1)!e x也成立,由①②即数学归纳法原理得原命题成立.点评:本题主要考查数列递推关系式的应用和累乘法.求数列通项公式的一般方法﹣﹣公式法、累加法、累乘法、构造法等要熟练掌握,属中档题.7.(2008•武汉模拟)在数列|an |中,a1=t﹣1,其中t>0且t≠1,且满足关系式:an+1(an+t n﹣1)=an(t n+1﹣1),(n∈N+)(1)猜想出数列|an|的通项公式并用数学归纳法证明之;(2)求证:an+1>an,(n∈N+).【答案】见解析【解析】(1)由原递推式得到,再写出前几项,从而猜想数列|an|的通项公式,进而利用数学归纳法证明.(2)利用(1)的结论,作差进行比较,故可得证.解:(1)由原递推式得到,,=猜想得到…(3分)下面用数学归纳法证明10当n=1时 a1=t﹣1 满足条件20假设当n=k时,则,∴,∴即当n=k+1时,原命题也成立.由10、20知…(7分)(2)==而nt n﹣(t n﹣1+t n﹣2+…+t+1)=(t n﹣t n﹣1)+(t n﹣t n﹣2)+…+(t n﹣t)+(t n﹣1)=t n﹣1(t﹣1)+t n﹣2(t2﹣1)+t n﹣3(t3﹣1)+…+t(t n﹣1﹣1)+(t n﹣1)=故t>0,且t≠1时有an+1﹣an>0,即an+1>an…(13分)点评:本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.8.(2005•辽宁)已知函数f(x)=(x≠﹣1).设数列{an }满足a1=1,an+1=f(an),数列{bn}满足bn =|an﹣|,Sn=b1+b2+…+bn(n∈N*).(Ⅰ)用数学归纳法证明bn≤;(Ⅱ)证明Sn<.【答案】见解析【解析】(Ⅰ)我们用数学归纳法进行证明,先证明不等式bn≤当n=1时成立,再假设不等式bn ≤当n=k(k≥1)时成立,进而证明当n=k+1时,不等式bn≤也成立,最后得到不等式bn≤对于所有的正整数n成立;(Ⅱ)根据(Ⅰ)的结论,我们可以利用放缩法证明Sn<,放缩后可以得到一个等比数列,然后根据等比数列前n项公式,即可得到答案.证明:(Ⅰ)当x≥0时,f(x)=1+≥1.因为a1=1,所以an≥1(n∈N*).下面用数学归纳法证明不等式bn≤.(1)当n=1时,b1=﹣1,不等式成立,(2)假设当n=k时,不等式成立,即bk≤.那么bk+1=|ak+1﹣|=≤.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤.所以Sn =b1+b2+…+bn≤(﹣1)++…+=(﹣1)•<(﹣1)•=.故对任意n∈N*,Sn<.点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳)在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.9.证明不等式(n∈N*)【答案】见解析【解析】证法一:利用数学归纳法证明(1)当n=1时,验证不等式成立;(2)假设n=k(k≥1)时,不等式成立,然后证明当n=k+1时,不等式也成立.即可.证法二:构造函数f(n)=,通过函数单调性定义证明f(k+1)>f(k)然后推出结论.证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+<2,则∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+<2.证法二:设f(n)=,那么对任意k∈N*都有:∴f(k+1)>f(k)因此,对任意n∈N*都有f(n)>f(n﹣1)>…>f(1)=1>0,∴.点评:本题考查数学归纳法证明不等式的应用,构造法与函数的单调性的应用,考查逻辑推理能力,计算能力以及转化思想.10.试比较n n+1与(n+1)n(n∈N*)的大小.当n=1时,有n n+1(n+1)n(填>、=或<);当n=2时,有n n+1(n+1)n(填>、=或<);当n=3时,有n n+1(n+1)n(填>、=或<);当n=4时,有n n+1(n+1)n(填>、=或<);猜想一个一般性的结论,并加以证明.【答案】<,<,>,>【解析】本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=>=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳)在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.。

数学归纳法证明不等式

数学归纳法证明不等式

二.用数学归纳法证明几何问题
例2.平面上有n( n N , n 3)个点, 其中任何三点都不在 同一条直线上, 过这些点中任意两点作 直线, 这样的直线 共有多少条? 证明你的结论.
特别提示:
用数学归纳法证几何问题,应特别注意语言叙述正确,清 楚,一定要讲清从n=k到n=k+1时,新增加量是多少.一般 地,证明第二步常用的方法是加一法,即在原来的基础上, 再增加一个,也可以从k+1个中分出一个来,剩下的k个利 用假设.
例2.证明不等式sin n n sin ( n N )
例3.证明贝努利不等式: 如果x是实数, 且x 1, x 0, n为大于1的自然数, 那么有 (1 x ) 1 nx
n
注: 事实上, 把贝努利不等式中的正整数 n 改为实数 仍有 类似不等式成立 . 当 是实数,且 或 0 时 ,有 (1 x ) ≥ 1 x ( x 1) 当 是实数,且 0 1 时 ,有 (1 x ) ≤ 1 x ( x 1)
若 k 1 个正数 a1 , a2 , , ak , ak 1 都相等 ,则它们都是 1. 其和为 k 1 ,命题成立.
若这 k 1 个正数 a1 , a2 , , ak , ak 1 不全相等 , 则其中 必有大于 1 的数,也有小于 1 的数(否则与 a1a2 ak ak 1 1 矛盾).不妨设 a1 1, a2 1 „„
一.用数学归纳法证明等式问题
通过计算下面的式子, 猜想出 1 3 5 ( 1)n ( 2n 1) 的结果, 并加以证明. 1 3 _____;1 3 5 ______ 1 3 5 7 ______;1 3 5 7 9 _______

如何应用数学归纳法证明不等式

如何应用数学归纳法证明不等式

如何应用数学归纳法证明不等式数学归纳法是一种常见的数学证明方法,通过证明初始情况成立和任意情况都成立,来证明一般情况成立。

在不等式证明中,也可以应用数学归纳法。

本文将介绍如何应用数学归纳法证明不等式。

第一步,证明初始情况成立。

通常,需要选取一个最小的自然数来作为初始情况,然后证明不等式在该自然数下成立。

以证明$a^n-1$能够被$(a-1)$整除为例。

当$n=1$时,$a^1-1=a-1$,由于$a-1$显然能够整除$a-1$,因此初始情况成立。

第二步,假设任意情况成立。

即假设当$n=k(k \in N^*)$时,$a^k-1$能够被$(a-1)$整除。

第三步,证明一般情况也成立。

即证明当$n=k+1$时,$a^{k+1}-1$也能够被$(a-1)$整除。

由于$a^{k+1}-1 = a^k \cdot a - 1 = (a^k-1) \cdot a + (a-1)$,而根据假设,$a^k-1$能够被$(a-1)$整除,因此$a^{k+1}-1$也能够被$(a-1)$整除。

通过上述三步,我们得到了$a^n-1$能够被$(a-1)$整除。

类似的,可以应用数学归纳法证明其他的不等式。

例如证明$1+2+...+n=\frac{n(n+1)}{2}$,我们可以选取$1$作为初始情况;假设当$n=k(k \in N^*)$时,$1+2+...+k=\frac{k(k+1)}{2}$;然后证明当$n=k+1$时,$1+2+...+k+(k+1)=\frac{(k+1)(k+2)}{2}$。

当然,在进行数学归纳法证明时,选择初始情况和需要证明的语句都需要谨慎选择。

总结一下,数学归纳法是一种常见的数学证明方法,可以应用在不等式证明当中。

通过证明初始情况成立、假设任意情况成立、证明一般情况也成立这三步,可以有效地证明不等式。

数学归纳法在不等式证明中的应用

数学归纳法在不等式证明中的应用

数学归纳法在不等式证明中的应用数学归纳法(Mathematical Induction)是一种常用的证明方法,通过归纳的方式证明某个性质在一系列正整数中成立。

在数学领域中,归纳法常被应用于等式的证明,但它同样适用于不等式的证明。

本文将介绍数学归纳法在不等式证明中的应用,并通过实例加深理解。

首先,让我们回顾一下数学归纳法的基本原理。

数学归纳法分为两个步骤:基础步骤和归纳步骤。

基础步骤:证明当$n=1$时,不等式成立。

也就是验证当$n$等于最小值时,不等式是否成立。

归纳步骤:假设当$n=k$时,不等式成立,即$P(k)$成立。

然后利用这个假设证明当$n=k+1$时,不等式也成立,即证明$P(k+1)$成立。

接下来,我们通过一个具体的例子来进行说明。

我们要证明对于任意的正整数$n$,都有$2^n > n$成立。

基础步骤:当$n=1$时,$2^1=2$,而$1<2$,所以基础步骤成立。

归纳步骤:假设当$n=k$时,$2^k > k$成立(即假设$P(k)$成立)。

我们需要证明当$n=k+1$时,$2^{k+1} > k+1$也成立(即证明$P(k+1)$成立)。

由归纳假设,$2^k > k$。

我们将这不等式两边都乘以2,得到$2^{k+1} > 2k$。

另一方面,由基础步骤我们知道$k < 2^k$。

把这两个不等式组合在一起,得到$k < 2^k < 2^{k+1}$。

根据不等式的传递性,$k < 2^{k+1}$。

同时注意到$k+1$也小于$2^{k+1}$,于是我们有$k < 2^{k+1} \leq k+1 < 2^{k+1}$。

综上所述,对于任意的正整数$n$,都有$2^n > n$成立。

数学归纳法在不等式证明中的应用并不仅限于上述例子。

实际上,数学归纳法可以应用于各种不等式的证明,只需要根据具体的不等式特性进行相应的推导和变换即可。

5.3数学归纳法证明不等式 课件(人教A版选修4-5)

5.3数学归纳法证明不等式 课件(人教A版选修4-5)
当n=k+1时,因为x> 1 ,所以1+x>0,于是 左边=(1+x)k+1 =(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x.
因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.
这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
1 1 1 1 1 1 1 2 2 2 2 2 2 3 k ( k 1) k ( k 1)2
2.当 n≥ 2 时,求证: 1
1 2

1
1 3

1 n
n
2 . 证明: (1) 当n 2 时,左式 1 1 17 2 右式 2 2
若 k 1 个正数 a1 , a2 ,, ak , ak 1 都相等,则它们都是 1. 其和为 k 1 ,命题成立.
若这 k 1 个 正数 a1 , a2 ,, ak , ak 1 不全 相等,则 其中 必有大于 1 的数,也有小于 1 的数(否则与 a1a2 ak ak 1 1 矛盾).不妨设 a1 1, a2 1 .
证明:⑴当 n 1 时,有 a1 1 ,命题成立. ⑵ 设 当 n k (k≥1) 时 , 命 题 成 立 , 即 若 k 个 正数 a1 , a2 ,, ak 的乘积 a1a2 ak 1,那么它们的和 a1 a2 ak ≥ k . 那么当 n k 1 时 ,已知 k 1 个正 数 a1 , a2 ,, ak , ak 1 满 足 a1a2 ak ak 1 1 .

数学归纳法证明不等式

数学归纳法证明不等式

01
02
03
例子一:n=5时的情况
假设n=10时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} geq b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 + b_9 + b_{10}$。
02
CHAPTER
数学归纳法证明不等式的步骤
验证基础情况
首先验证n=1时,不等式是否成立。
基础情况成立
如果基础情况成立,则可以继续进行归纳步骤。

初始步骤
归纳步骤
归纳假设
假设当n=k时,不等式成立,即$P(k)$成立。
归纳推理
基于归纳假设,推导当n=k+1时,不等式也成立,即$P(k+1)$成立。
应用归纳假设
在归纳推理过程中,需要利用归纳假设$P(k)$来推导$P(k+1)$。
要点一
要点二
完成归纳
当归纳步骤完成后,可以得出结论,对于任意正整数n,不等式都成立。
归纳假设的应用
03
CHAPTER
应用数学归纳法证明不等式的例子
假设n=5时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 geq b_1 + b_2 + b_3 + b_4 + b_5$。
确定数列的通项公式
通过数学归纳法,可以证明数列的通项公式,进而研究数列的性质和规律。

不等式的推导和证明方法

不等式的推导和证明方法

不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。

不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。

在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。

本文将介绍一些常见的不等式的推导和证明方法。

一、数学归纳法数学归纳法是一种证明数学命题的通用方法。

若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。

不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。

例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。

对于 $n=1$,该不等式显然成立。

假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。

根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。

3.2用数学归纳法证明不等式贝努利不等式课件人教新课标B版

3.2用数学归纳法证明不等式贝努利不等式课件人教新课标B版

1
3
1
+…+
+…+
1
3
+
1−

3
1
1
利用 ③,得 11
1
3 1- 3
1
1-3
1
3
D典例透析 S随堂演练
IANLITOUXI
UITANGLIANXI
+1 +
3
= 1−
1
32
1
2
1
+1
3
1
1
1
+ 2+…+
3 3
3
1
1
1
· + 2+…+
3 3
3
1-
1
3+1
≥1−
.
3+1
1-
≥ 1-
3+1
1
即当 n=k+1 时,③式也成立.
故对一切 n∈N*,③式都成立.
=1 −
HONGNANJUJIAO
题型三
则当 n=k+1 时,
1-
Z 知识梳理 Z 重难聚焦
目标导航
… 11-
1
3
1
3
≥1 −
=
1
1
+ 2
3 3
1 1 1
+
2 2 3
>
+…+
1
3
1
, 即②式成立.
2
故原不等式成立.
3.了解贝努利不等式的应用条件.
-2-
3.2
用数学归纳法证明不等式,
贝努利不等式

(高中数学4-4)二 用数学归纳法证明不等式

(高中数学4-4)二 用数学归纳法证明不等式
即n2 2n (n N , n 5) 证明: (1)当n 5时有52 25 ,命题成立
例2.证明不等式sin n n sin (n N )
证明: (1)当n 1时,上式左边 sin 右边,不等式成立.
(2)假设当n k(k 1)时,命题成立,即有sin k k sin .
当是实数,并且满足 1或者 0时,并且满足0 1时,有 (1 x) 1 x( x 1)
第四讲 数学归纳法证明不等式
二.用数学归纳法证明不等式问题
例1观察下面两个数列,从第几项起an始终小于bn ? 证明你的结论.
an n2 :1,4,9,16,25,36,49,64,81,; bn 2n : 2,4,8,16,32,64,128,256,512,.
由数列的前几项猜想,从第5项起, an bn ,
(1 x)k 1 kx. 当n k 1时,
当x是实数,且x 1, x 0时,由贝努利不等式可得
(1 x )n 1 nx , 对一切不小于2的正整数n成立
1 x
1 x
把 贝 努 利 不 等 式 中 的 正整 数n改 为 实 数时, 仍 有
类似不等式成立.
当n k 1时,
例3.证明贝努利不等式:
如果x是实数,且x 1, x 0, n为大于1的自然数,
那么有
(1 x)n 1 nx
证明: (1)当n 2时,由x 0得(1 x)2 1 2x x2 1 2x, 不等式成立. (2)假设当n k(k 2)时不等式成立,即有

5.3数学归纳法证明不等式1 课件(人教A版选修4-5)

5.3数学归纳法证明不等式1 课件(人教A版选修4-5)

练习:用数学归纳法证明不等式 sin n ≤ n sin
练习:用数学归纳法证明不等式 sin n ≤ n sin
证明:⑴当 n 1 时,上式左边 sin 右边,不等式成立.
⑵设当 n k (k ≥ 1) 时,不等式成立,即有 sin k ≤ k sin . 那么,当 n k 1 时, sin( k 1) =
课外训练:
能被 8 整除.
作业:课本 P 6 题 54 明天开始复习不等式(使用发的资料).
答案
1.求证:
1 3 1 5 证:(1)当n=1时,左边= 1 2 ,右边= 2 ,由于 2 2 2 4 5 3 ,故不等式成立. 4 2
1 1 1 1 1 2 2 2 2 ( n N , n ≥ 2). 2 3 n n
证明:⑴当 n 1 时,有 a1 1 ,命题成立. ⑵ 设 当 n k (k≥1) 时 , 命 题 成 立 , 即 若 k 个 正数 a1 , a2 , , ak 的乘积 a1a2 ak 1 ,那么它们的和 a1 a2 ak ≥ k . 那么当 n k 1 时 ,已知 k 1 个正 数 a1 , a2 , , ak , ak 1 满 足 a1a2 ak ak 1 1 .
(2)假设n=k( k N , k ≥ 2)时命题成立,即
1 1 1 1 1 2 2 2 2 . 2 3 k k
则当n=k+1时,
1 1 1 1 1 1 1 1 2 2 2 ( ) 2 . 2 k ( k 1) k k (k 1) k k k 1 k 1 即当n=k+1时,命题成立. 由(1)、(2)原不等式对一切 n N , n ≥ 2都成立.

知识导学(二 用数学归纳法证明不等式

知识导学(二 用数学归纳法证明不等式

二 用数学归纳法证明不等式知识梳理1.本节例题中的有关结论(1)n 2<2n (n ∈N +,___________);(2)|sinnθ|≤___________|sinθ|,(n ∈N +);(3)贝努利不等式:如果x 是实数,且x>-1,x≠0,n 为大于1的自然数,那么有___________;当α是实数,并且满足α>1或者α<0时,有___________;当α是实数并且0<α<1时,有___________.(4)如果n(n 为正整数)个正数a 1,a 2,…,a n 的乘积a 1a 2…a n =1,那么它们的和a 1+a 2+…+a n ≥_____.2.用数学归纳法证明不等式在数学归纳法证明不等式时,我们常会用到证明不等式的其他比较重要的一个方法是___________.知识导学本节内容主要是认知如何用数学归纳法证明正整数n 的不等式(其中n 取无限多个值). 其中例1提供出了一种全新的数学思想方法:观察、归纳、猜想、证明,这是在数学归纳法中经常应用到的综合性数学方法,观察是解决问题的前提条件,需要进行合理的试验和归纳,提出合理的猜想,从而达到解决问题的目的.猜想归纳能培养探索问题的能力,因此,应重视对本节内容的学习.前面已学习过证明不等式的一系列方法,如比较法、综合法、分析法、放缩法、反证法等.而本节又增了数学归纳法证不等式,而且主要解决的是n 是无限的问题,因而难度更大一些,但仔细研究数学归纳法的关键,即由n=k 到n=k+1的过渡,也是学习好用数学归纳法证不等式的重中之重的问题了.疑难突破1.观察、归纳、猜想、证明的方法这种方法解决的问题主要是归纳型问题或探索性问题,结论如何?命题的成立不成立都预先需要归纳与探索,而归纳与探索多数情况下是从特例、特殊情况下入手,得到一个结论,但这个结论不一定正确,因为这是靠不完全归纳法得出的,因此,需要给出一定的逻辑证明,所以,通过观察、分析、归纳、猜想,探索一般规律,其关键在于正确的归纳猜想,如果归纳不出正确的结论,那么数学归纳法的证明也就无法进行了.在观察与归纳时,n 的取值不能太少,否则将得出错误的结论.例1中若只观察前3项:a 1=1,b 1=2⇒a 1<b 1;a 2=4,b 2=4⇒a 2=b 2,a 3=9,b 3=8⇒a 3>b 3,就此归纳出n 2>2n (n ∈N +,n≥3)就是错误的,前n 项的关系可能只是特殊情况,不具有一般性,因而,要从多个特殊事例上探索一般结论.2.从“n=k”到“n=k+1”的方法与技巧在用数学归纳法证明不等式问题中,从“n=k”到“n=k+1”的过渡中,利用归纳假设是比较困难的一步,它不像用数学归纳法证明恒等式问题一样,只需拼凑出所需要的结构来,而证明不等式的第二步中,从“n=k”到“n=k+1”,只用拼凑的方法,有时也行不通,因为对不等式来说,它还涉及“放缩”的问题,它可能需通过“放大”或“缩小”的过程,才能利用上归纳假设,因此,我们可以利用“比较法”“综合法”“分析法”等来分析从“n=k”到“n=k+1”的变化,从中找到“放缩尺度”,准确地拼凑出所需要的结构.典题精讲【例1】 (经典回放)已知函数φ(x)=1+x +1,f(x)=(a+b)x -a x -b x ,其中a,b ∈N +,a≠1,b≠1,a≠b,且ab=4,(1)求函数φ(x)的反函数g(x);(2)对任意n ∈N +,试指出f(n)与g(2n )的大小关系,并证明你的结论.思路分析:欲比较f(n)与g(2n )的大小,需求出f(n)与g(2n )的关于n 的表达式,以利于特殊探路——从n=1,2,3,…中寻找、归纳一般性结论,再用数学归纳法证明.解:(1)由y=1+x +1,得1+x =y-1(y≥1),有x+1=(y-1)2,即x=y 2-2y,故g(x)=x 2-2x(x≥1).(2)∵f(n)=(a+b)n -a n -b n ,g(2n )=4n -2n+1,当n=1时f(1)=0,g(2)=0,有f(1)=g(2).当n=2时,f(2)=(a+b)2-a 2-b 2=2ab=8,g(22)=42-23=8,f(2)=g(22).当n=3时,f(3)=(a+b)3-a 3-b 3=3a 2b+3ab 2=3ab(a+b) >3ab×ab 2=48.g(23)=43-24=48,有f(3)>g(23).当n=4时,f(4)=(a+b)4-a 4-b 4=4a 3b+4ab 3+6a 2b 2=4ab(a 2+b 2)+6a 2b 2>4ab×2ab+6a 2b 2=14a 2b 2=224.g(24)=44-25=224,有f(4)>g(24),由此推测当1≤n≤2时,f(n)=g(2n ),当n≥3时,f(n)>g(2n ).下面用数学归纳法证明.(1)当n=3时,由上述推测成立;(2)假设n=k 时,推测成立.即f(k)>g(2k )(k≥3),即(a+b )k -a k -b k >4k -2k+1,那么f(k+1)=(a+b)k+1-a k+1-b k+1=(a+b)·(a+b)k -a·a k -b·b k=(a+b)[(a+b)k -a k -b k ]+a k b+ab k .又依题设a+b>2ab=4.a k b+ab k >k k bab a 2=2(ab)21+k =2k+2,有f(k+1)>4[(a+b)k -a k -b k ]+2k+2>4(4k -2k+1)+2k+2=4k+1-2k+2=g(2k+1),即n=k+1时,推测也成立.由(1)(2)知n≥3时,f(n)>g(2n )都成立.绿色通道:为保证猜想的准确性,当设n=1,2时,得出f(n)=g(2n ),不要急于去证明,应再试验一下n=3,4时,以免出现错误.【变式训练】 已知等差数列{a n }公差d 大于0,且a 2,a 5是方程x 2-12x+27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-21b n . (1)求数列{a n }\,{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较nb 1与S n+1的大小,并说明理由. 思路分析:“试分析”在告诉我们,n b 1与S n+1的大小可能随n 的变化而变化,因此对n 的取值验证要多取几个.解:(1)由已知得,⎩⎨⎧==+.27,125152a a a a 又∵{a n }的公差大于0,∴a 5>a 2.∴a 2=3,a 5=9.∴d=339525-=-a a =2,a 1=1. ∵T n =1-21b 1,∴b 1=32. 当n≥2时,T n-1=1-21b n-1, ∵b n =T n -T n-1=1-21b n -(1-21b n-1),化简,得b n =31b n-1, ∴{b n }是首项为32,公比为31的等比数列, ∴b n =32×(31)n-1=n 32.∴a n =2n-1,b n =n 32. (2)∵S n =2)]12(1[-+n n=n 2, ∴S n+1=(n+1)2,n b 1=23n, 以下比较nb 1与S n+1的大小: 当n=1时,2311=b ,S 2=4,∴11b <S 2, 当n=2时,2912=b ,S 3=9,∴21b <S 3, 当n=3时,22713=b ,S 4=16,∴31b <S 4,当n=4时,28114=b ,S 5=25,∴41b >S 5. 猜想:n≥4时,n b 1>S n+1. 下面用数学归纳法证明:(1)当n=4时,已证.(2)假设当n=k(k ∈N +,k≥4)时,kb 1>S k+1, 即23k>(k+1)2, 那么,n=k+1时,23111++=k k b =3×23k >3(k+1)2=3k 2+6k+3 =(k 2+4k+4)+2k 2+2k-1>[(k+1)+1]2=S (k+1)+1,∴n=k+1时,nb 1>S n+1也成立. 由(1)(2)可知n ∈N +,n≥4时,n b 1>S n+1都成立. 综上所述,当n=1,2,3时,nb 1<S n+1, 当n≥4时,nb 1>S n+1. 【例2】 (2006江西高考,22) 已知数列{a n }满足:a 1=23,且a n =12311-+--n a na n n (n≥2,n ∈N +). (1)求数列{a n }的通项公式;(2)求证:对一切正整数n ,不等式a 1×a 2…a n <2×n !恒成立.思路分析:由题设条件知,可用构造新数列的方法求得a n ;第(2)问的证明,可以等价变形,视为证明新的不等式.解:(1)将条件变为:1-)11(311---=n n a n a n , 因此,数列{1-n a n }为一个等比数列,其首项为1-11a =31,公比为31,从而1-n n a n 31=n ,据此得a n =133-⨯n nn (n≥1).① (2)证明:据①得,a 1×a 2…a n =)311()311)(311(!2n n --- 为证a 1a 2…a n <2n!, 只要证n ∈N +时有(1-31)(1-231)…(1-n 31)>21.② 显然,左端每个因式皆为正数,先证明,对每个n ∈N +, (1-31)(1-231)…(1-n 31)≥1-(31+231+…+n 31).③ 用数学归纳法证明③式;(Ⅰ)n=1时,显然③式成立,(Ⅱ)假设n=k 时,③式成立.即(1-31)(1-231)…(1-k 31) ≥1-(31+231+…+k 31), 则当n=k+1时, (1-31)(1-231)…(1-k 31)(1-131+k ) ≥[1-(31+231+…+k 31)](1-131+k ) =1-(31+231+…+k 31)-131+k +131+k (31+231+…+k 31) ≥1-(31+231+…+k 31+131+k ). 即当n=k+1时,③式也成立.故对一切n ∈N +,③式都成立. 利用③,得(1-31)(1-231)…(1-n 31) ≥1-(31+231+…+n 31) =1-311])31(1[31--n =1-21[1-(31)n ]=21+21(31)n >21. 绿色通道:本题提供了用数学归纳法证明相关问题的一种证明思路,即要证明的不等式不一定非要用数学归纳法去直接证明,我们通过分析法、综合法等方法的分析,可以找到一些证明的关键,“要证明……”,“只需证明……”,转化为证明其他某一个条件,进而说明要证明的不等式是成立的.【变式训练】 已知数列{a n }是正数组成的等差数列,S n 是其前n 项的和,并且a 3=5,a 4S 2=28.(1)求数列{a n }的通项公式;(2)求证:不等式(1+11a )(1+21a )…(1+n a 1)·332121≥+n 对一切n ∈N +均成立. 思路分析:第(2)问中的不等式左侧,每个括号的规律是一致的,因此121+n 显得“多余”,所以可尝试变形,即把不等式两边同乘以12+n ,然后再证明.(1)解:设数列{a n }的公差为d ,由已知,得⎩⎨⎧=++=+.28)3)(2(,52111d a d a d a ∴(10-3d)(5+d)=28,∴3d 2+5d-22=0,解之得d=2或d=311-. ∵数列{a n }各项均为正,∴d=2.∴a 1=1,∴a n =2n-1.(2)证明:∵n ∈N +,∴只需证明(1+11a )(1+21a )…(1+na 1) ≥12332+n 成立. ①当n=1时,左边=2,右边=2,∴不等式成立.②假设当n=k 时,不等式成立,即(1+11a )(1+21a )…(1+ka 1)≥12332+k . 那么当n=k+1时, (1+11a )(1+21a )…(1+k a 1)(1+11+k a ) ≥12332+k (1+11+k a )=1222332++∙k k 以下只需证明323321222332+≥++k k k . 即只需证明2k+2≥3212+∙+k k .∵(2k+2)2-(3212+∙+k k )2=1>0,∴(1+111a +)(1+211a +)…(1+111++k a ) ≥1)1(233232332++=+k k . 综上①②知,不等式对于n ∈N +都成立. 【例3】设P n =(1+x)n ,Q n =1+nx+2)1(-n n x 2,n ∈N +,x ∈(-1,+∞),试比较P n 与Q n 的大小,并加以证明.思路分析:这类问题,一般都是将P n 、Q n 退至具体的P n 、Q n 开始观察,以寻求规律,作出猜想,再证明猜想的正确性.P 1=1+x=Q 1,P 2=1+2x+x 2=Q 2,P 3=1+3x+3x 2+x 3,Q 3=1+3x+3x 2,P 3-Q 3=x 3,由此推测,P n 与Q n 的大小要由x 的符号来决定.解:(1)当n=1,2时,P n =Q n .(2)当n≥3时,(以下再对x 进行分类).①若x ∈(0,+∞),显然有P n >Q n ;②若x=0,则P n =Q n ;③若x ∈(-1,0),则P 3-Q 3=x 3<0,所以P 3<Q 3;P 4-Q 4=4x 3+x 4=x 3(4+x)<0,所以P 4<Q 4;假设P k <Q k (k≥3),则P k+1=(1+x)P k <(1+x)Q k =Q k +xQ k (运用归纳假设) =1+2)1(2x k k -+x+kx 2+2)1(3x k k - =1+(k+1)x+2)1(+k k x 2+2)1(+k k x 3 =Q k+1+2)1(+k k x 3<Q k+1, 即当n=k+1时,不等式成立.所以当n≥3,且x ∈(-1,0)时,P n <Q n .绿色通道:本题除对n 的不同取值会有P n 与Q n 之间的大小变化,变量x 也影响P n 与Q n 的大小关系,这就要求我们在探索大小关系时,不能只顾“n”,而忽视其他变量(参数)的作用.【变式训练】 已知f(x)=n n n n xx x x --+-,对n ∈N +,试比较f(2)与1122+-n n 的大小,并说明理由. 思路分析:利用分析法探求需要推理证明的关系,然后用数学归纳法证明.解:设F(n)=1211211122222+-=+-+=+-n n n n n , f(2)=1-122+n , 因而只需比较2n 与n 2的大小.n=1时,21>12;n=2时,22=22;n=3时,23<32,n=4时,24=42,n=5时,25>52,猜想n≥5时,2n >n 2,简证2k >k 2(k≥5),则当n=k+1时,2k+1=2×2k >2×k 2=k 2+k 2+2k+1-2k-1=(k+1)2+(k-1)2-2>(k+1)2.综上所述,n=1或n≥5时,f(2)>1122+-n n ; n=2或4时,f(2)=1122+-n n ;n=3时,f(2)<1122+-n n . 问题探究问题:有两堆棋子,数目相同,两人游戏的规则是:两人轮流取棋子,每人可以从一堆中任意取棋,但不能同时从两堆取,取得最后一颗棋子的人获胜,求证后取棋子者一定可以获胜.设每堆棋子数目为n ,你可以先试试能证明上述结论吗?导思:分析题设中的数学思想,转化为数学问题,而本问题可以用数学归纳法证明. 探究:下面用第二数学归纳法证明.证明:设每堆棋子数目为n.(1)当n=1时,先取棋子者只能从一堆里取1颗,这样另一堆里留下的1颗就被后取棋子者取得,所以结论是正确的.(2)假设当n≤k(k≥1)时结论正确,即这时后取棋子者一定可以获胜.考虑当n=k+1时的情形.先取棋子者如果从一堆里取k+1颗,那么另一堆里留下的k+1颗就被后取棋子者取得,所以结论是正确的.先取棋子者如果从一堆里取棋子m(1≤m≤k)颗,这样,剩下的两堆棋子,一堆有k+1颗,另一堆有k+1-m 颗,这时后取棋子者可以在较多的一堆里取m 颗,使两堆棋子数目都是k+1-m 颗,这时就变成了n=k+1-m 的问题,而不论m 是1—k 的哪个整数,n=k+1-m 都是不大于k 的正整数,由归纳假设可知这时后取棋子者一定可以获胜.于是,当n=k+1时结论正确.由(1)(2)知,根据第二数学归纳法,无论每堆棋子的数目是多少,后取棋子者都能获胜.。

数列不等式的证明方法

数列不等式的证明方法

数列不等式的证明方法一、数学归纳法:数学归纳法是一种证明数学命题的方法,常用于证明数列不等式的成立。

1.基本思路:数学归纳法证明数列不等式的基本思路如下:(1)首先,证明当n=1时命题成立;(2)然后,假设当n=k时命题成立,即假设P(k)成立;(3)最后,证明当n=k+1时命题也成立,即证明P(k+1)成立。

2.具体操作步骤:(1)证明当n=1时命题成立;(2)假设当n=k时命题成立,即假设P(k)成立;(3)证明当n=k+1时命题也成立,即证明P(k+1)成立。

3.举例说明:以证明斐波那契数列F(n)的递推形式F(n)=F(n-1)+F(n-2)为例。

(1)首先,证明当n=1时命题成立。

易知F(1)=1,F(0)=0,F(1)=F(0)+F(-1)成立。

(2)假设当n=k时命题成立,即假设F(k)=F(k-1)+F(k-2)成立。

(3)证明当n=k+1时命题也成立,即证明F(k+1)=F(k)+F(k-1)成立。

根据假设,F(k+1)=F(k)+F(k-1)成立,所以命题成立。

二、递推法:递推法的证明思路是通过已知条件和递推关系来逐步推导出结论。

1.基本思路:递推法证明数列不等式的基本思路如下:(1)首先,根据数列的递推关系列出递推式;(2)然后,推导出递推式的通项公式;(3)最后,利用递推式的通项公式证明数列不等式的成立。

2.具体操作步骤:(1)根据数列的递推关系列出递推式;(2)推导出递推式的通项公式;(3)利用递推式的通项公式证明数列不等式的成立。

3.举例说明:以证明斐波那契数列F(n)的递推式F(n)=F(n-1)+F(n-2)为例。

(1)根据递推关系列出递推式:F(n)=F(n-1)+F(n-2);(2)推导出递推式的通项公式:解这个递推方程得到F(n)=A*φ^n+B*λ^n,其中A、B为常数,φ和λ为一元二次方程x^2-x-1=0的两个根,φ≈1.618,λ≈-0.618;(3)利用递推式的通项公式证明数列不等式的成立:证明F(n)>n,通过证明A*φ^n+B*λ^n>n,根据递推式的通项公式可得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档