数学归纳法 高考数学真题解析 高考数学总复习

合集下载

高考数学总复习:第十二篇 第3讲 数学归纳法

高考数学总复习:第十二篇 第3讲 数学归纳法

(m∈N*)能被3整除.
证明 (1)当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1) =(a2+a1)+2a2+a1=3a2+2a1=3+0=3.
即当m=1时,第4m+1项能被3整除.故命题成立.
抓住2个考点
突破4个考向
揭秘3年高考
(2)假设当m=k时,a4k+1能被3整除,则当m=k+1时, a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2 =2(a4k+2+a4k+1)+a4k+2=3a4k+2+2a4k+1.
(2)由假设n=k成立证n=k+1时,要推导详实,并且一定
要运用n=k成立的结论. (3)要注意n=k到n=k+1时增加的项数.
抓住2个考点
突破4个考向
揭秘3年高考
考点自测
1 1.在应用数学归纳法证明凸 n 边形的对角线为 n(n-3)条 2 时,第一步检验第一个值 n0 等于 ( ).
A.1 解析 答案 C
即Tk+1+12=-2ak+1+10bk+1.
因此n=k+1时等式也成立. 由①②可知,对任意n∈N*,Tn+12=-2an+10bn成立.
抓住2个考点
突破4个考向
揭秘3年高考
法二
由(1)得 Tn=2an+22an-1+23an-2+„+2na1,
① ②
2Tn=22an+23an-1+„+2nan+2n+1a1. ②-①,得
则当n=k+1时有
抓住2个考点 突破4个考向 揭秘3年高考
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1 =ak+1b1+q(akb1+ak-1b2+…+a1bk) =ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12)

新教材高考数学第4章数列4数学归纳法含解析选修2

新教材高考数学第4章数列4数学归纳法含解析选修2

数学归纳法素养目标学科素养1.了解数学归纳法的原理.(重点、难点)2.掌握用数学归纳法证明问题的一般方法与步骤.(重点)3.能用数学归纳法证明一些数学命题.(难点)1.数学抽象;2.逻辑推理;3.数学运算情境导学往一匹健壮的骏马身上放一根稻草,马毫无反应;再添加一根稻草,马还是丝毫没有感觉;又添加一根……一直往马身上添稻草,当最后一根轻飘飘的稻草放到了马儿身上后,骏马竟不堪重负瘫倒在地.这在社会学里,取名为“稻草原理”.这其中蕴含着一种怎样的数学思想呢?1.数学归纳法的定义一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n=n0(n0∈N*)时命题成立;(2)(归纳递推)以“当n=k(k∈N*,k≥n0)时命题成立”为条件,推出“当n=k+1时命题也成立”.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立,这种证明方法称为数学归纳法.2.数学归纳法的框图表示判断(正确的打“√”,错误的打“×”).(1)与自然数n有关的问题都可以用数学归纳法来证明.(×)(2)在利用数学归纳法证明问题时,只要推理过程正确,也可以不用进行假设.(×)(3)用数学归纳法证明等式时,由n=k到n=k+1,等式的项数一定增加了一项.(×)1.式子1+k+k2+…+k n(n∈N*),当n=1时,式子的值为(B)A.1 B.1+kC.1+k+k2D.以上都不对2.用数学归纳法证明3n≥n3(n≥3,n∈N*)时,第一步验证( )A.n=1 B.n=2C.n=3 D.n=4C 解析:由题知,n的最小值为3,所以第一步验证n=3是否成立.3.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为___________________.1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2解析:把k更换为k+1.4.式子1+3+5+…+(2n+1)=(n+1)2,当n=1时,右边的式子为________.(1+1)2解析:当n=1时,式子变为“1+3=(1+1)2”,故右边的式子为(1+1)2.【例1】用数学归纳法证明:1+3×2+5×22+…+(2n -1)× 2n -1=2n (2n -3)+3(n ∈N *).证明:(1)当n =1时,左边=1,右边=2×(2-3)+3=1,左边=右边,所以等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即1+3×2+5×22+…+(2k -1)×2k -1=2k(2k -3)+3.则当n =k +1时,1+3×2+5×22+…+(2k -1)×2k -1+(2k +1)×2k =2k(2k -3)+3+(2k+1)×2k=2k(4k -2)+3=2k +1[2(k +1)-3]+3,即当n =k +1时,等式也成立. 由(1)(2)知,等式对任何n ∈N *都成立.用数学归纳法证明等式时,一是弄清n 取第一个值n 0时等式两端项的情况;二是弄清从n =k 到n =k +1等式两端的项是如何变化的,即增加了哪些项,减少了哪些项;三是证明n =k +1时结论也成立,要设法将待证式与所作假设建立联系,并向n =k +1时证明目标的表达式进行变形.用数学归纳法证明:⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1n +2=2n +2(n ∈N *). 证明:(1)当n =1时,左边=1-13=23,右边=21+2=23,等式成立.(2)假设n =k (k ∈N *)时,等式成立, 即⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1k +2=2k +2. 在上式两边同时乘⎝⎛⎭⎪⎫1-1k +3得 ⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1k +2⎝ ⎛⎭⎪⎫1-1k +3=2k +2⎝ ⎛⎭⎪⎫1-1k +3=2k +2k +2k +3=2k +3=2k +1+2, 即当n =k +1时等式成立.由(1)(2)可知对任何n ∈N *,等式都成立.【例2】用数学归纳法证明:112+132+…+12n -12>1-12+13-14+…+12n -1-12n(n ∈N *).证明:(1)当n =1时,左边=1,右边=1-12=12,左边>右边,所以不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立, 即112+132+…+12k -12>1-12+13-14+…+12k -1-12k.则当n =k +1时, 112+132+…+12k -12+12k +12>1-12+13-14+…+12k -1-12k +12k +12>1-12+13-14+…+12k -1-12k+12k +12k +2=1-12+13-14+…+12k -1-12k +12k +1-1-12k +1, 即当n =k +1时,不等式也成立. 由(1)(2)知,不等式对任何n ∈N *都成立.用数学归纳法证明不等式需要注意:1.在归纳递推证明过程中,方向不明确时,可采用分析法完成,经过分析找到推证的方向后,再用综合法、比较法等其他方法证明.2.在推证“n =k +1时不等式也成立”的过程中,常常要将表达式作适当放缩、变形,便于应用所作假设,变换出要证明的结论.用数学归纳法证明:1+12+13+…+12n -1>n 2(n ∈N *).证明:(1)当n =1时,左边=1,右边=12,不等式成立.(2)假设当n =k (k ∈N *)时不等式成立,即1+12+13+…+12k -1>k 2.则当n =k +1时,1+12+13+…+12k -1+12k -1+1+12k -1+2+…+12k >k 2+12k -1+1+12k -1+2+…+12k >k 2+12k +12k +…+12k =k 2+(2k -2k -1)12k =k +12.∴当n =k +1时,不等式成立.由(1)(2)可知,不等式对任何n ∈N *成立.【例3】求证:an +1+(a +1)2n -1能被a 2+a +1整除.(其中n ∈N *,a ∈R )证明:(1)当n =1时,a 2+(a +1)1=a 2+a +1,显然能被a 2+a +1整除,命题成立. (2)假设当n =k (k ∈N *)时,a k +1+(a +1)2k -1能被a 2+a +1整除.则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2(a +1)2k -1=a [a k +1+(a +1)2k -1]+(a +1)2(a +1)2k -1-a (a +1)2k -1=a [a k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1.上式能被a 2+a +1整除, 即当n =k +1时,命题成立.由(1)(2)知,对一切n ∈N *,a ∈R ,命题都成立.证明整除问题的关键是凑项,即采取增项、减项、拆项和因式分解等手段,凑出n =k 时的情形,从而利用归纳递推使问题得以解决.用数学归纳法证明:若f (n )=3×52n +1+23n +1,则f (n )能被17整除.(n ∈N *)证明:(1)当n =1时,f (1)=3×53+24=17×23, ∴f (1)能被17整除,命题成立.(2)假设n =k (k ∈N *)时,f (k )=3×52k +1+23k +1能被17整除.则n =k +1时,f (k +1)=3×52k +3+23k +4=52×3×52k +1+23×23k +1=25×3×52k +1+8×23k +1=17×3×52k +1+8×(3×52k +1+23k +1)=17×3×52k +1+8f (k ).因为f (k )能被17整除,17×3×52k +1也能被17整除,所以f (k +1)能被17整除.由(1)(2)可知,对任意n ∈N *,f (n )都能被17整除.1.用数学归纳法证明等式1+2+3+…+(n +3)=n +3n +42(n ∈N *)时,第一步验证n =1时,左边应取的项是( ) A .1 B .1+2 C .1+2+3D .1+2+3+4D 解析:由数学归纳法的证明步骤可知:当n =1时,等式的左边是1+2+3+(1+3)=1+2+3+4.故选D .2.用数学归纳法证明f (n )=2n-n 2>0(n ≥5,n ∈N *)时,应先证明( ) A .f (1)>0 B .f (2)>0 C .f (4)>0D .f (5)>0D 解析:利用数学归纳法证明f (n )=2n-n 2>0(n ≥5,n ∈N *)时,第一步应该先证明n =5时命题成立,即f (5)=25-52>0.故选D .3.证明命题“凸n 边形内角和等于(n -2)·180°”时,n 可取的第一个值是( ) A .1 B .2 C .3D .4C 解析:n =3时,凸n 边形就是三角形,而三角形的三个内角和等于180°,所以命题成立.故选C .4.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,第一步应验证的等式是____________;从“n =k ”到“n =k +1”左边需增加的等式是____________________.1-12=12 12k +1-1-12k +1 解析:当n =1时,应当验证的第一个式子是1-12=12,从“n =k ”到“n =k +1”左边需增加的等式是12k +1-1-12k +1. 5.在数列{a n }中,a 1=1且a n +1=a n +1nn +1. (1)求出a 2,a 3,a 4;(2)归纳出数列{a n }的通项公式,并用数学归纳法证明归纳出的结论. 解:(1)由a 1=1且a n +1=a n +1nn +1知: a 2=a 1+11×2=32,a 3=a 2+12×3=53,a 4=a 3+13×4=74. (2)猜想数列{a n }的通项公式为a n =2n -1n,证明如下:①当n =1时,左边=a 1=1,右边=2×1-11=1.∴左边=右边,即猜想成立;②假设当n =k 时,猜想成立,即有a k =2k -1k,那么当n =k +1时, a k +1=a k +1kk +1=2k -1k +1k k +1=2k +1k +1=2k +1-1k +1,从而猜想对n =k +1也成立.由①②可知,猜想对任意的n ∈N *都成立,所以数列{a n }的通项公式为a n =2n -1n.1.数学归纳法只能用来证明与正整数有关的命题,其原理类似于不等式的传递性. 2.要认识到用数学归纳法证题时,第一步是递推的基础,第二步是递推的依据,两者缺一不可.3.应用数学归纳法证题时,关键是证明n =k +1时的命题,要想证好这一步,需明确以下两点:一是要证什么,二是n =k +1时命题与所作假设的区别是什么.明确了这两点,也就明确了这一步的证明方向和基本方法.4.有关“和式”或“积式”,一定要“数清”是多少项的和或积,以准确确定n =1及由n =k 变化到n =k +1时“和”或“积”的情况.课时分层作业(十一)数学归纳法 (60分钟 100分) 基础对点练基础考点 分组训练知识点1 用数学归纳法证明等式1.(5分)用数学归纳法证明等式1+2+3+…+(n +3)=n +3n +42(n ∈N *)时,第一步验证n =1,左边应取的项是( ) A .1 B .1+2 C .1+2+3D .1+2+3+4D 解析:当n =1时,n +3=4,故左边应为1+2+3+4. 2.(5分)用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1(n ∈N *)时,等式左边应在n =k 的基础上加上( ) A .k 2+1 B .(k +1)2C .k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2D 解析:当n =k 时,等式左边=1+2+…+k 2;当n =k +1时,等式左边=1+2+…+k 2+(k 2+1)+…+(k +1)2.故选D .3.(10分)用数学归纳法证明:1+3+…+(2n -1)=n 2(n ∈N *).证明:(1)当n =1时,左边=1,右边=1,等式成立.(2)假设当n =k (k ∈N *)时,等式成立,即1+3+…+(2k -1)=k 2, 那么,当n =k +1时,1+3+…+(2k -1)+[2(k +1)-1] =k 2+[2(k +1)-1]=k 2+2k +1=(k +1)2. 这就是说,当n =k +1时等式成立.根据(1)和(2)可知等式对任意正整数n 都成立. 知识点2 用数学归纳法证明不等式4.(5分)用数学归纳法证明:122+132+…+1n +12>12-1n +2,假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是___________________________. 122+132+…+1k +12+1k +22>12-1k +3解析:当n=k+1时,目标不等式为122+132+…+1k+12+1k+22>12-1k+3.5.(10分)证明不等式1+12+13+…+1n<2n(n∈N*).证明:(1)当n=1时,左边=1,右边=2,左边<右边,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即1+12+13+…+1k<2k.当n=k+1时,1+12+13+…+1k+1k+1<2k+1k+1=2k k+1+1k+1<k2+k+12+1k+1=2k+1k+1=2k+1.所以当n=k+1时,不等式成立.由(1)(2)可知,原不等式对任意n∈N*都成立.知识点3 用数学归纳法证明整除问题6.(5分)用数学归纳法证明34n+2+52n+1能被14整除的过程中,当n=k+1时,34(k+1)+2+52(k+1)+1应变形为.25(34k+2+52k+1)+56×34k+2解析:当n=k+1时,34(k+1)+2+52(k+1)+1=81×34k+2+25×52k+1=25(34k+2+52k+1)+56×34k+2.7.(10分)用数学归纳法证明:n3+(n+1)3+(n+2)3能被9整除(n∈N*).证明:(1)当n=1时,13+23+33=36能被9整除,所以结论成立;(2)假设当n=k(k∈N*)时结论成立,即k3+(k+1)3+(k+2)3能被9整除.则当n=k+1时,(k+1)3+(k+2)3+(k+3)3=[k3+(k+1)3+(k+2)3]+[(k+3)3-k3]=[k3+(k+1)3+(k+2)3]+9k2+27k+27=[k3+(k+1)3+(k+2)3]+9(k2+3k+3).因为k3+(k+1)3+(k+2)3能被9整除,9(k2+3k+3)也能被9整除,所以(k +1)3+(k +2)3+(k +3)3也能被9整除,即n =k +1时结论也成立. 由(1)(2)知命题对一切n ∈N *都成立.能力提升练能力考点 适度提升8.(5分)用数学归纳法证明1+a +a 2+…+a n=1-a n +11-a(a ≠1,n ∈N *),在验证n =1时,左边计算所得的式子是(B) A .1 B .1+a C .1+a +a 2D .1+a +a 2+a 39.(5分)利用数学归纳法证明1n +1n +1+1n +2+…+12n <1(n ∈N *,且n ≥2),第二步由k 到 k+1时不等式左端的变化是( ) A .增加了12k +1这一项B .增加了12k +1和12k +2两项C .增加了12k +1和12k +2两项,减少了1k 这一项D .以上都不对C 解析:当n =k 时,左端为1k +1k +1+1k +2+…+12k ;当n =k +1时,左端为1k +1+1k +2+1k +3+…+12k +12k +1+12k +2, 对比可知,C 正确.10.(5分)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,第二步归纳递推中的假设应写成( )A .假设n =2k +1(k ∈N *)时正确,再推n =2k +3时正确 B .假设n =2k -1(k ∈N *)时正确,再推n =2k +1时正确 C .假设n =k (k ∈N *)时正确,再推n =k +1时正确 D .假设n =k (k ∈N *)时正确,再推n =k +2时正确B 解析:∵n 为正奇数,∴在证明时,应假设n =2k -1(k ∈N *)时正确,再推出n =2k +1时正确.故选B .11.(5分)对于不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k ≤k +1,则当n =k +1时,k +12+k +1=k 2+3k +2<k 2+3k +2+k +2=k +22=(k +1)+1,所以当n =k +1时,不等式成立. 上述证法( ) A .过程全都正确 B .n =1验证不正确 C .假设不正确D .从n =k 到n =k +1的推理不正确D 解析:n =1的验证及假设都正确,但从n =k 到n =k +1的推理中没有使用假设作为条件,而是通过不等式的放缩法直接证明,这不符合数学归纳法的证明要求.故选D .12.(5分)用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n 2n 2+13时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是________________________________________________________________________. (k +1)2+k 2解析:当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12. 当n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12, 所以等式左边添加的式子为(k +1)2+k 2.13.(5分)用数学归纳法证明(n +1)·(n +2)·…·(n +n )=2n×1×3×…×(2n -1)(n ∈N *),“从k 到k +1”左端增乘的代数式为________. 2(2k +1) 解析:令f (n )=(n +1)(n +2)…(n +n ),则f (k )=(k +1)(k +2)…(k +k ),f (k +1)=(k +2)(k +3)…(k +k )(2k +1)(2k +2),所以f k +1f k =2k +12k +2k +1=2(2k +1).14.(5分)若存在正整数m ,使得f (n )=(2n +7)·3n+9(n ∈N *)能被m 整除,则m 的最大值为________.36 解析:f (1)=36,f (2)=36×3,f (3)=36×10,…,猜想m 的最大值为36.15.(15分)已知数列{a n }的前n 项和为S n ,其中a n =S n n 2n -1且a 1=13.(1)求a 2,a 3;(2)猜想数列{a n }的通项公式,并证明. 解:(1)a 2=S 22×2×2-1=a 1+a 26,a 1=13,则a 2=115,类似地求得a 3=135.(2)由a 1=11×3,a 2=13×5,a 3=15×7,…,猜想:a n =12n -12n +1.证明:①当n =1时,由(1)可知等式成立. ②假设当n =k 时猜想成立, 即a k =12k -12k +1,那么,当n =k +1时,由题设a n =S nn 2n -1,得a k =S k k 2k -1,a k +1=S k +1k +12k +1,所以S k =k (2k -1)a k =k (2k -1)12k -12k +1=k2k +1, S k +1=(k +1)(2k +1)a k +1, a k +1=S k +1-S k =(k +1)(2k +1)a k +1-k 2k +1. 因此,k (2k +3)a k +1=k2k +1.所以a k +1=12k +12k +3=1[2k +1-1][2k +1+1].这就证明了当n =k +1时命题成立. 由①②可知命题对任意n ∈N *都成立.第四章质量评估(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分) 1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6B 解析:在等差数列{a n }中,若a 2=4,a 4=2,则a 4=12(a 2+a 6)=12(4+a 6)=2,解得a 6=0.故选B .2.已知等比数列{a n }的公比为-2,且a 2+a 5=1,则a 4+a 7=( ) A .-8 B .8 C .-4D .4D 解析:由题意可知a 4+a 7=(a 2+a 5)×(-2)2=4.3.若S n 是等差数列{a n }的前n 项和,且S 10-S 3=14,则S 13的值为( ) A .12 B .18 C .22D .26D 解析:根据题意得S 10-S 3=a 4+a 5+a 6+a 7+a 8+a 9+a 10=7a 7=14,所以a 7=2,S 13=13a 1+a 132=13a 7=26.故选D .4.已知等比数列{a n }的前n 项和为S n ,且9S 3=S 6,a 2=1,则a 1=( ) A .12 B .22C . 2D .2A 解析:∵9S 3=S 6,∴9×a 11-q 31-q =a 11-q 61-q,∴9(1-q 3)=1-q 6,∴1+q 3=9,∴q =2.∴a 1=a 2q =12.5.在数列{a n }中,若a 1=1,a n +1=a n +2n,则a n 等于( ) A .2n-1 B .2n +1-3 C .2n -1D .2n -1-1A 解析:∵a n +1=a n +2n,∴a n +1-a n =2n.∴a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n -1=2n -1.相加得a n -a 1=2+22+23+…+2n -1=21-2n -11-2=2n-2.∴a n =2n-1.6.已知数列212,414,618,8116,…,则其前n 项和S n 为( )A .n 2+n +1-12nB .n 2+n -12nC .n 2+1-12n -1D .n 2+n +2-12n -1A 解析:∵a n =2n +12n ,∴S n =n2n +22+12⎝ ⎛⎭⎪⎫1-12n 1-12=n 2+n +1-12n . 7.已知数列{a n }是递增的等比数列,且a 4a 6-2a 24+a 2a 4=144,则a 5-a 3=( ) A .6 B .8 C .10D .12D 解析:∵{a n }是递增的等比数列,∴a 5-a 3>0.∵a 4a 6=a 25,a 24=a 3a 5,a 2a 4=a 23,∴a 4a 6-2a 24+a 2a 4=144可化为a 25-2a 3a 5+a 23=144,即(a 5-a 3)2=144,∴a 5-a 3=12.故选D .8.已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n -1-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要再证( ) A .n =k +1时等式成立 B .n =k +2时等式成立 C .n =2k +2时等式成立 D .n =2(k +2)时等式成立B 解析:根据数学归纳法的步骤可知,n =k (k ≥2且k 为偶数)的下一个偶数为n =k +2.故选B .二、多项选择题(本题共4小题,每小题5分,共20分)9.已知等比数列{a n }的前n 项和为S n ,下列数列中一定是等比数列的有( ) A .{a 2n } B .{a n a n +1}C .{lg a n }D .S n ,S 2n -S n ,S 3n -S 2nAB 解析:由数列{a n }为等比数列可知,a n a n -1=q (q ≠0),对于A ,a 2n a 2n -1=q 2,故A 项中的数列是等比数列;对于B ,a n a n +1a n -1a n =a n +1a n -1=q 2≠0,故B 项中的数列是等比数列;对于C ,lg a nlg a n -1不一定为常数,即{lg a n }不一定为等比数列;对于D ,若a n =(-1)n,为等比数列,公比为-1,则S n 有可能为0,即S n ,S 2n -S n ,S 3n -S 2n 不一定成等比数列.故选AB .10.在等差数列{a n }中,a 66<0,a 67>0,且a 67>|a 66|,S n 为数列{a n }的前n 项和,则( ) A .公差d <0 B .a 66+a 67<0 C .S 131<0D .使S n >0的n 的最小值为132CD 解析:∵a 66<0,a 67>0,且a 67>|a 66|, ∴d >0,a 67>-a 66,即a 67+a 66>0, ∴S 132=66(a 1+a 132)=66(a 66+a 67)>0,S 131=131a 1+a 1312=131a 66<0,∴使S n >0的n 的最小值为132.11.已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =3n +39n +3,则使得a nb n为整数的正整数n 的值为( ) A .2 B .3 C .4D .14ACD 解析:由题意可得S 2n -1T 2n -1=2n -1a 1+a 2n -122n -1b 1+b 2n -12=2n -1a n 2n -1b n =a n b n ,则a n b n =S 2n -1T 2n -1=32n -1+392n -1+3=3n +18n +1=3+15n +1.由于a n b n为整数,则n +1为15的正约数,则n +1的可能取值有3,5,15,因此,正整数n 的可能取值有2,4,14.故选ACD .12.对于数列{a n },若存在正整数k (k ≥2),使得a k <a k -1,a k <a k +1,则称a k 是数列{a n }的“谷值”,k 是数列{a n }的“谷值点”.在数列{a n }中,若a n =⎪⎪⎪⎪⎪⎪n +9n-8,下面不能作为数列{a n}的“谷值点”的是( ) A .3 B .2C .7D .5AD 解析:a n =⎪⎪⎪⎪⎪⎪n +9n -8,故a 1=2,a 2=32,a 3=2,a 4=74,a 5=65,a 6=12,a 7=27,a 8=98.故a 2<a 3,3不是“谷值点”;a 1>a 2,a 3>a 2,故2是“谷值点”;a 6>a 7,a 8>a 7,故7是“谷值点”;a 4<a 5,5不是“谷值点”.故选AD .三、填空题(本题共4小题,每小题5分,共20分)13.已知{a n }是各项都为正数的等比数列,其前n 项和为S n ,且S 2=3,S 4=15,则a 3=________. 4 解析:∵S 2=3,S 4=15, ∴a 1+a 2=3,a 3+a 4=S 4-S 2=12. ∴a 3+a 4a 1+a 2=4=q 2.∵a n >0,∴q =2. ∴a 1+a 1q =3a 1=3.∴a 1=1.∴a 3=a 1q 2=4.14.已知等差数列{a n }共有10项,其奇数项之和为10,偶数项之和为30,则公差是________.4 解析:∵S 偶-S 奇=5d =20,∴d =4.15.已知数列{a n }满足a n -a n +1=3a n a n +1(n ∈N *),数列{b n }满足b n =1a n,且b 1+b 2+…+b 9=90,则b 5=________,b 4b 6=________. 10 91 解析:由题意可得1a n +1-1a n=3,即数列{b n }是公差为3的等差数列,由b 1+b 2+…+b 9=90,得b 5=10,所以b 4=7,b 6=13,b 4b 6=91.16.在一个数列中,如果每一项与它的后一项的积为同一个常数,那么这个数列称为等积数列,这个常数称为该数列的公积.已知数列{a n }是等积数列,且a 1=-2,公积为5,那么这个数列的前41项的和为________.-92 解析:由题意可得,a 1=-2,a 2=-52,a 3=-2,a 4=-52,…,a 39=-2,a 40=-52,a 41=-2,∴S 41=21×(-2)+20×⎝ ⎛⎭⎪⎫-52=-92.四、解答题(本题共6小题,共70分)17.(10分)数列{a n }的前n 项和为S n ,已知a n =5S n -3(n ∈N *),求数列{a n }的通项公式.解:当n =1时,a 1=5S 1-3=5a 1-3,得a 1=34.当n ≥2时,由已知a n =5S n -3, 得a n -1=5S n -1-3.两式作差得a n -a n -1=5(S n -S n -1)=5a n , ∴a n =-14a n -1,∴数列{a n }是首项a 1=34,公比q =-14的等比数列.∴a n =a 1qn -1=34×⎝ ⎛⎭⎪⎫-14n -1. 18.(12分)已知S n 为等差数列{a n }的前n 项和,a 1=8,S 10=-10.(1)求a n ,S n ;(2)设T n =|a 1|+|a 2|+…+|a n |,求T n . 解:(1)∵S 10=10a 1+45d =80+45d =-10, ∴d =-2.∴a n =8-2(n -1)=10-2n ,S n =n 8+10-2n 2=9n -n 2.(2)令a n =0,得n =5. 当n ≤5时,T n =S n =9n -n 2;当n ≥6时,T n =-S n +2S 5=n 2-9n +40,∴T n =⎩⎪⎨⎪⎧9n -n 2,n ≤5,n 2-9n +40,n ≥6.19.(12分)已知数列{a n }满足2a n +1=1a n +1a n +2(n ∈N *),且a 3=15,a 2=3a 5. (1)求{a n }的通项公式;(2)若b n =3a n a n +1(n ∈N *),求数列{b n }的前n 项和S n . (1)解:由2a n +1=1a n +1a n +2(n ∈N *)可知数列⎩⎨⎧⎭⎬⎫1a n 为等差数列.由已知得1a 3=5,1a 2=13×1a 5. 设其公差为d ,则1a 1+2d =5,1a 1+d =13⎝ ⎛⎭⎪⎫1a 1+4d ,解得1a 1=1,d =2,于是1a n=1+2(n -1)=2n -1,整理得a n =12n -1.(2)由(1)得b n =3a n a n +1=32n -12n +1=32⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =32⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=3n 2n +1. 20.(12分)某地区原有森林木材存量为a ,且每年增长率为25%.因生产建设的需要,每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量. (1)求{a n }的表达式.(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量应不少于79a .如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(lg 2≈0.30) 解:(1)设第一年后的森林木材存量为a 1,第n 年后的森林木材存量为a n , ∴a 1=a ⎝ ⎛⎭⎪⎫1+14-b =54a -b ,a 2=54a 1-b =54⎝ ⎛⎭⎪⎫54a -b -b =⎝ ⎛⎭⎪⎫542a -⎝ ⎛⎭⎪⎫54+1b ,a 3=54a 2-b =⎝ ⎛⎭⎪⎫543a -⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫542+54+1b .由上面的a 1,a 2,a 3推测a n =⎝ ⎛⎭⎪⎫54n a -⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1+⎝ ⎛⎭⎪⎫54n -2+…+54+1b =⎝ ⎛⎭⎪⎫54n a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1b (其中n ∈N *).证明如下:①当n =1时,a 1=54a -b ,结论成立.②假设当n =k 时,a k =⎝ ⎛⎭⎪⎫54k a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54k -1b 成立,则当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫54ka -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54k -1b -b =⎝ ⎛⎭⎪⎫54k +1a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54k +1-1b . 也就是说,当n =k +1时,结论也成立.由①②可知,a n =⎝ ⎛⎭⎪⎫54n a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1b 对一切n ∈N *成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须小于79a ,∴⎝ ⎛⎭⎪⎫54n a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1×1972a <79a ,即⎝ ⎛⎭⎪⎫54n>5.两边取对数得nlg 54>lg 5,即n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈7.∴经过8年后该地区就会发生水土流失.21.(12分)已知数列{a n }的前n 项和S n =2a n -2n.(1)求a 1,a 2;(2)设c n =a n +1-2a n ,证明:数列{c n }是等比数列; (3)求数列⎩⎨⎧⎭⎬⎫n +12c n 的前n 项和T n . (1)解:∵a 1=S 1,2a 1=S 1+2,∴a 1=S 1=2. 由2a n =S n +2n ,知2a n +1=S n +1+2n +1=a n +1+S n +2n +1,∴a n +1=S n +2n +1,①∴a 2=S 1+22=2+22=6.(2)证明:由题设和①式知a n +1-2a n =(S n +2n +1)-(S n +2n )=2n +1-2n =2n ,即c n =2n,∴c n +1c n=2(常数).∵c 1=21=2,∴{c n }是首项为2,公比为2的等比数列. (3)解:∵c n =2n,∴n +12c n =n +12n +1. ∴数列⎩⎨⎧⎭⎬⎫n +12c n 的前n 项和T n =222+323+424+…+n +12n +1,12T n =223+324+…+n 2n +1+n +12n +2,两式相减,得12T n =222+123+124+125+…+12n +1-n +12n +2=12+123×⎝ ⎛⎭⎪⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2=34-n +32n +2.∴T n =32-n +32n +1. 22.(12分)已知数列{a n }的前n 项和S n =a n +12n 2+32n -2(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n=⎩⎪⎨⎪⎧1a n-1a n+1,n 为奇数,4×⎝ ⎛⎭⎪⎫12a n,n 为偶数,且数列{b n }的前n 项和为T n ,求T 2n .解:(1)由于S n =a n +12n 2+32n -2,所以当n ≥2时,S n -1=a n -1+12(n -1)2+32(n -1)-2,两式相减得a n =a n -a n -1+n +1,于是a n -1=n +1,所以a n =n +2. (2)由(1)得b n=⎩⎪⎨⎪⎧1n +1n +3,n 为奇数,⎝ ⎛⎭⎪⎫12n,n 为偶数,所以T 2n =b 1+b 2+b 3+…+b 2n =(b 1+b 3+…+b 2n -1)+(b 2+b 4+…+b 2n ). 因为b 1+b 3+…+b 2n -1=12×4+14×6+16×8+…+12n ×2n +2=14⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n ×n +1 =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=n4n +1, b 2+b 4+…+b 2n =⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫124+…+⎝ ⎛⎭⎪⎫122n =14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n ,于是T 2n =n 4n +1+13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .。

高考数学总复习考点知识专题讲解6 数学归纳法

高考数学总复习考点知识专题讲解6  数学归纳法

高考数学总复习考点知识专题讲解专题6 数学归纳法数学归纳法是一种重要的数学方法,其应用主要体现在证明等式、证明数列不等式、证明整除性问题、归纳猜想证明等.本高考数学总复习考点知识专题讲解专题主要举例说明利用数学归纳法证明数列问题.知识点一数学归纳法在证明一个与正整数有关的命题时,可采用下面两个步骤:1.(奠基)验证:n=n0(n0∈N+)时,命题成立;2.(递推)假设n=k(k∈N+,k≥n0)时命题成立,证明n=k+1时命题也成立.只要完成这两个步骤,就可以知道:对任何从n0开始的正整数n,命题成立.这种证明方法叫作数学归纳法.3.利用数学归纳法证题的三个关键点(1)验证是基础找准起点,奠基要稳,有些问题中验证的初始值不一定是1.(2)递推是关键数学归纳法的实质是递推,分析从n=k到n=k+1的过程中,式子项数的变化,关键是弄清等式两边的构成规律,即从n=k到n=k+1,等式的两边会增加多少项、增加怎样的项.(3)利用假设是核心在第二步证明n=k+1成立时,一定要利用归纳假设,即把归纳假设“n=k时命题成立”作为条件.在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法. 【例1】用数学归纳法证明不等式2*2(1)()n n n N >+∈时,初始值0n 应等于.【例2】用数学归纳法证明不等式11113(2,)1224n n N n n n n +++>≥∈+++的过程中,由n k =递推到1n k =+时,不等式左边增加了() A .12(1)k +B .112122k k +++C .11211k k -++D .112122k k -++【例3】用数学归纳法证明等式(1)(2)(3)()213(21)n n n n n n n ++++=⋅⋅⋅⋅-,其中n N ∈,1n ≥,从n k =到1n k =+时,等式左边需要增乘的代数式为()A .22k +B .(21)(22)k k ++C .211k k ++D .(21)(22)1k k k +++ 【例4】已知n 为正偶数,用数学归纳法证明111111112()2341242n n n n-+-+⋯+>++⋯+-++时,若已假设(2n k k =≥,且k 为偶数)时等式成立,则还需利用假设再证() A .1n k =+时不等式成立B .2n k =+时不等式成立 C .22n k =+时不等式成立D .2(2)n k =+时不等式成立知识点二用数学归纳法证明等式 1.看结构(1)看等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关,从k n =到1+=k n ,等式两边会增加多少项; 2.配凑项(1)凑假设:将1+=k n 时的式子转化成与归纳假设的结构相同的式子; (2)凑结构:然后利用归纳假设,经过恒等变形,得到结论所需的结构形式. 【例5】用数学归纳法证明:*(1)(2)()213(21)()n n n n n n n N ++⋯+=⨯⨯⨯⋯⨯-∈.【例6】请用数学归纳法证明:223333(1)12...(1)4n n n n ++++-+=.知识点三归纳—猜想—证明1.“归纳—猜想—证明”的主要题型有: (1)已知数列的递推公式,求通项或前n 项和.(2)由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在. (3)给出一些简单的命题(n =1,2,3,…),猜想并证明对任意正整数n 都成立的一般性命题.2.“归纳—猜想—证明”的一般环节(1)计算:根据条件,准确计算出前若干项,这是归纳、猜想的基础;(2)归纳与猜想:通过观察、分析、比较、综合、联想,猜想出一般性的结论; (3)证明:利用数学归纳法证明一般性结论. 【例7】已知正项数列{}n a 的前n 项和为n S ,(1)2n n n a a S +=.(1)计算1a ,2a ,3a ,猜想数列{}n a 的通项公式; (2)用数学归纳法证明数列{}n a 的通项公式.知识点四数学归纳法的综合应用用数学归纳法证明不等式的关键是由n k =时成立得1n k =+时成立.要注意两凑:一凑归纳假设;二凑证明目标,在凑证明目标时,主要方法有①放缩法;②基本不等式法;③作差比较法;④综合法与分析法;⑤利用函数的单调性.【例8】(2009•山东理)等比数列{}n a 的前n 项和为n S ,已知对任意的*n N ∈,点(,)n n S 均在函数(0x y b r b =+>且1)b ≠,b ,r 均为常数的图象上. (Ⅰ)求r 的值.(Ⅱ)当2b =时,记22(log 1)(*)n n b a n N =+∈,证明:对任意的*n N ∈,不等式成立1212111n nb b b b b b +++⋅⋅⋯⋅>【例9】记n S 为等差数列{}n a 的前n 项和,且420S =,510a =. (1)求n S ;(2(1)()2n n n S n N +++>∈.【例10】用两种方法证明:33*278()n n n N +--∈能被49整除.【例11】是否存在实数a ,b ,c ,使得等式2(1)135246(2)(4)()4n n n n n an bn c +⋅⋅+⋅⋅+⋯⋯+++=++对于一切正整数n 都成立?若存在,求出a ,b ,c 的值;若不存在,说明理由.【训练1】用数学归纳法证明等式:1221357(1)(21)(1)(21)(1)(23)(1)(2)n n n n n n n n +++-+-++⋯+--+-++-+=-+.要验证当1n =时等式成立,其左边的式子应为()A .1-B .13-+C .135-+-D .1357-+-+【训练2】用数学归纳法证明21211n n nn ->++对任意(,)n k n k N >∈的自然数都成立,则k 的最小值为()A .1B .2C .3D .4【训练3】用数学归纳法证明“22n n >对于0n n …的正整数n 都成立”时,第一步证明中的初始值0n 应取() A .2B .3C .4D .5【训练4】用数学归纳法证明不等式“1111(,2)232nn n N n +++⋅⋅⋅+<∈≥”时,由(2)n k k =…时不等式成立,推证1n k =+时,左边增加的项数是() A .12k -B .21k -C .2k D .21k +【训练5】用数学归纳法证明222(1)1232n n n +++++=时,由n k =到1n k =+,左边需要添加的项数为()A .1B .kC .2kD .21k +【训练6】用数学归纳法证明不等式“111131214n n n n ++⋯+>+++”的过程中,由n k =递推到1n k =+时,不等式左边() A .增加了一项“12(1)k +” B .增加了两项“121k +”和“12(1)k +”C .增加了一项“12(1)k +”,但又减少了一项“11k +” D .增加了两项“121k +”和“12(1)k +”,但又减少了一项“11k +”【训练7】已知经过同一点的*(n n N ∈,3)n ≥个平面,任意三个平面不经过同一条直线,若这n 个平面将空间分成()f n 个部分.现用数学归纳法证明这一命题,证明过程中由n k =到1n k =+时,应证明增加的空间个数为()A .2kB .22k +C .222k k ++D .22k k ++【训练8】用数学归纳法证明:2221(11)(22)()(1)(2)(3n n n n n n ++++++=++为正整数).【训练9】已知正数列{}n a 满足233312na n =+++.(1)求1a ,2a ,3a 的值;(2)试猜想数列{}n a 的通项公式,并用数学归纳法证明你的结论.【训练10】用数学归纳法证明:2221112(1)11...23(1)1n n n +-++++<++.【训练11】2(1)2n +.【训练12】用数学归纳法证明:21243()n n n N ++++∈能被13整除.【训练13】用数学归纳法证明:对任意正整数n ,4151n n +-能被9整除.【训练14】在教材中,我们已研究出如下结论:平面内n 条直线最多可将平面分成211122n n ++个部分.现探究:空间内n 个平面最多可将空间分成多少个部分,*n N ∈. 设空间内n 个平面最多可将空间分成32()1f n an bn cn =+++个部分. (1)求a ,b ,c 的值; (2)用数学归纳法证明此结论.。

答案第39讲 数学归纳法--高考数学习题和答案

答案第39讲 数学归纳法--高考数学习题和答案

f1( 2 )
4 2
,
f2( 2)
2
16 3
,

2
f1
( 2
)
2
f2
( 2
)
1.
(Ⅱ)证明:由已知,得 xf0 (x) sin x, 等式两边分别对 x 求导,得 f0 (x) xf0(x) cos x ,

f0 (x)
xf1 ( x)
cos
x
sin(x
) 2
,类似可得
2 f1(x) xf2 (x) sin x sin(x ) ,
由 an1
p
p
1
an
c p
an1
p
易知
an
0, n N *
当nk
1时
ak 1 ak
p 1 p
c p
ak p
1
1( c p akp
1)
由 ak
1
cp
0 得 1
1 p
1 p
c ( akp
1)
0
由(Ⅰ)中的结论得 ( ak1 ) p [1 1 ( c 1)]p 1 p 1 ( c 1) c
1
(1)当 n 1 时由 a1 c p 0 ,即 a1p c 可知
a2
p 1 p a1
c p
a11
p
a1[1
1c p ( a1p
1)] a1 ,
1
1
并且 a2 f (a1) c p ,从而 a1 a2 c p
1
故当 n 1 时,不等式 an an1 c p 成立。
1
(2)假设 n k(k 1, k N*) 时,不等式 ak ak1 c p 成立,则

专题37 数学归纳法-高考复习资料(解析版)

专题37 数学归纳法-高考复习资料(解析版)

假设 n=2k-1 正确,再推第 k+1 个正奇数,即 n=2k+1 正确. 10.(2019·新余月考)用数学归纳法证明 1+a+a2+…+an+1=1-an+2(a≠1,n∈N*),在验证 n=1 时,等式
1-a
左边的项是( )
A.1
B.1+a
C.1+a+a2
D.1+a+a2+a3
【答案】C
【解析】 当 n=1 时,n+1=2, ∴左边=1+a1+a2=1+a+a2.
111
1
k
+ + +…+


2×4 4×6 6×8
2k(2k+2) 4(k+1)
111
1
1
则当 n=k+1 时, + + +…+

2×4 4×6 6×8
2k(2k+2) 2(k+1)[2(k+1)+2]
k
1
k(k+2)+1



4(k+1) 4(k+1)(k+2) 4(k+1)(k+2)
(k+1)2
2021 高考领跑一轮复习资料·数学篇
专题 37 数学归纳法
一、【知识精讲】 1.数学归纳法 一般地,证明一个与正整数 n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当 n 取第一个值 n0(n0∈N*)时命题成立; (2)(归纳递推)假设 n=k(k≥n0,k∈N*)时命题成立,证明当 n=k+1 时命题也成立. 只要完成这两个步骤,就可以断定命题对从 n0 开始的所有正整数 n 都成立.上述证明方法叫做数学归纳法. 2.数学归纳法的框图表示
B.假使 n=2k-1 时正确,再推 n=2k+1 正确(k∈N*)
C.假使 n=k 时正确,再推 n=k+1 正确(k∈N*) D.假使 n≤k(k≥1)时正确,再推 n=k+2 时正确(k∈N*)

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。

2021-2022年高考数学总复习必做05数学归纳法试题含解析

2021-2022年高考数学总复习必做05数学归纳法试题含解析

2021年高考数学总复习必做05数学归纳法试题含解析【三年高考】1.【xx 江苏高考,23】 已知集合,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除=,令表示集合所含元素的个数. (1)写出的值;(2)当时,写出的表达式,并用数学归纳法证明. 【解析】(1).(2)当时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩().下面用数学归纳法证明:3)若,则,此时有()()11122223k k f k f k k --+=+=++++ ()()1211223k k k +-+=++++,结论成立;4)若,则,此时有()()2122223k k f k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立;5)若,则,此时有()()1122223k kf k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立;6)若,则,此时有()()1112123k k f k f k k -+=+=++++()()()11121223k k k +-+-=++++,结论成立.综上所述,结论对满足的自然数均成立. 2. 【xx 江苏,理23】已知函数,设为的导数, (1)求的值;(2)证明:对任意,等式12()()4442n n nf f πππ-+=都成立. 【答案】(1);(2)证明见解析. 【解析】(1)由已知102sin cos sin ()'()()'x x xf x f x x x x===-,21223cos sin sin 2cos 2sin ()'()()'x x x x xf x f x x x x x x ==-=--+, 所以,, 故.(1)时命题已经成立,(2)假设时,命题成立,即1()()sin()2k k k kf x xf x x π-+=+, 对此式两边求导可得1'()()'()cos()2k k k k kf x f x xf x x π-++=+,即11(1)()()sin()2k k k k f x xf x x π++++=+,因此时命题也成立.综合(1)(2)等式1()()sin()2n n n nf x xf x x π-+=+对一切都成立.令,得11()()sin()44442n n n nf f πππππ-++=+,所以12()()4442n n nf f πππ-+=. 3.【xx 山东文12】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;…… 照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________. 【答案】【解析】通过观察这一系列等式可以发现,等式右边最前面的数都是,接下来是和项数有关的两项的乘积,经归纳推理可知是,所以第个等式右边是. 4.【xx 高考山东,理11】观察下列各式:……照此规律,当nN 时,012121212121n n n n n C C C C -----++++= .【答案】【xx 年高考命题预测】纵观近几年各地高考试题,江苏高考对数学归纳法的考查主要在方法的运用的考查.其应用几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透;预计xx 年高考也将会有题目用到推理证明的方法。

2020年 名师讲解高考数学总复习 第7章 7.7 数学归纳法

2020年 名师讲解高考数学总复习 第7章 7.7 数学归纳法

§7.7数学归纳法考情考向分析高考要求理解数学归纳法的原理,能用数学归纳法证明一些简单的命题,以附加题形式在高考中出现,难度为中高档.1.由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法.2.用数学归纳法证明一个与正整数有关的命题时,其步骤如下:(1)归纳奠基:证明取第一个自然数n0时命题成立;(2)归纳递推:假设n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时,命题成立;(3)由(1)(2)得出结论.概念方法微思考1.用数学归纳法证明命题时,n取第1个值n0,是否n0就是1?提示n0是对命题成立的第1个正整数,不一定是1.如证明n边形的内角和时,n≥3. 2.用数学归纳法证明命题时,归纳假设不用可以吗?提示不可以,用数学归纳法证明命题,必须用到归纳假设.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有与正整数有关的数学命题都必须用数学归纳法证明.( × )(2)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(3)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(4)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ )题组二 教材改编2.[P94习题T7]用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证_____.答案 1+12+13<2解析 ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大的项为122-1=13.3.[P103T13]在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为________.答案 a n =1(2n -1)(2n +1)解析 当n =2时,13+a 2=2×3×a 2,∴a 2=13×5;当n =3时,13+115+a 3=3×5×a 3,∴a 3=15×7;当n =4时,13+115+135+a 4=4×7×a 4,∴a 4=17×9;故猜想a n =1(2n -1)(2n +1).4.[P105T13]已知a 1=12,a n +1=3a na n +3,则a 2,a 3,a 4,a 5的值分别为________.由此猜想a n=________.答案 37,38,13,310 3n +5解析 a 2=3a 1a 1+3=3×1212+3=37=32+5,同理a 3=3a 2a 2+3=38=33+5,a 4=39=34+5,a 5=310=35+5,又a 1=31+5=12,符合以上规律.故猜想a n =3n +5.题组三 易错自纠 5.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N *),在验证n =1时,等式左边的项是________. 答案 1+a +a 2解析 当n =1时,n +1=2, ∴左边=1+a 1+a 2=1+a +a 2.6.用数学归纳法证明1+2+3+…+2n =2n -1+22n -1(n ∈N *)时,假设当n =k 时命题成立,则当n =k +1时,左端增加的项数是__________. 答案 2k解析 运用数学归纳法证明1+2+3+…+2n =2n -1+22n -1(n ∈N *).当n =k 时,则有1+2+3+…+2k =2k -1+22k -1(k ∈N *),左边表示的为2k 项的和. 当n =k +1时,左边=1+2+3+…+2k +(2k +1)+…+2k +1,表示的为2k+1项的和,增加了2k +1-2k =2k 项.题型一 用数学归纳法证明等式1.用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n4(n +1)(n ∈N *).证明 ①当n =1时,左边=12×1×(2×1+2)=18,右边=14×(1+1)=18,左边=右边,所以等式成立.②假设n =k (k ∈N *,k ≥1)时等式成立,即有 12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1),则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2]=k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2)=k +14(k +2)=k +14(k +1+1). 所以当n =k +1时,等式也成立. 由①②可知,对于一切n ∈N *等式都成立.2.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明 ①当n =1时,等式左边=1-12=12=右边,等式成立.②假设当n =k (k ∈N *)时,等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,那么,当n =k +1时,有1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2, 所以当n =k +1时,等式也成立. 由①②知,等式对任何n ∈N *均成立. 思维升华 用数学归纳法证明等式时应注意: (1)明确初始值n 0的取值;(2)由n =k 证明n =k +1时,弄清左边增加的项,明确变形目标; (3)变形时常用的几种方法:①因式分解;②添拆项;③配方法.题型二 证明不等式例1 若函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过点P (4,5),Q n (x n ,f (x n ))(n ∈N *)的直线PQ n 与x 轴的交点的横坐标,试运用数学归纳法证明:2≤x n <x n +1<3. 证明 ①当n =1时,x 1=2,f (x 1)=-3,Q 1(2,-3). 所以直线PQ 1的方程为y =4x -11, 令y =0,得x 2=114,因此2≤x 1<x 2<3,即n =1时结论成立.②假设当n =k (k ≥1,k ∈N *)时,结论成立, 即2≤x k <x k +1<3.当n =k +1时,直线PQ k +1的方程为 y -5=f (x k +1)-5x k +1-4·(x -4).又f (x k +1)=x 2k +1-2x k +1-3, 代入上式,令y =0,得x k +2=3+4x k +12+x k +1=4-52+x k +1,由归纳假设,2<x k +1<3,x k +2=4-52+x k +1<4-52+3=3;x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2, 所以2≤x k +1<x k +2<3, 即当n =k +1时,结论成立.由①②知对任意的正整数n,2≤x n <x n +1<3.思维升华 数学归纳法证明不等式的适用范围及关键(1)适用范围:当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则应考虑用数学归纳法.(2)关键:由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.跟踪训练1 用数学归纳法证明不等式:1n +1n +1+1n +2+…+1n 2>1(n ∈N *且n >1).证明 ①当n =2时,12+13+14=1312>1成立.②设n =k (k ∈N *,k >1)时,1k +1k +1+1k +2+…+1k2>1成立.由于当k >1时,k 2-k -1>0,即k (2k +1)>k 2+2k +1, 则当n =k +1时,1k +1+1k +2+1k +3+…+1(k +1)2=⎝⎛⎭⎫1k +1k +1+1k +2+…+1k 2+1k 2+1+1k 2+2+…+1k 2+2k +1-1k >1+1k 2+1+1k 2+2+…+1k 2+2k +1-1k>1+1k (2k +1)+1k (2k +1)+…+1k (2k +1)-1k=1+2k +1k (2k +1)-1k=1.综合①②可知,原不等式对n ∈N *且n >1恒成立.题型三 数学归纳法的综合应用 命题点1 整除问题例2 (2018·苏北四市期中)设n ∈N *,f (n )=3n +7n -2. (1)求f (1),f (2),f (3)的值;(2)求证:对任意的正整数n ,f (n )是8的倍数. (1)解 ∵n ∈N *,f (n )=3n +7n -2, ∴f (1)=3+7-2=8, f (2)=32+72-2=56, f (3)=33+73-2=368.(2)证明 用数学归纳法证明如下: ①当n =1时,f (1)=3+7-2=8,成立;②假设当n =k (k ∈N *)时成立,即f (k )=3k +7k -2能被8整除, 则当n =k +1时, f (k +1)=3k +1+7k +1-2 =3×3k +7×7k -2 =3(3k +7k -2)+4×7k +4 =3(3k +7k -2)+4(7k +1),∵3k +7k -2能被8整除,7k +1是偶数, ∴3(3k +7k -2)+4(7k +1)一定能被8整除, 即n =k +1时也成立.由①②得对任意正整数n ,f (n )是8的倍数. 命题点2 和二项式系数有关的问题例3 (2018·江苏扬州中学期中)已知F n (x )=∑k =0n[(-1)k ·C k n f k (x )](n ∈N *).(1)若f k (x )=x k ,求F 2 015(2)的值;(2)若f k (x )=x x +k (x ∉{0,-1,…,-n }),求证:F n (x )=n !(x +1)(x +2)…(x +n ).(1)解 F n (x )=∑k =0n[(-1)kC k n f k (x )]=∑k =0n[(-x )k C k n ]=∑k =0n[C k n (-x )k ·1n -k]=(1-x )n , ∴F 2 015(2)=-1.(2)证明 ①当n =1时,左边=1-x x +1=1x +1=右边.②设n =m (m ∈N *)时,对一切实数x (x ≠0,-1,…,-m ),有∑k =0m ⎣⎡⎦⎤(-1)k C k mx x +k =m !(x +1)(x +2)…(x +m ),那么,当n =m +1时,对一切实数x (x ≠0,-1,…,-(m +1)), 有∑k =0m +1 ⎣⎡⎦⎤(-1)k C k m+1x x +k=1+∑k=1m ⎣⎡⎦⎤(-1)k (C k m +C k -1m )x x +k +(-1)m +1x x +m +1 =∑k =0m⎣⎡⎦⎤(-1)k C k m x x +k +∑k =1m +1⎣⎡⎦⎤(-1)k C k -1m x x +k =∑k =0m⎣⎡⎦⎤(-1)k C k m x x +k -∑k =0m ⎣⎢⎡⎦⎥⎤(-1)k C k mx +1x +1+k ·x x +1 =m !(x +1)(x +2)…(x +m )-m !(x +2)(x +3)…(x +1+m )·xx +1=m ![(x +m +1)-x ](x +1)(x +2)…(x +m )(x +m +1)=(m +1)!(x +1)(x +2)…(x +m +1),即n =m +1时,等式成立.故对一切正整数n 及一切实数x (x ≠0,-1,…,-n ),有 ∑k =0n⎣⎡⎦⎤(-1)k C k n x x +k =n !(x +1)(x +2)…(x +n ). 命题点3 和数列集合等有关的交汇问题例4 设集合M ={1,2,3,…,n }(n ∈N *,n ≥3),记M 的含有三个元素的子集个数为S n ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为T n . (1)分别求T 3S 3,T 4S 4,T 5S 5,T 6S 6的值;(2)猜想T nS n关于n 的表达式,并加以证明.解 (1)当n =3时,M ={1,2,3},S 3=1,T 3=2,T 3S 3=2;当n =4时,M ={1,2,3,4},S 4=4,T 4=2+2+3+3=10,T 4S 4=52,T 5S 5=3,T 6S 6=72.(2)猜想T n S n =n +12.下面用数学归纳法证明: ①当n =3时,由(1)知猜想成立.②假设当n =k (k ≥3,k ∈N *)时,猜想成立,即T k S k =k +12,而S k =C 3k ,所以T k =k +12C 3k. 则当n =k +1时,易知S k +1=C 3k +1, 而当集合M 从{1,2,3,…,k }变为{1,2,3,…,k ,k +1}时,T k +1在T k 的基础上增加了1个2,2个3,3个4,…,(k -1)个k ,所以T k +1=T k +2×1+3×2+4×3+…+k (k -1) =k +12C 3k +2(C 22+C 23+C 24+…+C 2k ) =k +12C 3k+2(C 33+C 23+C 24+…+C 2k ) =k -22C 3k +1+2C 3k +1=k +22C 3k +1=(k +1)+12S k +1, 即T k +1S k +1=(k +1)+12.所以当n =k +1时,猜想也成立. 综上所述,猜想成立.思维升华 利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.跟踪训练2 (1)求证:对一切正整数n,42n +1+3n +2都能被13整除.证明 ①当n =1时,42×1+1+31+2=91能被13整除.②假设当n =k (k ∈N *)时,42k +1+3k +2能被13整除,则当n =k +1时, 42(k+1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3=42k +1·13+3·(42k +1+3k +2),∵42k +1·13能被13整除,42k +1+3k +2能被13整除,∴当n =k +1时也成立,由①②可知,当n ∈N *时,42n +1+3n+2能被13整除.(2)已知数列{a n }的各项都是正数,且满足:a 0=1,a n +1=12·a n ·(4-a n ),n ∈N .①求a 1,a 2;②证明:a n <a n +1<2,n ∈N . ①解 a 0=1,a 1=12a 0·(4-a 0)=32,a 2=12·a 1(4-a 1)=158.②证明 用数学归纳法证明: (ⅰ)当n =0时,a 0=1,a 1=32,∴a 0<a 1<2,命题成立.(ⅱ)假设n =k (k ∈N *,k ≥1)时有a k -1<a k <2. 则n =k +1时,a k -a k +1=12a k -1(4-a k -1)-12a k (4-a k )=2(a k -1-a k )-12(a k -1-a k )(a k -1+a k )=12(a k -1-a k )·(4-a k -1-a k ). 而a k -1-a k <0,4-a k -1-a k >0, ∴a k -a k +1<0,即a k <a k +1.又a k +1=12a k (4-a k )=12[4-(a k -2)2]<2.∴n =k +1时命题成立.由(ⅰ)(ⅱ)知,对一切n∈N都有a n<a n+1<2.1.(2019·江苏省扬州市仪征中学考试)已知正项数列{a n}中,a1=1,a n+1=1+a n1+a n(n∈N*).用数学归纳法证明:a n<a n+1(n∈N*).证明(1)当n=1时,a2=1+a11+a1=32,a1<a2,所以当n=1时,不等式成立;(2)假设当n=k(k∈N*)时,a k<a k+1成立,则当n=k+1时,a k+2-a k+1=1+a k+11+a k+1-a k+1=1+a k+11+a k+1-⎝⎛⎭⎫1+a k1+a k=11+a k-11+a k+1=a k+1-a k(1+a k)(1+a k+1)>0,所以,当n=k+1时,不等式成立.综上所述,不等式a n<a n+1(n∈N*)成立.2.用数学归纳法证明a n+1+(a+1)2n-1能被a2+a+1整除(n∈N*).证明①当n=1时,左边=a2+(a+1)1=a2+a+1,可被a2+a+1整除;②假设当n=k(k≥1,k∈N*)时,a k+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,a k+1+1+(a+1)2(k+1)-1=a k+2+(a+1)2k+1=a·a k+1+(a+1)2(a+1)2k-1=a·a k+1+a(a+1)2k-1+(a2+a+1)(a+1)2k-1=a[a k+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,由假设可知a[a k+1+(a+1)2k-1]能被a2+a+1整除,又(a2+a+1)(a+1)2k-1也能被a2+a+1整除,所以a k+2+(a+1)2k+1能被a2+a+1整除,即n=k+1时,命题也成立.由①②知,对一切n∈N*命题都成立.3.(2018·江苏省常州市田家炳高级中学考试)已知正项数列{a n}中,a1=2-1且1a n+1-a n+1=1a n+a n,n∈N*.(1)分别计算出a2,a3,a4的值,然后猜想数列{a n}的通项公式;(2)用数学归纳法证明你的猜想.(1)解令n=1,得1a2-a2=1a1+a1=22,化简得(a2+2)2=3,解得a2=3-2或a2=-3- 2.∵a2>0,∴a2=3- 2.令n=2,得1a3-a3=1a2+a2=23,化简得(a3+3)2=4,解得a3=2-3或a3=-2- 3.∵a3>0,∴a3=2- 3.令n =3,得1a 4-a 4=1a 3+a 3=4,化简得(a 4+2)2=5,解得a 4=5-2或a 4=-5-2. ∵a 4>0,∴a 4=5-2. 猜想a n =n +1-n .(*)(2)证明 ①当n =1时,a 1=2-1=2-1,(*)式成立; ②假设当n =k (k ≥1,k ∈N *)时,(*)式成立, 即a k =k +1-k ,那么当n =k +1时,1a k +1-a k +1=1a k +a k =k +1+k +k +1-k =2k +1.化简得(a k +1+k +1)2=k +2, ∵a k +1>0,∴a k +1=k +2-k +1, ∴当n =k +1时,(*)式也成立.综上,由①②得当n ∈N *时,a n =n +1-n .4.设a 1=1,a n +1=a 2n -2a n+2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式;(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 解 (1)方法一 a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2-(a n -1)2=1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二 a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1. 因此猜想a n =n -1+1. 下面用数学归纳法证明上式: 当n =1时,结论显然成立.假设当n =k (k ≥1,k ∈N *)时结论成立, 即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1 =(k +1)-1+1.所以当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *). (2)方法一 设f (x )=(x -1)2+1-1, 则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明加强命题: a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1, 所以a 2<14<a 3<1,结论成立.假设当n =k (k ≥1,k ∈N *)时结论成立, 即a 2k <c <a 2k +1<1.易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2. 再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1. 因此a 2(k +1)<c <a 2(k +1)+1<1. 即当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14.方法二 设f (x )=(x -1)2+1-1, 则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *).①当n =1时,结论显然成立.假设当n =k (k ≥1,k ∈N *)时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1,即0≤a k +1<1. 即当n =k +1时结论成立. 故①成立.再证:a 2n <a 2n +1(n ∈N *).②当n =1时,a 2=f (a 1)=0,a 3=f (a 2)=f (0)=2-1, 有a 2<a 3,即n =1时②成立.假设当n =k (k ≥1,k ∈N *)时,结论成立,即a 2k <a 2k +1.由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1. 即当n =k +1时②成立, 所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n<14.③又由①②及f (x )在(-∞,1]上为减函数, 得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2, 所以a 2n +1>a 22n +1-2a 2n +1+2-1. 解得a 2n +1>14.④综上,由②③④知存在c =14使得a 2n <c <a 2n +1对一切n ∈N *成立.5.已知函数f 0(x )=x (sin x +cos x ),设f n (x )为f n -1(x )的导数,n ∈N *. (1)求f 1(x ),f 2(x )的表达式;(2)写出f n (x )的表达式,并用数学归纳法证明. 解 (1)因为f n (x )为f n -1(x )的导数,所以f 1(x )=f 0′(x )=(sin x +cos x )+x (cos x -sin x ) =(x +1)cos x +(x -1)(-sin x ), 同理,f 2(x )=-(x +2)sin x -(x -2)cos x .(2)由(1)得f 3(x )=f 2′(x )=-(x +3)cos x +(x -3)sin x , 把f 1(x ),f 2(x ),f 3(x )分别改写为f 1(x )=(x +1)sin ⎝⎛⎭⎫x +π2+(x -1)·cos ⎝⎛⎭⎫x +π2, f 2(x )=(x +2)sin ⎝⎛⎭⎫x +2π2+(x -2)·cos ⎝⎛⎭⎫x +2π2, f 3(x )=(x +3)sin ⎝⎛⎭⎫x +3π2+(x -3)·cos ⎝⎛⎭⎫x +3π2, 猜测f n (x )=(x +n )sin ⎝⎛⎭⎫x +n π2+(x -n )·cos ⎝⎛⎭⎫x +n π2.(*)下面用数学归纳法证明上述等式. ①当n =1时,由(1)知,等式(*)成立; ②假设当n =k 时,等式(*)成立,即f k (x )=(x +k )sin ⎝⎛⎭⎫x +k π2+(x -k )cos ⎝⎛⎭⎫x +k π2. 则当n =k +1时,f k +1(x )=f k ′(x )=sin ⎝⎛⎭⎫x +k π2+(x +k )cos ⎝⎛⎭⎫x +k π2+cos ⎝⎛⎭⎫x +k π2+(x -k )⎣⎡⎦⎤-sin ⎝⎛⎭⎫x +k π2 =(x +k +1)cos ⎝⎛⎭⎫x +k π2+[x -(k +1)]·⎣⎡⎦⎤-sin ⎝⎛⎭⎫x +k π2 =[x +(k +1)]sin ⎝⎛⎭⎫x +k +12π+[x -(k +1)]·cos ⎝⎛⎭⎫x +k +12π,即当n =k +1时,等式(*)成立.综上所述,当n ∈N *时,f n (x )=(x +n )·sin ⎝⎛⎭⎫x +n π2+(x -n )cos ⎝⎛⎭⎫x +n π2成立.6.已知数列{a n }中,a 1=14,a n +1=2a n -3a 2n . (1)求证:对任意的n ∈N *,都有0<a n <13;(2)求证:31-3a 1+31-3a 2+…+31-3a n ≥4n +1-4.证明 (1)①当n =1时,a 1=14,有0<a 1<13,所以n =1时,不等式成立.②假设当n =k (k ∈N *)时,不等式成立,即0<a k <13.则当n =k +1时,a k +1=2a k -3a 2k =-3⎝⎛⎭⎫a 2k -23a k =-3⎝⎛⎭⎫a k -132+13, 于是13-a k +1=3⎝⎛⎭⎫13-a k 2. 因为0<a k <13,所以0<3⎝⎛⎭⎫13-a k 2<13, 即0<13-a k +1<13,可得0<a k +1<13,所以当n =k +1时,不等式也成立.由①②可知,对任意的正整数n ,都有0<a n <13.(2)由(1)可得13-a n +1=3⎝⎛⎭⎫13-a n 2, 两边同时取以3为底的对数,可得 log 3⎝⎛⎭⎫13-a n +1=1+2log 3⎝⎛⎭⎫13-a n , 化简为1+log 3⎝⎛⎭⎫13-a n +1=2⎣⎡⎦⎤1+log 3⎝⎛⎭⎫13-a n , 所以数列⎩⎨⎧⎭⎬⎫1+log 3⎝⎛⎭⎫13-a n 是以log 314为首项,2为公比的等比数列, 所以1+log 3⎝⎛⎭⎫13-a n =2n -1log 314, 化简求得13-a n =13·⎝⎛⎭⎫142n -1,所以113-a n=3·124n -.因为当n ≥2时,2n -1=C 0n -1+C 1n -1+C 2n -1+…+C n -1n -1≥1+n -1=n ,当n =1时,2n -1=1,所以当n∈N*时,2n-1≥n,所以113-a n≥3·4n,1 13-a1+113-a2+…+113-a n≥3(41+42+…+4n)=4n+1-4,所以31-3a1+31-3a2+…+31-3a n≥4n+1-4.。

高考数学复习考点知识与题型专题讲解71 数学归纳法(解析版)

高考数学复习考点知识与题型专题讲解71  数学归纳法(解析版)
高考数学复习考点知识与题型专题讲解
专题 71 数学归纳法 考纲
1.了解数学归纳法的原理. 2.能用数学归纳法证明一些简单的数学命题.
基础知识融会贯通
数学归纳法 一般地,证明一个与正整数 n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当 n 取第一个值 n0(n0∈N*)时命题成立; (2)(归纳递推)假设当 n=k(k≥n0,k∈N*)时命题成立,证明当 n=k+1 时命题也成立. 只要完成这两个步骤,就可以断定命题对从 n0开始的所有正整数 n 都成立.
当 =n 2 时,f(2) ,g(2) ,∴f(2)<g(2);
当 =n 3 时,f(3) ,g(3) ,∴f(3)<g(3).
(2)由(1)猜想:f(n)≤g(n),下面利用数学归纳法证明:①当 n=1,2,3 时,不等式成立.
②假设当 n=k(k∈N*)(k≥3)时,不等式成立,即 1
(3 ).

变形为:
,因此数列
是等比数列,
首项为
,∴

【再练一题】
已知 f(n)=1
,g(n) (3 ),n∈N*.
(1)当 n=1,2,3 时,试比较 f(n)与 g(n)的大小关系; (2)猜想 f(n)与 g(n)的大小关系,并用数学归纳法证明. 【解答】解:(1)当 =n 1 时,f(1)=1=g(1);
【题型三】归纳—猜想—证明
命题点 1 与函数有关的证明问题 【典型例题】
已知 y=f(x)对任意实数 ,x y 都有 f(x+y)=f(x)+f(y)+2xy. (1)求 f(0)的值; (2)若 f(1)=1,求 f(2),f(3),f(4)值,猜想 f(n)表达式并用数学归纳法证明;

高考数学热点问题专题解析——数学归纳法

高考数学热点问题专题解析——数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。

证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N =≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立 3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ≥,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。

在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k ≤的时依然成立。

第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k ≤,命题均成立,然后证明1n k =+命题成立。

可使用的条件要比第一归纳法多,证明的步骤如下: (1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N ≤≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++≤ 思路:根据等比数列求和公式可化简所证不等式:321n n ≥+,n k =时,不等式为321k k ≥+;当1n k =+时,所证不等式为1323k k +≥+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明 证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+≤-()()()1313131n n n n +∴-≤+- 1133331n n n n n n n ++⇔⋅-≤⋅+-- 321n n ⇔≥+,下面用数学归纳法证明: (1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =≥∈时,不等式成立,则1n k =+时,()()133332163211k k k k k +=⋅≥+=+>++ 所以1n k =+时,不等式成立n N *∴∀∈,均有131n n S n S n++≤ 小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++∈ (1)求数列{}n a 的通项公式(2)设21log 1n n b a ⎛⎫=+ ⎪⎝⎭,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+⎛⎫>∈ ⎪⎝⎭解:(1)2632n nn S a a =++ ① ()21116322,n n n S a a n n N *---=++≥∈ ②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-⇒+=-0n a > 所以两边同除以1n n a a -+可得:13n n a a --={}n a ∴是公差为3的等差数列()131n a a n ∴=+-,在2632n nn S a a =++中令1n =可得: 211116321S a a a =++⇒=(舍)或12a =31n a n ∴=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +⎛⎫⋅⋅⋅> ⎪-⎝⎭,若直接证明则需要进行放缩,难度较大。

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)
二、数学归纳法的证明步骤
1.证明:当 n 取第一个值 n0(如 n0=1 或 2 等)命题正确; 2.假设当 n=k(k∈N*,且 k≥n0)时命题成立,以此为前提,证明当 n=k+1 时命题也成立. 根据步骤 1,2 可以断定命题对于一切从 n0 开始的所有正整数 n 都成立. 其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证 据,解决的是延续性问题(又称传递性问题)。 注意: (1)不要弄错起始 n0:n0 不一定恒为 1,也可能为其它自然数(即起点问题). (2)项数要估算正确:特别是当寻找 n=k 与 n=k+1 的关系时,项数的变化易出现错误 (即跨度问题). (3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过
由归纳假设,凸
k
边形
A1A2A3…Ak
的对角线的条数为
1 2
k(k-3);对角线
A1Ak
是一条;而顶点 Ak+1 与另外(k-2)个顶点 A2、A3、…、Ak-1 可画出(k-2)条对角线,
所以凸(k+1)边形的对角线的条数是: 1 k(k-3)+1+(k-2)= 1 (k+1)(k-2)= 1
2
2
2.原理 数学归纳法首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有
效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法 想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你 可以:
① 证明第一张骨牌会倒。 ② 证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。 ③ 那么便可以下结论:所有的骨牌都会倒下。
【解析】

(完整版)高中数学高考总复习数学归纳法习题及详解

(完整版)高中数学高考总复习数学归纳法习题及详解

高中数学高考总复习数学归纳法习题及详解一、选择题 1.已知a n =1n +1+n,数列{a n }的前n 项和为S n ,已计算得S 1=2-1,S 2=3-1,S 3=1,由此可猜想S n =( )A.n -1B.n +1-1C.n +1-2D.n +2-2 [答案] B2.已知S k =1k +1+1k +2+1k +3+…+12k (k =1,2,3,…),则S k +1等于( )A .S k +12(k +1)B .S k +12k +1-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +2[答案] C [解析] S k +1=1(k +1)+1+1(k +1)+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2.3.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立.2°假设n =k (k ∈N *)时不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+k +2=(k +2)2=(k +1)+1. ∴当n =k +1时,不等式成立. 上述证法( ) A .过程全都正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 [答案] D[解析]没用归纳假设.4.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16……则在表中数字2010出现在()A.第44行第75列B.第45行第75列C.第44行第74列D.第45行第74列[答案] D[解析]第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010在第45行.又2025-2010=15,且第45行有2×45-1=89个数字,∴2010在第89-15=74列,选D.5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是()A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)>k2成立D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立[答案] D[解析]对于A,f(3)≥9,加上题设可推出当k≥3时,均有f(k)≥k2成立,故A错误.对于B,要求逆推到比5小的正整数,与题设不符,故B错误.对于C,没有奠基部分,即没有f(8)≥82,故C错误.对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n个图共挖去小正方形()A .(8n -1)个B .(8n +1)个 C.17(8n -1)个 D.17(8n +1)个 [答案] C[解析] 第1个图挖去1个,第2个图挖去1+8个,第3个图挖去1+8+82个……第n 个图挖去1+8+82+…+8n -1=8n -17个. 7.观察下式:1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52……据此你可归纳猜想出的一般结论为( ) A .1+3+5+…+(2n -1)=n 2(n ∈N *) B .1+3+5+…+(2n +1)=n 2(n ∈N *) C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D.8.(2010·天津滨海新区五校)若f (x )=f 1(x )=x1+x ,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1 C.n n +1 D .1 [答案] A[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=n n +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x1+2x ,f 3(x )=x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,,所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n .9.(2010·曲阜一中)设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[12,2)B .[12,2]C .[12,1]D .[12,1)[答案] D[解析] 由已知可得a 1=f (1)=12,a 2=f (2)=f 2(1)=⎝⎛⎭⎫122,a 3=f (3)=f (2)·f (1)=f 3(1)=⎝⎛⎭⎫123,…,a n =f (n )=f n (1)=⎝⎛⎭⎫12n ,∴S n=12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n =12[1-(12)2]1-12=1-(12)n, ∵n ∈N *,∴12≤S n <1.10.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n )πB .(3n 2-n +1)π C.(3n 2+n )π2D.(3n 2-n +1)π2[答案] A[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,A n -1A n 对应的中心角都是2π3,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π3(1+2+3),第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π3(1+2+3+…+3n )=2π3·3n (1+3n )2=(3n 2+n )π.二、填空题11.(2010·浙江金华十校模考)已知2+23=223,3+38=338,4+415=4415,…,若6+at=6at,(a,t均为正实数),类比以上等式,可推测a,t的值,则a+t=________.[答案]41[解析]注意分数的分子、分母与整数的变化规律,2→分子2,分母3=22-1,3→分子3,分母8=32-1,4→分子4,分母15=42-1,故猜想a=6,t=62-1=35,再验证6+635=6635成立,∴a+t=41.[点评]一般地,n+nn2-1=n3n2-1=nnn2-1,(n∈N*)成立.例如,若15+at=15at成立,则t+a=239.12.考察下列一组不等式:23+53>22·5+2·5224+54>23·5+2·53252+552>22·512+212·52将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为________________________.[答案]a m+n+b m+n>a m b n+a n b m(a,b>0,a≠b,m,n>0)13.(2010·浙江杭州质检)观察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;可以推测(x2+x+1)4的展开式中,系数最大的项是________.[答案]19x4[解析]观察其系数变化规律:(x2+x+1)1为1,1,1(x2+x+1)2为1,2,3,2,1(x2+x+1)3为1,3,6,7,6,3,1故由此可推测(x2+x+1)4系数中最大的为6+7+6=19,故系数最大项是19x4.14.(2010·南京调研)五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2010个被报出的数为________.[答案] 4[解析] 根据规则,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3外,从第三位同学开始报出的数依次按6,8,8,4,2,8循环,则第2010个被报出的数为4.[点评] 数字2010比较大,不可能一个一个列出数到第2010个数,故隐含了探寻其规律性(周期)的要求,因此可通过列出部分数,观察是否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.三、解答题15.已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,…,(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. [解析] (1)当n ≥3时,x n =x n -1+x n -22. (2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-12a ,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=14a ,由此推测a n =(-12)n -1a (n ∈N *).证法1:因为a 1=a >0,且a n =x n +1-x n =x n +x n -12-x n =x n -1-x n 2=-12(x n -x n -1)=-12a n -1(n ≥2),所以a n =(-12)n -1a .证法2:用数学归纳法证明:(1)当n =1时,a 1=x 2-x 1=a =(-12)0a ,公式成立.(2)假设当n =k 时,公式成立,即a k =(-12)k -1a 成立.那么当n =k +1时,a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12(-12)k -1a =(-12)(k +1)-1a ,公式仍成立,根据(1)和(2)可知,对任意n ∈N *,公式a n =(-12)n -1a 成立.16.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝⎛⎭⎫n ,S n n 都在函数f (x )=x +a n2x 的图象上.(1)求a 1,a 2,a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝⎛⎭⎫n ,S n n 的坐标代入函数f (x )=x +a n2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝⎛⎭⎫n ,S n n 在函数f (x )=x +a n2x 的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2;令n =2得,a 1+a 2=4+12a 2,∴a 2=4;令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6.由此猜想:a n =2n . 用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立. ②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+12a n (n ∈N *),故S k +1=(k +1)2+12a k +1,S k =k 2+12a k .两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k .由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立. 由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988, 又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k 与a k +1或S k 与S k +1间的关系,使命题得证.17.(2010·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.[解析] (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3=(k +1)[(k +1)+1][(k +1)-1]3=右边.故当n=k+1时,等式成立.综上①②,当n≥2时,T n=n(n+1)(n-1)3.。

2024年高考数学一轮复习考点39数学归纳法必刷题理含解析

2024年高考数学一轮复习考点39数学归纳法必刷题理含解析

考点39 数学归纳法1.(甘肃省静宁县第一中学2025届高三上学期第三次模拟考试数学理)用数学归纳法证明,则当时,左端应在的基础上加上()A. B.C. D.【答案】C【解析】当n=k时,等式左端=1+2+…+k2,当n=k+1时,等式左端=1+2+…+k2+k2+1+k2+2+…+(k+1)2,增加了项(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.故选:C.2.(河南省豫南九校2024-2025学年下学期高二其次次联考理)用数学归纳法证明不等式“”时的过程中,由到,不等式的左边增加的项为()A. B.C. D.【答案】C【解析】当时,不等式为;当时,不等式为,即,比较可得增加的项为.故选C.3.(安徽省马鞍山市2025届高三高考一模理)已知正项数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项积为nT ,若21n n S T +=,则数列1n a ⎧⎫⎨⎬⎩⎭中最接近2024的是第______项.【答案】45【解析】21n n S T +=,可得1121S T +=,且1113S T ==; 则12321n n S S S S S +⋯=,即12321n n S S S S S ⋯=-,1123121n n S S S S S +++⋯=,即1231121n n S S S S S ++⋯=-,两式相除得:11111n n n S S S ++-=-,则112n nS S +=-, 由113S =,解得235S =; 由235S =,解得357S =;⋯猜想2121n n S n -=+, 用数学归纳法证明, 当1n =时,113S =,满意2121n n S n -=+, 假设当()*n k k =∈N时,猜想成立,即2121k k S k -=+, 则当1n k =+时,1112121223221k k k S k S k k ++===--+-+,满意2121nn S n -=+, 故猜想成立,即2121n n S n -=+.1113a S ==,2n ≥时,()()12123421212121n n n n n a S S n n n n ---=-=-=+--+, 当1n =,113a =不满意()()42121na n n =-+, 故()()3,112121,24n n n n a n =⎧⎪=⎨-+≥⎪⎩,由()()22121144n n n -+=-,当44n =时,21441935.754-=, 当45n =时,21452024.754-=,当46n =时,21462115.754-=.综上可得数列1n a ⎧⎫⎨⎬⎩⎭中最接近2024的是第45项.故答案为:45.4.(湖北省武汉市2025届中学毕业生二月调研测试理)已知正项数列{}n a 满意11a =,前n 项和n S 满意214(3)(2,)n n S a n n N *-=+∈≥,则数列{}n a 的通项公式为n a =______________.【答案】21n - 【解析】当1n =时,11a =;当2n =时,221224(3)16,4,3S a S a =+=∴==; 当3n =时,232334(3)36,9,5S a S a =+===;当4n =时,243444(3)64,16,7S a S a =+===,猜想得21n a n =-,故21n a n =-,下面用数学归纳法证明: ①11a =,满意21n a n =-,②假设n k =时,结论成立,即21k a k =-,可得2k S k =, 则22214(3)(22)4(1)k k S a k k +=+=+=+,222111(1),(1)21k k k k S k a S S k k k +++∴=+=-=+-=+2(1)1k =+-,也满意21n a n =-,结合①②可知,21n a n =-,故答案为21n a n =-.5.(吉林省长春市2025届高三质量监测(四)数学理)已知数列{}n a 满意:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(Ⅰ)2343,7,15a a a ===;21nn a =-.(Ⅱ)见解析.【解析】解:(Ⅰ)因为点()()*1,n n a a n N +∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(Ⅱ)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21nn a =-.6.(江苏省苏锡常镇四市2025届高三教学状况调查二)已知数列{}n a ,12a =,且211n n n a a a +=-+对随意n N *∈恒成立.(1)求证:112211n n n n a a a a a a +--=+(n N *∈);(2)求证:11nn a n +>+(n N *∈). 【答案】(1)见解析(2)见解析 【解析】(1)①当1n =时,2221112213a a a =-+=-+= 满意211a a =+成立.②假设当n k =时,结论成立.即:112211k k k k a a a a a a +--=+成立下证:当1n k =+时,112211k k k k a a a a a a +-+=+成立。

高考真题突破:数学归纳法

高考真题突破:数学归纳法

专题十三 推理与证明第三十九讲 数学归纳法解答题1.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.2.(2015湖北) 已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n +与e 的大小;(Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <.3.(2014江苏)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(Ⅰ)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N,等式()()1444n n nf f -πππ+=成立.4.(2014安徽)设实数0>c ,整数1>p ,*N n ∈. (Ⅰ)证明:当1->x 且0≠x 时,px x p+>+1)1(; (Ⅱ)数列{}n a 满足pc a 11>,pn n n a pc a p p a -++-=111, 证明:p n n ca a 11>>+.5.(2014重庆)设111,(*)n a a b n N +==+∈(Ⅰ)若1b =,求23,a a 及数列{}n a 的通项公式;(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n N ∈成立?证明你的结论.6.(2012湖北)(Ⅰ)已知函数()(1)rf x rx x r =-+-(0)x >,其中r 为有理数,且01r <<.求()f x 的最小值;(Ⅱ)试用(Ⅰ)的结果证明如下命题:设120,0a a ≥≥,12,b b 为正有理数. 若121b b +=,则12121122b b a a a b a b ≤+;(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题. 注:当α为正有理数时,有求导公式1()x x ααα-'=.7.(2011湖南)已知函数3()f x x =,()g x x =+(Ⅰ)求函数()()()h x f x g x =-的零点个数,并说明理由;(Ⅱ)设数列{n a }(*n N ∈)满足1(0)a a a =>,1()()n n f a g a +=,证明:存在常数M ,使得对于任意的*n N ∈,都有n a ≤ M .专题十三 推理与证明第三十九讲 数学归纳法答案部分1.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++ 记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此 2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .2.【解析】(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增; 当()0f x '<,即0x >时,()f x 单调递减.故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<.令1x n =,得111e n n +<,即1(1)e n n+<. ①(Ⅱ)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=; 2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1)n nnb b b n a a a =+. ②下面用数学归纳法证明②.(1)当1n =时,左边=右边2=,②成立. (2)假设当n k =时,②成立,即1212(1)k kkb b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++. 所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(Ⅲ)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得 123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++12312112122334(1)nb b b b b b b b b n n ++++++≤++++⨯⨯⨯+121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n=++++++12e e e n a a a <+++=e n S ,即e n n T S <.3.【解析】(Ⅰ)由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (Ⅱ)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++ (1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+=n ∈*N ).4.【解析】(Ⅰ)证:用数学归纳法证明(1)当2p =时,22(1)1212x x x x +=++>+,原不等式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抓住2个考点
突破4个考向
揭秘3年高考
我们有(1)(2)作依据,根据(1),知n=1时命题成立,再根 据(2)知n=1+1=2时命题成立,又由n=2时命题成立, 依据(2)知n=2+1=3时命题成立.这样延续下去,就可
以知道对任何正整数n命题成立.这种证明方法叫作数学
归纳法. 2.步骤
(1)证明当n取第一个值n0(例如n0=1或2等)时结论正确;
(2)由假设n=k成立证n=k+1时,要推导详实,并且一定
要运用n=k成立的结论. (3)要注意n=k到n=k+1时增加的项数.
抓住2个考点
突破4个考向
揭秘3年高考
考点自测
1 1.在应用数学归纳法证明凸 n 边形的对角线为 n(n-3)条 2 时,第一步检验第一个值 n0 等于 ( ).
A.1 解析 答案 C
第3讲 数学归纳法
【2014年高考会这样考】 1.数学归纳法的原理及其步骤. 2.能用数学归纳法证明一些简单的数学命题.
抓住2个考点
突破4个考向
揭秘3年高考
考点梳理
1.数学归纳法的定义 在证明一个与正整数有关的命题时,可采用下面两个步
骤:
n=1 时命题成立; (1)证明______ n=k+1 时命题也 (2)证明:如果n=k时命题成立,那么________ 成立.
(2)假设当n=k(k∈N+,且k≥n0)时结论正确,证明当n=k +1时结论也正确. 在完成了这两个步骤以后,就可以断定命题对于从n0开始 的所有正整数n都正确.
抓住2个考点 突破4个考向 揭秘3年高考
【助学· 微博】 一种表示 数学归纳法的框图表示
抓住2个考点
突破4个考向
揭秘3年高考
两个防范 数学归纳法是一种只适用于与正整数有关的命题的证明方 法,第一步是递推的“基础”,第二步是递推的“依据”,两 个步骤缺一不可,在证明过程中要防范以下两点:
抓住2个考点 突破4个考向 揭秘3年高考
考向一
用数学归纳法证明等式
【例1】►(2012· 天津)已知{an}是等差数列,其前n项和为Sn, {bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10. (1)求数列{an}与{bn}的通项公式; (2)记Tn=anb1+an-1b2+…+a1bn,n∈N*,证明Tn+12= -2an+10bn(n∈N*).
[审题视点] (1)利用等差数列,等比数列的通项公式,求和
公式建立方程组求解;(2)可以以算代证,利用错位相减法 求和,与自然数有关的问题也可以用数学归纳法证明.
抓住2个考点 突破4个考向 揭秘3年高考
(1)解
设等差数列{an}的公差 a1= b1= 2,得 a4= 2+ 3d,b4= 2q3,S4= 8+6d.由条件,
B.2
C.3
D.0
边数最少的凸n边形是三角形.
抓住2个考点
突破4个考向
揭秘3年高考
2.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那 么可推得当n=k+1时该命题也成立,现已知n=5时,该 命题不成立,那么可以推得 ( ).
A.n=6时该命题不成立
C.n=4时该命题不成立 解析 立”. 答案 C
C.2k+1
解析
D.(2k+2)+(2k+3)
当n=k时,左边是共有2k+1个连续自然数相加,
即1+2+3+…+(2k+1),所以当n=k+1时,左边是共有
2k+3个连续自然数相加,即1+2+3+…+(2k+1)+(2k+
2)+(2k+3). 答案 D
抓住2个考点
突破4个考向
揭秘3年高考
4.用数学归纳法证明34n+1+52n+1(n∈N)能被8整除时,当n=
1+25(34k+1+52k+1).
(
).
答案
A
抓住2个考点
突破4个考向
揭秘3年高考
1 1 1 5.(2013· 长春一模)已知 f(n)=1+ + +…+ (n∈N*),用数学 2 3 n n 归纳法证明 f(2 )> 时,f(2k+ 1)-f(2k)=________. 2 1 1 1 1 1 1 k+ 1 解析 ∵ f(2 ) = 1+ + + + … + + +… + k + 2 3 4 k k+ 1 2
n
1 1 1 + k +… + k+ 1, k 2 +1 2 +2 2 1 1 1 1 1 1 f(2 )= 1+ + + +…+ + + …+ k, ∴ f(2k+1)- f(2k) 2 3 4 k k+ 1 2
k
1 1 1 = k + k + …+ k+ 1. 2 +1 2 +2 2
答案 1 1 1 + +…+ 2k+1 2k+2 2k+ 1
k+1时,对于34(k+1)+1+52(k+1)+1可变形为 A.56· 34k+1+25(34k+1+52k+1) B.34· 34k+1+52· 52k C.34k+1+52k+1 D.25(34k+1+52k+1) 解析 因为要使用归纳假设,必须将34(k+1)+1+52(k+1)+1分 解为归纳假设和能被8整除的两部分.所以应变形为56· 34k+
(1)第一步验证n=n0时,n0不一定为1,要根据题目要求选
择合适的起始值. (2)第二步中,归纳假设起着“已知条件”的作用,在证明n =k+1时,命题也成立的过程中一定要用到它,否则就不 是数学归纳法.第二步关键是“一凑假设,二凑结论”.
抓住2个考点
突破4个考向
揭秘3年高考
三个注意 运用数学归纳法应注意以下三点: (1)n=n0时成立,要弄清楚命题的含义.
3 2 + 3 d + 2 q = 27, 得方程组 3 8 + 6 d - 2 q = 10,

d= 3, 解得 q= 2.
所以 an= 3n- 1, bn= 2n, n∈ N*.
(2)证明
法一
①当n=1时,T1+12=a1b1+12=16,-
B.n=6时该命题成立
D.n=4时该命题成立
其逆否命题“若当n=k+1时该命题不成立,则当n
=k时也不成立”为真,故“n=5时不成立”⇒“n=4时不成
抓住2个考点
突破4个考向
揭秘3年高考
3.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1) 时,从n=k到n=k+1,左边需增添的代数式是 A.2k+2 B.2k+3 ( ).
相关文档
最新文档