第二章拉伸与压缩讲解

合集下载

2.第二章 直杆的拉伸与压缩

2.第二章 直杆的拉伸与压缩

21
§2-3 材料的力学性能
力学性能(机械性能):指材料在外力作用下在
强度与变形等方面所表现出的性能。
材料的力学性能是通过材料的力学试验得到的, 常做的力学性能试验有拉伸、压缩、弯曲、冲击、 疲劳、硬度等试验。
22
一、拉伸试验
实验条件:室温、静载(缓慢加载)、小变形等 金属标准试件:圆截面长试件标距L=10d; 短试件 L=5d,d =10mm。 试件材料:低碳钢(Q235-A)、灰铸铁 试验仪器:万能试验机
8
二、外力与内力的概念
外力:物体所受其它物体所给的作用力。包括载荷 和约束反力。 内力:由于外力作用引起同一构件内部各质点间的 附加相互作用力。 内力与外力的关系: 外力增加,内力随之增加,但内力达到某一限 度时就会引起构件破坏,因此内力与构件的承载能力 密切相关。研究构件强度问题时首先必须求内力。
蠕变极限σn 、持久极限σD ⑵应力松弛
如高温管道的法兰连接螺栓
36
3. 低温对材料力学性能的影响
低温对材料力学性能的影响主要表现为材料的塑 性、韧性指标随温度的降低而减小。
当温度低于某一数值后,材料的塑性指标将急剧 下降,从而转变为脆性材料,这一温度称为无塑 性转变温度NDT(或脆性转变温度)。
于1900年提出
d
F F HB A D D 2 d2 D 2


39
σ b≈3.6HB(MPa)
B. 洛氏硬度
由美国人Rockwell 于1919年 提出。 用金刚石圆锥体或硬度钢球做 压头,根据试样的压痕深度来 表示硬度高低。 常见有:HRA、HRB、HRC HB=10HRC
弹性性能:抵抗弹性变形的能力,
用弹性模量E表示

第二章_直杆的拉伸和压缩

第二章_直杆的拉伸和压缩

F
1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN2 A2
20103 152 106
89106Pa 89MPa
2.1.3 应变的概念
绝对变形ΔL, 相对变形或线应变:
L
L
伸长时ε为正,缩短时ε为负
2.2 拉伸和压缩时材料的力学性能
2.2.1 拉伸和压缩试验及材料的力学性能
1、强度校核:
max
N A
2、设计截面:
A
N
3、确定许可载荷: NA
目录
塑性材料 :以材料的屈服极限作为确定许用应力的基础。 变形特征:当杆内的最大工作应力达到材料的屈服极限时,沿 整个杆的横截面将同时发生塑性变形,影响杆的正常工作。 许 用内力的表示为:
对于一般构件的设计,ns规定为1.5到2.0 脆性材料 :以材料的断裂极限作为确定许用应力的基础。 变形特征:直到拉断也不发生明显的塑性变形,而且只有断裂 时才丧失工作能力。许用内力的表示为:
OA
BC
D
PA
PB
PC
PD
N1 A
BC
D
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图
X 0 N 1 P A P B P C P D 0
N 1 5 P 8 P 4 P P 0N1 2P
N2
BC
D
PB 同理,求得AB、BC、 CD段内力分别为:
N2= –3P N3= 5P N4= P
2.1.3 拉伸和压缩时横截面上的应力
FN F
AA
应力集中:在截面突变处应力局部增大的 现象
应力集中系数:k=σmax/σ

工程力学拉伸与压缩课件

工程力学拉伸与压缩课件

实验步骤与操作
试样准备
选择合适的材料和尺寸,制作试样,确保其 质量和尺寸符合实验要求。
安装设备
将试样安装在实验支架上,连接拉伸机或压 缩机,确保设备稳定可靠。
加载实验
对试样施加拉伸或压缩载荷,记录实验过程 中的力和变形数据。
数据处理
分析实验数据,计算材料的弹性模量、泊松 比等力学性能参数。
实验数据记录与分析
力-位移曲线
应变-位移曲线
弹性模量
泊松比
CATALOGUE
工程应用案例
建筑结构的拉伸与压缩分析
总结词
建筑结构的稳定性与安全性
详细描述
在建筑结构中,拉伸与压缩是常见的受力形式。通过对建筑结构的拉伸与压缩分析,可以评估结构的稳定性、安 全性以及使用寿命。例如,桥梁、高层建筑和工业厂房等大型建筑结构需要进行精确的拉伸与压缩分析,以确保 其能够承受各种外力作用。
工程力学拉伸与压 缩课件
contents
目录
• 引言 • 工程力学基础 • 材料拉伸与压缩性能 • 拉伸与压缩的实验方法 • 工程应用案例 • 拉伸与压缩的未来发展
CATALOGUE
引言
课程背景 01 02
课程目标
1 2 3
CATALOGUE
工程力学基础
力学基本概念
01
02
03

刚体变形与计算机科源自结合01与生物学和医学结合
02
与环境科学结合
03
THANKS
感谢观看
CATALOGUE
材料拉伸与压缩性能
材料拉伸性能
弹性极限
抗拉强度
伸长率 杨氏模量
材料压缩性能
01
抗压强度
材料在压缩过程中所能承受的最大 压应力。

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学 第2章杆件的拉伸与压缩

材料力学 第2章杆件的拉伸与压缩

第2章 杆件的拉伸与压缩提要:轴向拉压是构件的基本受力形式之一,要对其进行分析,首先需要计算内力,在本章介绍了计算内力的基本方法——截面法。

为了判断材料是否会发生破坏,还必须了解内力在截面上的分布状况,即应力。

由试验观察得到的现象做出平面假设,进而得出横截面上的正应力计算公式。

根据有些构件受轴力作用后破坏形式是沿斜截面断裂,进一步讨论斜截面上的应力计算公式。

为了保证构件的安全工作,需要满足强度条件,根据强度条件可以进行强度校核,也可以选择截面尺寸或者计算容许荷载。

本章还研究了轴向拉压杆的变形计算,一个目的是分析拉压杆的刚度问题,另一个目的就是为解决超静定问题做准备,因为超静定结构必须借助于结构的变形协调关系所建立的补充方程,才能求出全部未知力。

在超静定问题中还介绍了温度应力和装配应力的概念及计算。

不同的材料具有不同的力学性能,本章介绍了塑性材料和脆性材料的典型代表低碳钢和铸铁在拉伸和压缩时的力学性能。

2.1 轴向拉伸和压缩的概念在实际工程中,承受轴向拉伸或压缩的构件是相当多的,例如起吊重物的钢索、桁架第2章 杆件的拉伸与压缩 ·9··9·2.2 拉(压)杆的内力计算2.2.1 轴力的概念为了进行拉(压)杆的强度计算,必须首先研究杆件横截面上的内力,然后分析横截面上的应力。

下面讨论杆件横截面上内力的计算。

取一直杆,在它两端施加一对大小相等、方向相反、作用线与直杆轴线相重合的外力,使其产生轴向拉伸变形,如图2.2(a)所示。

为了显示拉杆横截面上的内力,取横截面把m m −拉杆分成两段。

杆件横截面上的内力是一个分布力系,其合力为N F ,如图2.2(b)和2.2(c)所示。

由于外力P 的作用线与杆轴线相重合,所以N F 的作用线也与杆轴线相重合,故称N F 为轴力(axial force)。

由左段的静力平衡条件0X =∑有:()0+−=N F P ,得=N F P 。

第二章 拉伸、压缩与剪切

第二章 拉伸、压缩与剪切

' 泊松比 •横向变形(泊松效应): 横向变形与纵向变形的方向是相反的。
•弹性模量与泊松比是材料的两个弹性常数。 一般钢材在常温下的弹性模量和泊松比: E=2.0×105MPa,0.25~0.3。 •例轴力变化的变形量计算:
N1 L1 N 2 L2 轴力分段变化的变形量: L EA EA
l A A1 100 % A
其它材料拉伸时的机械性质及材料的压缩试验
铸铁拉伸的应力-应变图
低碳钢压缩的应力-应变图
铸铁压缩的应力-应变图
塑性材料和脆性材料机械性能 的主要区别
1.塑性材料在断裂时有明显的塑性变形;
而脆性材料在断裂时变形很小; 2.塑性材料在拉伸和压缩时的弹性极限、 屈服极限和弹性模量都相同,它的抗拉 和抗压强度相同。而脆性材料的抗压强 度远高于抗拉强度,因此,学是工程设计(Engineering Design)的重要 理论基础,为设计出设备及其零部件合理的形状和几 何尺寸,保证其具有足够的强度、刚度及稳定性提供 一般性的原理和基本的计算方法。 强度(Strength):构件在外力作用下抵抗破坏的能 力。 刚度(Stiffness):构件在外力作用下抵抗变形的能力。 稳定性(Stability):构件保持原有平衡形态的能力。干 扰力使构件偏离原有的平衡形态,干扰力消失后能否 恢复原有的平衡形态。 依据一定的原理建立强度、刚度及稳定性条件,成为 工程设计时必须遵循的准则。 材料力学的任务是在满足强度、刚度和稳定性的要 求下,为设计即经济又安全的构件,提供必要的理论基 础和计算方法。
工程方法:设置挠性元件——膨
胀节,预留伸缩缝等。
实例:管路用膨胀节,固定管板
式换热器设置膨胀节,卧式设备设 置活动支座。

材料力学 第2章轴向拉伸与压缩

材料力学 第2章轴向拉伸与压缩
15mm×15mm的方截面杆。
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB

FN 1 A1

28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC

FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40

材料力学--轴向拉伸和压缩

材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

工程力学 第二章 轴向拉伸与压缩.

工程力学 第二章 轴向拉伸与压缩.

2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F

工程力学第2章轴向拉伸压缩与剪切

工程力学第2章轴向拉伸压缩与剪切
拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。
F
N (+) N
F
F
N (-) N
F
轴力一般按正方向假设。
3、轴力图: 轴力沿轴线变化的图形
F
F
N
4、轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系;
② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
1、低碳钢轴向拉伸时的力学性质 (四个阶段)
⑴、弹性阶段:OA
OA’为直线段; E
AA’为微弯曲线段。
p —比例极限; e —弹性极限。
一般这两个极限相差不大, 在工程上难以区分,统称为弹 性极限
低碳钢拉伸时的四个阶段
⑴、弹性阶段:OA, ⑵、屈服阶段:B’C。
s —屈服极限
屈服段内最低的应力值。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F FD= F 的力,方向如图,试求各段内力并画出杆的轴力图。
OA
BC
D
FA
FB
FC
FD
N1
A
BC
D
FA
FB
FC
FD
解: 求OA段内力N1:设截面如图
X 0 FD FC FB FA N1 0
N4= F
FD
N1 2F , N2= –3F, N3= 5F, N4= F
N1 2F , N2= –3F, N3= 5F, N4= F
轴力图如下图示
OA
BC
D
FA
FB
FC
FD
N 2F
5F

《材料力学拉压》PPT课件

《材料力学拉压》PPT课件
F
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA

FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,

再加载
而塑性降低的现象.


拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)

第二章轴向拉伸和压缩

第二章轴向拉伸和压缩

60 MPa
已知:薄壁圆环,长度为b,内径d=200mm,壁 厚δ=5mm,承受p=2MPa的内压力作用。 求:圆环径向截面上的拉应力
b
δ p
p
d
将钢环截开,取上半部为研究对象
Fy 0

p
0
得:
b d sin d
2 pb d 2FN

2FN 0 FN p
bd 2
ABC杆为圆杆,直径d=10mm
钢材的
F1 A
E 200GPa
0.28
F2 B
C F3
求:(1)杆的伸长 (2)BC 段变形后的直径
解: 作杆的轴力图 F1 A
F2 B
C F3
杆的横截面面积
FN(kN) 10
10
A 102 106 m2 78.5106 m2
4
l
内力 — 是一个分布力系,利用截面法求得 的是该分布力系的合力。
F1
F2
F3
Fn
应力 — 内力在一点的分布集度
通俗地说,应力就是单位面积上的内力。
2、平均应力
pm

F A
F 是矢量
pm 也是矢量
3、应力
p lim F A0 A
F1
F
C
A
F2
F1
p
C
称为C点的应力
F2
4、正应力和切应力
长度为1.2 m,BD杆为8号槽钢,长
F
度为1.6 m,F=60kN,
C
B
材料的 160MPa
3
4
求:(1)校核结构的强度
(2)计算B点的位移
D
解:

拉伸与压缩(工程力学)

拉伸与压缩(工程力学)
A
FN A
•公式适用范围
(1) 等截面杆(Bars with uniform cross sections) 有锥度的杆,上述公式不 能使用。但是,如果杆的 锥度很小(a<15°时), 可以近似用上述公式计算 应力,与弹性力学的精确 解相比,误差在5%以内 (2) 均匀材料(Homogeneous materials)

N AB 38.7 103 123 106 Pa AAB பைடு நூலகம் 3 2 (20 10 ) 4
§2-4
轴向拉伸或压缩时的 变形 b b
l l l
一、纵向线应变与横向线应变 纵向应变
b
l l
横向应变
b b
二、拉(压)胡克定律
当构件工作应力
0.272 mm ( 缩短)
AB长2m, 面积为200mm2。AC面积 为250mm2。E=200GPa。F=10kN。 试求节点A的位移。
解:1、计算轴力。(设斜杆 为1杆,水平杆为2杆)取节 点A为研究对象
F
FN 1
FN 2
300
x
0 0
FN 1 cosa FN 2 0 FN 1 sin a F 0
(1) 杆轴为直线 (2) 外力合力作用线与杆轴重合 计算模型
• §2-2 轴向拉压时横截面的内力

应用截面法
FN P
FN ' P
符号规定:拉伸为正,压缩为负
例1.1:求图示杆1-1、2-2、3-3截面 上的轴力
解:
N 1 10 kN
N 2 5 kN
N3 20kN
N 1 10 kN
FN 1l1 l1 1mm E1 A1 FN 2l2 l2 0.6mm E2 A2

材力第2章:轴向拉伸与压缩

材力第2章:轴向拉伸与压缩

F
F
F
F
拉杆
压杆
§2-2 轴力及轴力图 1.内力的概念
构件因反抗外力引起的变形,而在其内部各质点间引起的相 互之间的作用力,称为内力。 显然,外力越大,变形越大,因而内力也越大,但内力不可 能无止境地随外力的增大而增大,总有个限度,一旦超过了 这个限度,材料将发生破坏。因此,材料力学中,首先研究 内力的计算,然后研究内力的限度,最后进行强度计算。
B
α α
FN1
α α
FN2
FN 2 cos + FN 1 cos - F = 0
FN 2 = FN 1 = F 2 cos Fl
A
A
F
l1 = l2 =

l2
FN 2l EA
=
=
2 EA cos
Fl
A = AA =
A l 1
=
A
l2 cos
2EA cos
2
= FN A ,
=
l l
=

E
又称为单轴应力状态下的胡克定律,不仅适用于轴向拉(压)杆,可以更普遍 地用于所有的单轴应力状态。
= E 表明在材料的线弹性范围内,正应力与线应变呈正比关系。
例题 试求图示杆 AC 的轴向变形△ l 。
FN 1
B
F1
F2
C
FN 2
C
F2
分段求解:
0
90 = 0
0
90 = 0
0
在平行于杆轴线的截面上σ、τ均为零。
• 作业: P41 • •
2-1(2)(3) 2-3 2-6
§2-5 拉、压杆的变形
杆件在轴向拉压时:

第2章 拉伸和压缩-材料力学讲义 2

第2章 拉伸和压缩-材料力学讲义 2
F
用截面法取节点B为研究对象
Fx0
FN1cos 45FN20
x
Fy0
FN1sin 45F0
FN128.3kN
FN220kN
A
F
28.3kN
FN220kN
N1
1
2、计算各杆件的应力。
F
28.3103
N1
45°
B
1
A1
20
2
10
6
C
4
2
FN1
y
F
90106Pa90MPa
F
20103
FN2
45°B
x
2
N2
F
FRCx
C
FmaxA
F
W
max
sin
FRCy
W
§2.3 拉(压)杆的应力
B
d
由三角形ABC求出
0.8m
sin
BC
0.8
0.388
C
A
AB
0.82
1.92
1.9m
F
W
15
38.7kN
max
sin
0.388
Fmax
斜杆AB的轴力为
FNFmax38.7kN
W
斜杆AB横截面上的应力为
F
FN
3
FmaxA
38.710
§2.3 拉(压)杆的应力
实验表明:拉(压)杆的破坏并不总是沿
横截面发生,有时却是沿斜截面发生的。
F
k
F
FN
F
k
A
A
k
p
FF
A
F
k
F
Acos
p

材料力学第二章-拉伸、压缩与剪切课件

材料力学第二章-拉伸、压缩与剪切课件
义与分类
总结词
了解拉伸的定义和分类是理解材料力 学的基础。
详细描述
拉伸是指材料受到轴向拉伸或压缩的 外力作用,使材料产生伸长或缩短的 变形。根据外力性质,拉伸可分为弹 性拉伸、塑性拉伸和粘性拉伸等。
拉伸的应力和应变
总结词
应力和应变是描述材料在拉伸过程中受力与变形的关键参数。
在压缩过程中,当材料的 应力超过其抗压强度时, 材料会发生弯曲或断裂。
剪切失效
在剪切过程中,当材料的 剪切应力超过其抗剪强度 时,材料会发生相对滑移 。
材料在拉伸、压缩与剪切中的强度指标
抗拉强度
抗剪强度
材料在拉伸过程中所能承受的最大应 力。
材料在剪切过程中所能承受的最大剪 切应力。
抗压强度
材料在压缩过程中所能承受的最大应 力。
压缩的强度条件
强度条件
在压缩过程中,物体抵抗破坏的能力称为强度条件。
强度条件公式
根据材料力学理论,强度条件公式为σ≤[σ],其中σ为材料的许用应力,[σ]为材 料的极限应力。
2023
PART 04
剪切力学
REPORTING
剪切定义与分类
剪切定义
剪切是材料在剪切力作用下沿剪切面发生相对滑动的现象。
详细描述
应力是指在单位面积上所受的外力,是衡量材料受力状态的物理量。应变则表示材料长度或体积的变化程度,用 于描述材料的变形程度。在拉伸过程中,应力和应变之间存在一定的关系,这种关系称为应力-应变曲线。
拉伸的强度条件
总结词
强度条件是评估材料在拉伸过程中所能承受的最大应力的关 键指标。
详细描述
强度条件通常通过实验测定,并根据材料的性质和用途进行 分类。常见的强度条件包括抗拉强度、屈服强度和疲劳强度 等。这些强度条件对于材料的选择和使用具有重要的指导意 义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知, -0.2
-0.4
1 1 cos 2
2
1 sin 2 2
0.5
1
1.5
2
2.5
3
0, 0 max 2, 2 min 0
在 0, 范围内斜截面正应力和剪 应力的变化规律
0, 0 max 0 4, 4 max 2
N AdA AdA A
N
(2.1)
A
正应力的符号规定随轴力的符号规定,即拉应力 为正,压应力为负。
例题2.2图 求AB杆横截面上的应力
例题2.2 例题2.2图为一悬臂吊 车 的 简 图 , 斜 杆 AB 为 直 径 d=20mm 的 钢 杆 , 载 荷 Q=15kN 。 当Q移到A点时,求斜杆AB横截 面上的应力。
2.4 材料在拉伸时的机械性质
材料的机械性质也称力学性质是指材料在外力作用过 程中所表现出来的变形、破坏等方面的特征。这些特征 是材料自身固有的特性,是强度计算、刚度计算等的重 要依据。它要由试验的方法来确定。这些试验是在室温 下、以缓慢加载的方式进行的,通常称常温静载试验。 拉伸试验是测定材料机械性质的基本试验。
解:1.求轴力
例题2.3图 求阶梯轴各段应力
N I-I 50kN
NIIII 30kN
NIII-III 25kN
N IV-IV 0
2. 轴力图如例题2.3b图。
3. 求应力
AB

N AB AAB

52MPa
BC

N BC ABC
95.5MPa
CD

N CE ACD
解: 1. AB杆所受外力
mc 0, PmaxsinAC Q AC 0
Pmax Q sin 2. 求斜杆AB的轴力。
N Pmax 38.7kN
3. 求斜杆AB横截面上的应力
N 123MPa
A
例题2.3 一受轴向荷载的阶梯轴,如例题2.3a图所示。求各段横 截面上的应力。并画轴力图。
第二章 轴向拉伸与压缩
(axial tension and compression)
授课人:尹久仁
2 拉伸和压缩(tension & compression)
2.1实 例
活塞杆
拉杆
图2.2 液压传动机构中油缸的活塞杆
P
图2.1 悬臂吊车的拉杆
图2.3 轴向拉伸、压缩杆件的计算简图
受力特点:构件承受一对大小相等、方向相反作用线跟杆件 轴线重合的力作用
结论:任意两横截面间
的所有纤维的伸长(缩短) 均相同。对于均匀性材料, 如果变形相同,则受力也 相同。由此可得横截面上 各点处的应力大小相等, 方向均垂直于横截面 。
图2.5 轴向拉伸杆件横截面上的应力分布规律
由静力学关系知,拉(压)杆横截面上的正应力σ应合成 为轴力N,而σ又处处大小相等,所以有
变形特点:构件沿杆件轴线伸长或缩短
2.2 轴向拉伸和压缩时横截面上的内力和应力 内力确定方法——截面法 杆件的内力称为轴力——由于内力的作用线沿杆轴线 内力符号规定:轴力的指向离开所作用的截面时为正号, 也称为拉力;指向朝着作用的截面时为负号,也称为压力。
图2.4 截面法求轴向拉伸杆件横 截面上的内力
79.6MPa
DE

N DE ADE
141.5MPa
例题2.3图 求阶梯轴各段应力
EF

N EF AEF

0
max max AB , BC , CD , DE , EF 141.5MPa
可见最大正应力并不一定发生在最大轴力处。
轴力的一般情况
若外力沿截面变化(比如由于考虑构件 的自重),截面的尺寸也沿轴线变化时,这 时截面上的轴力将是截面位置x的函数N(x), 如左图示。在计算x截面上的轴力时,应利 用微积分求。一般地,构件各截面的内力、 应力和截面面积都是位置x的函数,具体地
解 : ( 一 ) 用 截 面 法 求 1-1 , 2-2面上的轴力。 对1-1面:
X 0, P1 N1 0
N1 P1 2.62kN 对2-2面:
X 0, P1 P2 N2 0
N2 1.32kN
(二)画轴力图
轴向拉伸和压缩时杆件横截面上的应力 平面假设:变形后,横截面仍保持为平面,并且仍垂直于 杆轴线,只是各横截面沿杆轴作相对平移。此假设称为平 面假设。
要弄清楚的几个问题
材料试验的标准 试验的条件(温度、压强、加载方式) 加载过程的界定 力学参量的测定
压缩
拉伸
图2.16 确定条件屈服极限σ0.2的方法
图2.17 低碳钢压缩时的应力—应变曲线
弄清下列概念及其计算方法
1. 弹性、屈服(流动)、强化和颈缩阶段
图2.6 杆件横截面尺寸沿 轴线缓慢变化时的应力
( x ) N( x )
(2.2)
A( x )
2.3 直杆轴向拉伸或压缩时斜截面上的应力
图2.7 拉杆斜截面上的应力
由截面法得该斜截面上的内力为
N P
与横截面上的正应力类似,斜截面上的应力也是均匀 分布的,即
p

N AP cos
A
一般称p 为全应力,将其分解为垂直斜截面的正应力和沿
斜截面的剪应力


p
cos

cos2


2
1 cos2


p sin

cos
s in
sin2
2
结果讨论 1
右图为斜截面上正应力 0.8
和剪应力在 0,
0.6

0.4
围内的变化规律。由图 0.2
X 0, N P 0
NP
轴力图
为了形象地表示出杆件内轴力与横截面位置的关系, 常绘出轴力沿杆轴线变化的图形,该图形中以横坐标表示 横截面的位置,以纵坐标表示轴力的大小,以该方式绘制 的图形称为轴力图。
例题2.1 例题2.1a图所示为一双压手铆机的活塞缸示意图。 作 用 于 活 塞 杆 上 的 力 分 别 为 P1=2.62kN , P2=1.3kN, P3=1.32kN, 计算简图为例题2.1b所示。这里P2和P3分别是以 压强p2和p3乘以作用面积得出的。试求活塞杆横截面1-1和 2-2上的轴力,并作活塞杆的轴力图。
相关文档
最新文档