2016离散数学练习题-(标准答案修改)

合集下载

离散数学试题与参考答案

离散数学试题与参考答案

离散数学试题与参考答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1A (B) {1,2, 3}A (C) {{4,5}}A (D) A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>} 5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共20分。

把答案填在对应题号后的横线上。

6. 设集合A ={,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><, 那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系. 9. 写出一个不含“→”的逻辑联结词的完备集 . 10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C) 12. (10分)构造证明:(P (Q S))∧(R ∨P)∧Q R S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

2016离散数学练习题 (答案修改)分析

2016离散数学练习题 (答案修改)分析

2016注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。

2、第二遍复习按照考试大纲的总结把重点内容再做复习。

另外,把大纲中指定的例题及书后习题认真做一做。

检验一下主要内容的掌握情况。

3、第三遍复习把随后发去的练习题认真做一做,检验一下复习情况,要认真理解,注意做题思路与方法。

离散数学综合练习题一、选择题1.令p : 今天下雪了,q :路滑,r :他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( A )。

A. p q r ∧→ B. p q r ∨→ C. p q r ∧∧D. p q r ∨↔2.设()P x :x 是整数,()f x :x 的绝对值,(,)L x y :x 大于等于y ;命题“所有整数的绝对值大于等于0”可符号化为( B )。

A. (()((),0))x P x L f x ∀∧ B. (()((),0))x P x L f x ∀→ C. ()((),0)xP x L f x ∀∧ D. ()((),0)xP x L f x ∀→3.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为(D )。

A .(()())x F x G x ∀∧B . (()())x F x G x ⌝∃→⌝C .(()())x F x G x ⌝∃∧D . (()())x F x G x ⌝∃∧⌝ *4.下列命题公式不是永真式的是( A )。

A . ()p q p →→B . ()p q p →→C . ()p q p ⌝∨→D . ()p q p →∨5.设p :我们划船,q :我们跳舞,命题“我们不能既划船又跳舞”符号化正确的是( B )。

A. p q ∧ B. ()p q ⌝∧ C. p q ⌝∧⌝ D. p q ⌝∧6.设()R x :x 为有理数;()Q x :x 为实数。

命题“任何有理数都是实数”的符号化为( A )A .()(()())∀→x R x Q xB .()(()())∀∧x R x Q xC .()(()())x R x Q x ∃∧D .(()())x R x Q x ∃→ 7. 设个体域{,}D a b =,与公式()xA x ∃等价的命题公式是( C )A .()()A a A b ∧B .()()A a A b →C .()()A a A b ∨D .()()A b A a →8.无向图G 有20条边,4个6度顶点,2个5度顶点,其余均为2度顶点,则G 一共有( C )个顶点。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

华中科技大学计算机学院离散数学(二) 2016 A 卷 with 答案

华中科技大学计算机学院离散数学(二) 2016 A 卷 with 答案

一. 单项选择(每小题3分,总共15分)( A ) 1、在如下的有向图中,从V 1到V 4长度为3 的道路有( A )条。

A . 1;B .2;C .3;D .4 。

( B ) 2、假设S 、T 是两个有限集合。

那么下面正确的是:A. |S ∪T| = |S| + |T|B. |S ∪T| = |S| + |T| - |S ∩T|C. |S ×T|= |S| × |T| - |S ∩T|D. |S-T|= |S| - |T|( B )3、假定递归算法把一个规模为n 的问题分解为a 个子问题,每个子问题规模为n /b . 再假定把子问题的解组合成原来问题的解的算法处理中,需要总量为g (n )的运算数. 用f (n )表示求解规模为n 的问题所需的运算数,则得出运算数f (n )的递推关系为:A .f (n ) = b f (n /a) + g (n );B .f (n ) = af (n /b ) + g (n );C .f (n ) = f (n /b ) +a g (n );D .f (n ) = ag (n /b ) + f(n );( D ) 4、如果两个图H 与G 同构,且结点数大于1,则下面不正确的是:A .如果H 有一个子图是非平面图,则G 是非平面图B .如果H 是连通图,则G 没有孤立点。

C .H 是偶图则G 也是偶图,反之也成立D .f 是H 的结点集到G 的结点集的双射,则H 的任一结点h 的度数等于G 中结点f(h)的度数。

( D ) 5、下面说法不正确的是:A :不同算法求出的两个不同结点的最短通路的长度是一样的。

B: 不同算法求得的两个不同结点的最短通路可能不一样。

C: 连通有权图的任两个不同结点的最短通路一定是存在的。

D :最短通路未必就是简单路。

二. 填空(每小题3分,总共15分)1、连通无向图有欧拉开路(非回路)的充要条件是2、 83个不同的盒子中,5、三. 解答题(总共40分,每小题5分)1、一个(n,m)简单无向图是2-色图(m>0),那么它上面的所有回路是否都是偶数长?为什么?解答:简单无向图是2-色图(m>0) 就必然是偶图。

离散数学-练习题附答案可编辑

离散数学-练习题附答案可编辑

离散数学-题库1、将下列命题推理符号化并给出形式证明:已知张三或李四的彩票中奖了;如果张三的彩票中奖了,那么你是知道的;如果李四的彩票中奖了,那么王五的彩票也中奖了;现在你不知道张三的彩票中奖。

所以李四和王五的彩票都中奖了。

答案:解:设:p:张三的彩票中奖了。

q:李四的彩票中奖了。

r:你知道张三的彩票中奖。

s:王五的彩票中奖了。

符号化:前提:p∨q,p→r,q→s,¬r结论:q∧s证明:(1)¬r 前提(2)p→r 前提(3)¬p (1)(2)拒取式(4)p∨q 前提(5)q (3)(4)析取三段论(6)q→s 前提(7)s (5)(6)假言推理(8)q∧s (5)(7)合取引入2、用推导法求下列公式的主合取范式和主析取范式:((¬P∨Q)→R)答:((¬P∨Q)→R)⇔(¬(¬P∨Q)∨R)⇔((P∧¬Q)∨R)⇔((P∨R)∧(¬Q∨R))⇔((P∨(Q∧¬Q)∨R)∧((P∧¬P)∨¬Q∨R))⇔((P∨Q∨R)∧(P∨¬Q∨R)∧(¬P∨¬Q∨R))⇔((P∧Q∧R)∨(P∧¬Q∧R)∨(P∧¬Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R))3、设集合 A ={1,2,3,4},A上二元关系R ={<1,2>,<2,2>,<,2,4〉,<3,4>}. 求其自反闭包,对称闭包和传递闭包。

答案: r(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<2,2>,<3,3>,<4,4>} s(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<3,2>,<4,3>}t(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<1,3>,<2,2>,<2,4>,<1,4>}4、设A,B,C是三个集合,证明(A∩B)-C=(A-C)∩B答案:答:(A∩B)-C=(A∩B)∩C=(A∩C)∩B=(A-C)∩B5、证明等价式:(∃χ)(A(χ)→B(χ))⇔(∀χ)A(χ)→(∃χ)B(χ)答案:(∃χ)(A(χ)→B(χ))⇔(∃χ)¬(A(χ)∨B(χ))⇔(∃χ)¬A(χ)∨(∃x)B(χ) ⇔¬(∀χ)A(χ)∨(∃χ)B(χ)⇔¬(∀χ)A(χ)→(∃χ)B(χ)6、设复数集合C={a+bi|a,b∈R,a≠0},定义C上二元关系R:<a+bi,c+di>∈R当且仅当ac>0,证明:R为等价关系。

离散数学习题集(十五套含答案)

离散数学习题集(十五套含答案)

离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(+=⋃BA{0,1,2,3,4,6} 。

2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。

3R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。

4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。

5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。

6.设A={1,2,3,4},A上关系图为则R2 = {<a.b>,<a,c>,<a,d>,<b,d>,<c,d> 。

7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A。

8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。

10.下图所示的偏序集中,是格的为 c 。

二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有( C )个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C .若R ,S 是对称的, 则S R是对称的;D .若R ,S 是传递的, 则S R 是传递的。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。

若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。

若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。

答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。

离散数学习题与参考答案

离散数学习题与参考答案

习题六格与布尔代数
一、填空题
1、设是偏序集,如果_________, 则称<A, ≤>是(偏序)格.
2、设〈B,∧,∨,′,0,1〉是布尔代数,对任意的a∈B,有a∨a′=____,a∧a′=______.
3、一个格称为布尔代数,如果它是______格和______格.
4、设<>是有界格,a,b L,若a b=0,则a=b=_____;若a b=1,则a=b=____.
二、证明题
1、设<L, ≤>是格,a,b,c,d∈L。

试证:若a≤b且c≤d,则
a∧c≤b∧d
2、证明:在有补分配格中,每个元素的补元一定唯一。

3、设<S,⊕,⊙,′,0,1>是一布尔代数,则
R={<a,b> | a⊕b=b}是S上的偏序关系
4、若<A,≤>是一个格,则对任意a、b 、c∈A,有若a≤c且b≤c,则a∨b ≤c。

5、若<A,≤>是一个格,则对于任意a,b∈A,证明以下两个公式等价;(1)a≤b
(2)a∨b =b
6、证明:如果格中交对并是分配的,那么并对交也是分配的,反之亦然。

7、如果<A,≤>是有界格,全上界和全下界分别是1和0,则对任意元素a∈A,证明:
a∨1=1∨a=1 ,a∨0=0∨a=a。

2016年10月 离散数学 试题及答案

2016年10月 离散数学 试题及答案

2016年10月高等教育自学考试全国统一命题考试离散数学试卷(课程代码 02324)本试卷共4页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间,超出答题区域无效。

第一部分选择题 (共l5分)一、单项选择题(本大题共l5小题,每小题l分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。

未涂、错涂或多涂均无分。

1.谓词公式的辖域是2.设无向树T有3个度数为4的结点,其余结点都为树叶,则T的结点数为A.10 B.11 C.12 D.133.设集合A有3个元素,则A中的划分有A.3个 B.5个 C.6个 D.9个4.下列关系不可能是相容关系的是A。

恒等关系 B.全域关系 C.等价关系 D.拟序关系5.设论域为整数集,下列命题中真值为假的是6.4个结点的非同构的无向树的数目是A.5 B.4 C.3 D.27.下列命题公式是永真式的为8.下列语句是原子命题的为A.x+y>xy B.请给我来点掌声吧C.小明既爱唱歌又爱跳舞 D.火星上有生物9.设2为整数集合,则下列集合关于数的加法运算不能构成独异点的是10.设,则既是s的元素又是s的子集的为11.设p:他怕困难;q:他获得成功。

命题“除非他不怕困难,否则他不会获得成功”可符号化为12.在整数集Z上,下列运算满足结合律的是A.a*b=ab一1 B.a*b=|a-b|C.a*b=2a+b D.a*b=a+b-113.下列图对应的格是有补格的为14.设G为连通的无向简单图。

若G恰有2个奇度结点,则G一定具有A.欧拉回路 B.欧拉通路C.哈密尔顿回路 D.哈密尔顿通路15.设F(x):x是火车;G(y):y是汽车;H(x,y):x比y快;则下列语句可以表示成公式的是A.每列火车都比所有汽车快 B. 每列火车都比某些汽车快C.某些火车比某些汽车快 D.某些火车比所有汽车快第二部分非选择题 (共85分)二、填空题(本大题共l0小题,每小题2分。

(完整word版)离散数学试卷及参考答案()

(完整word版)离散数学试卷及参考答案()

一、填空题:(每空1分,本大题共15分)1.给定命题公式A 、B ,若 ,则称A 和B 是逻辑相等的。

2.命题公式)(Q P →⌝的主析取范式为 ,主合取范式的编码表示为 。

3.设E 为全集, ,称为A 的绝对补,记作~A ,且~(~A )= ,~E = ,~Φ= 。

4.设},,{c b a A =考虑下列子集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =}}{},{},{{5c b a S =,}},{},{{6c a a S =则A 的覆盖有 ,A 的划分有 。

5.设S 是非空有限集,代数系统<(S ),,>中,(S)对的幺元为 ,零元为 。

(S )对的幺元为 ,零元为 .6.若>=<E V G ,为汉密尔顿图,则对于结点集V 的每个非空子集S ,均有W(G-S) S 成立,其中W (G —S)是 。

二、单项选择题:(每小题1分,本大题共10分)1.下面命题公式( )不是重言式。

A 、)(Q P Q ∨→;B 、P Q P →∧)(;C 、)()(Q P Q P ∨⌝∧⌝∧⌝;D 、)()(Q P Q P ∨⌝↔→。

2.命题“没有不犯错误的人”符号化为( )。

设x x M :)(是人,x x P :)(犯错误。

A 、))()((x P x M x ∧∀; B 、)))()(((x P x M x ⌝→∃⌝;C 、)))()(((x P x M x ∧∃⌝;D 、)))()(((x P x M x ⌝∧∃⌝。

3.设}{Φ=A ,B =((A )),下列各式中哪个是错误的( )。

A 、B ⊆Φ; B 、B ⊆Φ}{,C 、B ∈Φ}}{{;D 、⊆ΦΦ}}{,{(A )。

4.对自然数集合N ,哪种运算不是可结合的,运算定义为任N b a ∈,( ).A 、),min(b a b a =*;B 、b a b a 2+=*;C 、3++=*b a b a ;D 、)3(mod ,b a b a =*。

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分考试时限:120 分钟⼀、选择题(每题2分,共20分)1. 下述命题公式中,是重⾔式的为( )(A ))()(q p q p ∨→∧(B )q p ∨))()((p q q p →∨→?(C )q q p ∧→?)((D )q q p →?∧)(2. 对任意集合A,B,C,下列结论正确的是()(A )若A ?B,B ∈C,则A ?C ;(B )若A ∈B,BC,则A ?C ;(C )若A ?B,B ∈C,则A ∈C ;(D )若A ∈B,B ?C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系, ,则由R 产⽣的S S ?上⼀个划分共有( )个分块。

(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是⼀棵树当且仅当G 中( )(A )有些边是割边(B )每条边都是割边(C )所有边都不是割边(D )图中存在⼀条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平⾯图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下⾯命题公式中真值为1的是()(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=中,结点总度数与边数的关系是()(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公⽤⼀个电源,则⾄少需有五插头的接线板数()(A )7(B )8(C )9(D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为()(A )11 (B )14 (C )17(D )15⼆、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

2016离散数学练习题-(答案修改)

2016离散数学练习题-(答案修改)

2016离散数学练习题-(答案修改)2016注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。

2、第二遍复习按照考试大纲的总结把重点内容再做复习。

另外,把大纲中指定的例题及书后习题认真做一做。

检验一下主要内容的掌握情况。

3、第三遍复习把随后发去的练习题认真做一做,检验一下复习情况,要认真理解,注意做题思路与方法。

离散数学综合练习题一、选择题1.令p : 今天下雪了,q :路滑,r :他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( A )。

A. p q r ∧→B. p q r ∨→C. p q r ∧∧D. p q r ∨↔2.设()P x :x 是整数,()f x :x 的绝对值,(,)L x y :x 大于等于y ;命题“所有整数的绝对值大于等于0”可符号化为( B )。

A. (()((),0))x P x L f x ∀∧ B. (()((),0))x P x L f x ∀→ C. ()((),0)xP x L f x ∀∧ D. ()((),0)xP x L f x ∀→3.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为(D )。

A .(()())x F x G x ∀∧B . (()())x F x G x ⌝∃→⌝C .(()())x F x G x ⌝∃∧D . (()())x F x G x ⌝∃∧⌝ *4.下列命题公式不是永真式的是( A )。

A. ()p q p →→B. ()p q p →→C. ()p q p ⌝∨→D. ()p q p →∨5.设p :我们划船,q :我们跳舞,命题“我们不能既划船又跳舞”符号化正确的是( B )。

A. p q ∧ B. ()p q ⌝∧ C. p q ⌝∧⌝ D. p q ⌝∧6.设()R x :x 为有理数;()Q x :x 为实数。

命题“任何有理数都是实数”的符号化为( A )A .()(()())∀→x R x Q xB .()(()())∀∧x R x Q xC .()(()())x R x Q x ∃∧D .(()())x R x Q x ∃→ 7. 设个体域{,}D a b =,与公式()xA x ∃等价的命题公式是( C )A .()()A a A b ∧B .()()A a A b →C .()()A a A b ∨D .()()A b A a →8.无向图G 有20条边,4个6度顶点,2个5度顶点,其余均为2度顶点,则G 一共有( C )个顶点。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

2016离散数学练习题-(答案修改)

2016离散数学练习题-(答案修改)

A . {{ b, c},{ c}}
B. {{ a},{ b,c}}
C. {{ a, b},{ a, c}}
D. {{ a,b}, c}
13. 下列谓词公式中是前束范式的是( D )。
A. xF (x) ( x)G( x)
B. xF ( x) yG( y)
C. x( P(x) yQ( x, y))
D. x y(P(x) Q( x, y))
A. x(F ( x) G( x))
B. x( F (x) G ( x))
C. x( F (x) G (x))
D. x( F ( x) G( x))
*4 . 下列命题公式不是永真式的是(
A )。
A. ( p q) p
B. p ( q p)
C. p (q p)
D. ( p q) p
5.设 p:我们划船, q:我们跳舞,命题 “我们不能既划船又跳舞 ”符号化正确的
离散数学综合练习题
一、选择题
1.令 p : 今天下雪了, q :路滑, r :他迟到了。则命题 “下雪路滑,他迟. p q r
B. p q r
C. p q r
D. p q r
2. 设 P( x) : x 是整数, f (x) : x 的绝对值, L( x, y) : x 大于等于 y ;命题 “所有整数
A. 3
B. 4
C. 8
D. 16
21. 设简单图 G 所有结点的度数之和为 48,则 G的边数为 ( B )
A. 48
B. 24
C. 16
D. 12
22.下面既是哈密顿图又是欧拉图的图形是(
B )。
23. 下列必为欧拉图的是( D )
A. 有回路的连通图

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档

则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016注意事项:
1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。

2、第二遍复习按照考试大纲的总结把重点内容再做复习。

另外,把大纲中指定的例题及书后习题认真做一做。

检验一下主要内容的掌握情况。

3、第三遍复习把随后发去的练习题认真做一做,检验一下复习情况,要认真理解,注意做题思路与方法。

离散数学综合练习题
一、选择题
1.令p : 今天下雪了,q :路滑,r:他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( A )。

A. p q r ∧→ﻩB. p q r ∨→
C. p q r ∧∧
D. p q r ∨↔
2.设()P x :x 是整数,()f x :x 的绝对值,(,)L x y :x 大于等于y ;命题“所有整数的绝对值大于等于0”可符号化为( B )。

A. (()((),0))x P x L f x ∀∧
B. (()((),0))x P x L f x ∀→
C . ()((),0)xP x L f x ∀∧ﻩD. ()((),0)xP x L f x ∀→
3.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为(D )。

A .(()())x F x G x ∀∧
B . (()())x F x G x ⌝∃→⌝
C.(()())x F x G x ⌝∃∧ﻩD. (()())x F x G x ⌝∃∧⌝
*4.下列命题公式不是永真式的是( A )。

A . ()p q p →→ﻩB. ()p q p →→
C . ()p q p ⌝∨→
D . ()p q p →∨
5.设p :我们划船,q:我们跳舞,命题“我们不能既划船又跳舞”符号化正确的是( B )。

A. p q ∧ ﻩB. ()p q ⌝∧
C. p q ⌝∧⌝ﻩﻩﻩD. p q ⌝∧
6.设()R x :x为有理数;()Q x :x 为实数。

命题“任何有理数都是实数”的符号化为( A )
A .()(()())∀→x R x Q x ﻩ
B .()(()())∀∧x R x Q x
C.()(()())x R x Q x ∃∧
D.(()())x R x Q x ∃→
7. 设个体域{,}D a b =,与公式()xA x ∃等价的命题公式是( C )
A.()()A a A b ∧ﻩB .()()A a A b →
C .()()A a A b ∨
D.()()A b A a → 8.无向图G 有20条边,4个6度顶点,2个5度顶点,其余均为2度顶点,则G
一共有( C )个顶点。

A.7 B .8ﻩC .9 D .10
*9.设集合A={c , {c}},下列命题是假命题的为( C )。

A.{}()c P A ∈ B . {{}}()c P A ∈ C . {}()c P A ⊆ﻩ D .{{}}()c P A ⊆
10.设X ={,{},{,}}a a ∅∅,则下列陈述正确的是( C )。

A .a X ∈
B .{,}a X ∅⊆
C .{{,}}a X ∅⊆ﻩ
D .{}X ∅∈
11.有向图D 是连通图,当且仅当( D )。

A . 图D 中至少有一条通路
B. 图D 中有通过每个顶点至少一次的通路
C . 图D的连通分支数为一
D . 图D 中有通过每个顶点至少一次的回路
12.设A ={a,b ,c},则下列是集合A 的划分的是( B )
A .{{,},{}}b c c ﻩ
B . {{},{,}}a b c
C .{{,},{,}}a b a c ﻩ
D . {{,},}a b c
13.下列谓词公式中是前束范式的是( D )。

A.()()()xF x x G x ∀∧⌝∃ ﻩB .()()xF x yG y ∀∨∀
C.(()(,))x P x yQ x y ∀→∃
D.(()(,))x y P x Q x y ∀∃→ 14. 设简单图G 所有结点的度数之和为50,则G 的边数为( B )。

A. 50
B . 25 C. 10ﻩD. 5 15.设集合{1,2,3,4}A =,A 上的等价关系{1,1,3,2,2,3,R =<><><> 4,4}A I <>,则对应于R 的划分是( A )。

A. {{1},{2,3},{4}}ﻩB . {{1,3},{2,4}}
C . {{1,3},{2},{4}}ﻩD. {{1},{2},{3},{4}}
16. 设{1,2,3},{,,,},{1,,2,,3,}X Y a b c d f a b c ===<><><>,则f 是
( C )。

A.从X 到Y 的双射
B .从X到Y 的满射,但不是单射
C .从X到Y 的单射,但不是满射
D .从X 到Y的二元关系,但不是从X 到Y 的映射
17.下列图是欧拉图的是( D )。

相关文档
最新文档