特殊平行四边形知识点汇总及题型
特殊平行四边形知识点归纳
特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。
2.平行线性质:特殊平行四边形的两对边分别是平行的。
根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。
3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。
这个性质可以通过两个相似三角形的性质证明得出。
4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。
这个性质可以通过垂直线的性质证明得出。
5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。
这个性质可以通过平行线的性质证明得出。
6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。
这个性质也可以通过夹角的定义和平行线的性质证明得出。
7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。
这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。
特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。
例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。
特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。
总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。
通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。
特殊的平行四边形章节知识点归纳(全)
5. 矩形的性质
A
D
) )
O
B
C
(1)∵四边形 ABCD 是矩形
∴∠DAB=∠ABC =∠BCD=∠CDA=90°(
)
(2)∵四边形 ABCD 是矩形 ∴AC=BD( OA=OC= OB=OD(
) )
6. 矩形的判定
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90°
∴□ABCD 是矩形(
(2)∵四边形 ABCD 是正方形
∴AC=BD(
)
AC⊥BD,且 OA=OC= OB=OD(
8. 正方形的判定
A
D
) )
)
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90° ,AB=BC
∴□ABCD 是正方形(
)
(2)∵四边形 ABCD 是菱形,且∠BAD=90°
∴菱形 ABCD 是正方形(
)
(2)∵四边形 ABCD 是平行四边形,且 AC=BD
∴□ABCD 是矩形(
)
(3)∵∠DAB=∠ABC =∠BCD =90°
∴四边形 ABCD 是矩形(
)
7. 正方形的性质
A
D
O
B
C
(1)∵四边形 ABCD 是正方形 ∴AB= BC =CD=AD( ∠DAB=∠ABC =∠BCD=∠CDA=90°(
(正方形既是菱形也是矩形)
4. 菱形的判定:有一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形; 四条边相等的四边形是菱形.
5. 矩形的判定:有一个角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形.
特殊的平行四边形知识梳理+典型例题
特殊的平行四边形知识点一:矩形1、概念有一个角是直角的平行四边形叫做矩形2、性质定理(1)矩形的四个角是直角(2)矩形的对角线相等且互相平分(3)矩形既是中心对称图形又是轴对称图形直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半特殊运用:直角三角形斜边上的中线等于斜边的一半3、判定定理(1)有一个角为直角的平行四边形叫矩形(2)对角线相等平行四边形为矩形(3)有三个角是直角的四边形是矩形推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形归纳补充:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题3、矩形的面积S矩形=长×宽=ab知识点二:菱形1、定义:一组邻边相等的平行四边形叫做菱形2、性质定理:(1)菱形的四条边都相等(2)菱形的对角线互相垂直平分,且每条对角线平分一组对角(3)菱形是轴对称图形,两条对角线所在的直线是都是它的对称轴菱形是中心对称图形,对角线的交点是它的对称中心2、判定定理:(1)一组邻边相等的平行四边形是菱形(2)对角线互相垂直的平行四边形是菱形(3)四条边都相等的四边形是菱形※注意:对角线互相垂直的四边形不一定是菱形,对角线互相垂直平分的四边形才是菱形归纳补充:1、菱形被对角线分成四个全等的三角形和两对全等的三角形2、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算3、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决题目知识点三:正方形1、定义:有一组邻边相等的矩形叫正方形2、性质定理(1)正方形的四条边都相等,四个角是直角。
(2)正方形的两条对角线相等且互相垂直平分,每一组对角线平分一组对角(3)正方形既是中心对称图形,又是轴对称图形3、判定定理(1)有一组邻边相等的矩形是正方形(2)对角线相互垂直的矩形是正方形(3)对角线相等的菱形是正方形(4)有一个角是直角的菱形是正方形方法总结:(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
(完整版)平行四边形(知识点、经典例题、常考题型练习),推荐文档
(3)在图 2 的 AB 边上是否存在一点 M ,使得四边形 DMEP 是平行四边形?若存在,请给予证明;
若不存在,请说明理由.
6
A
D
F
BE
C
图1
A
D
FP
BE
C
图2
【例 3】如图,在矩形 ABCD 中,已知 AD=12,AB=5,P 是 AD 边上任意一点,PE⊥BD 于 E,PF⊥AC 于 F,求 PE+PF 的值。
A
E
B
D
G F
C
【巩固】如图,在平行四边形 ABCD 中,∠B,∠D 的平分线分别交对边于点 E、F,交四边形的对角线 AC 于点 G、H。求证:AH=CG。
例 6. 已知:如图,在□ABCD 中,E、F 分别为边 AB、CD 的中点,BD 是对角线,AG∥DB 交 CB 的延长线于 G. (1) 求证:△ADE≌△CBF; (2) 若四边形 BEDF 是菱形,则四边形 AGBD 是什么特殊四边形?并证明你的结论.
1、下列说法中错误的是( )
A.四个角相等的四边形是矩形
B.四条边相等的四边形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直的矩形是正方形
2、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )
A.矩形
B.菱形
C.正方形
D.菱形、矩形或正方形
3、下面结论中,正确的是( )
②如果 BAC 90 ,那么四边形 AEDF 是矩形;
③如果 AD 平分 BAC ,那么四边形 AEDF 是菱形;
④如果 AD BC 且 AB AC ,那么四边形 AEDF 是菱形.
其中,正确的有
.(只填写序号)
平行四边形知识点总结及分类练习题
平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。
以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。
可以用符号“▭”表示。
2、性质:1)对边平行:平行四边形的对边平行且相等。
2)对角相等:平行四边形的对角相等,邻角互补。
3)平行四边形的面积等于其底乘高。
3.判定方法:1)两组对边分别平行的四边形是平行四边形。
2)两组对边分别相等的四边形是平行四边形。
3)一组对边平行且相等的四边形是平行四边形。
4)对角线互相平分的四边形是平行四边形。
5)邻角互补的四边形是平行四边形。
4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。
2)菱形:对角线垂直且平分,四边相等。
3)正方形:对角线垂直且相等,四个角都是直角。
二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。
因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。
其他选项都不满足平行四边形的定义或判定方法。
2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。
因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。
其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。
特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。
特殊平行四边形知识点总结及题型
特殊平行四边形知识点总结及题型特殊平行四边形知识点总结及题型特殊平行四边形是几何学中的重要概念,它包括矩形、菱形和正方形。
这些特殊平行四边形具有一些独特的性质和特征,它们在几何学、晶体学和工程学等领域都有广泛的应用。
本文将总结特殊平行四边形的定义、性质、判定方法和典型题型,以帮助读者更好地理解和掌握这些知识。
一、定义1、矩形:一个内角为直角的平行四边形叫做矩形。
2、菱形:一个内角为锐角的平行四边形叫做菱形。
3、正方形:内角均为直角的平行四边形叫做正方形。
二、性质1、对边平行且相等。
2、对角线互相平分且相等。
3、四个内角均为90度。
4、邻角互补。
5、对角线与邻边组成的三角形为等腰直角三角形。
三、判定方法1、矩形 (1) 内角为直角。
(2) 对边平行且相等。
2、菱形 (1) 内角为锐角。
(2) 对边平行且相等。
3、正方形 (1) 内角均为直角。
(2) 对边平行且相等。
四、典型题型1、求特殊平行四边形的角度和周长。
2、证明特殊平行四边形的性质和判定方法。
3、解决与特殊平行四边形相关的实际问题。
五、扩展知识1、空间几何中的特殊平行四边形,如空间双面平行四边形等。
2、立体几何中的特殊平行四边形,如平行六面体等。
3、相关知识点,如三角函数、向量等在特殊平行四边形中的应用。
总之,特殊平行四边形是一个具有丰富内容和广泛应用的知识点。
理解和掌握这些特殊形状的特点和性质,对于解决相关问题以及进一步学习几何学、物理学等学科都具有重要意义。
希望读者通过阅读本文,能够对这些特殊平行四边形的定义、性质、判定方法和典型题型有更深入的理解和掌握,为进一步学习打下坚实的基础。
平行四边形知识点总结平行四边形知识点总结一、定义平行四边形是一种几何图形,具有两条相互平行的对边和两条对角线。
它是人类生活中常见的形状,具有广泛的应用价值。
二、性质1、平行四边形的对边平行且相等。
2、平行四边形的对角相等。
3、平行四边形的内角和为360度。
新课标人教版八年级数学下平行四边形及特殊的平行四边形知识点总结及经典习题
《四边形》的基本知识、主要考点、配套试题全章知识脉络:平行四边形◆考点1.平行四边形的两组对边分别平行且相等 推论:平行四边形一组邻边的和为周长的一半对边平行 内错角相等(有“角平分线”会产生“等腰三角形” ) 1.□ABCD 的周长为34cm ,且AB=7cm ,则BC=cm 。
2.□ABCD 的周长为26cm ,相邻两边相差3cm ,则AB=cm 。
3、如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB=cm ,BC=cm ,CD=_____cm ,4、如图,□ABCD 中,CE 平分∠BCD ,BG 平分∠ABC ,BG 与CE 交于点F 。
(1)求证:AB=AG ;(2)求证:AE=DG ;(3)求证:CE ⊥BG 。
◆考点2.平行四边形的两组对角分别相等 推论:平行四边形的邻角互补1.平行四边形的一个角为50度,则其余三个角分别为。
2.平行四边形相邻两个角相差40度,则相邻两角度数分别为。
3、□ABCD 中两邻角∠A :∠B=1:2,则∠C=_______度4、在□ABCD 中,若∠A-∠B=70°,则∠A=______,∠B=______,∠C=______,∠D=______.BCDA G E F◆考点3.平行四边形的对角线互相平分推论1:经过平行四边形对角线交点的直线具备双重平分作用: ①该直线平分平行四边形的面积;②该直线在平行四边形内的部分被对角线平分。
1.如图,□ABCD 中,AC 、BD 交于点O ,△AOB 与△BOC 的周长相差2,且AB=5,则BC=。
2.如图△ABC 中,AB=3,AC=5,则BC 边上的中线AD 长度的取值范围是。
3.平行四边形的一条对角线长为10,则它的两边可能长为( ) A .5和5 B .3和9 C .4和15 D .10和204.平行四边形的两条对角线长分别6和10,则它的边长不可能是( ) A .3 B .4 C .7 D .85.平行四边形的一条边长为8,则它两条对角线可以是( ) A .6 和12 B .6和10 C .6 和8 D .6 和66.如图,□ABCD 中,AC 、BD 交于点O ,过点O 作OE ⊥AC 交AD 于E , 连接CE ,若△CDE 的周长为12,则□ABCD 的周长为。
北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)
北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 【知识关系】【知识点梳理】知识点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 知识点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 知识点二、菱形高底平行四边形⨯=S1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形. 3.面积:4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.知识点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 知识点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 知识点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形2对角线对角线高==底菱形⨯⨯S 宽=长矩形⨯S1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=1 2BC,进而得到EF=12CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCAMA MCAMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC, ∴MD=MC ,由①知四边形ADCN 是平行四边形, ∴MD=MN =MA =MC , ∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】 解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6, 又∵ 在Rt △ADC 中,. ∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,10AC =222(8)4x x -=+222DC FC DF +=解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案. 【答案与解析】 探究:AE =EF证明:∵△BHE 为等腰直角三角形, ∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形, ∴∠FCE =12∠DCE =45°, ∴∠H =∠FCE.由正方形ABCD 知∠B =90°,∠HAE =90°+∠DAE =90°+∠AEB, 而AE ⊥EF ,∴∠FEC =90°+∠AEB , ∴∠HAE =∠FEC.由正方形ABCD 知AB =BC ,∴BH -AB =BE -BC , ∴HA =CE,∴△AHE ≌△ECF (ASA ), ∴AE =EF. 【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三: 【变式】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 .【答案】 65°。
专题06特殊平行四边形重点知识讲义解析版
专题06 特殊平行四边形重点知识讲义性质判定矩形①边——两组对边分别平行且相等;②角——每个角都是90°;③对角线——两条对角线相等且互相平分.①有一个角是90°的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角90°的四边形是矩形.菱形①边——两组对边分别平行且相等,邻边相等;②角——两组对角分别相等;③对角线——两条对角线垂直且互相平分,每条对角线平分一组对角.①一组邻边相等的平行四边形是菱形;②对角线垂直的平行四边形是菱形;③四条边相等的四边形是菱形.正方形四条边都相等;四个角都是90°;对角线相等且互相垂直平分;每条对角线平分一组对角;正方形的中点四边形是正方形;矩形四个角平分线所成的四边形是正方形.四边相等,有三个角是直角的四边形是正方形;一组邻边相等的矩形是正方形;一组邻边相等且有一个角是直角的平行四边形是正方形;有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形;对角线互相垂直平分且相等的平行四边形是正方形.几个结论1. 平行四边形对角线与边关系AC 2+BD 2=2(AB 2+BC 2)思考:在证明含有线段平分的关系时,考虑勾股定理,而勾股定理离不开直角三角形,故而需要作垂线构造直角三角形.理由:过A ,D 分别作AE ⊥BC 于E ,DF ⊥BC 于F ,则AC 2+BD 2=AE 2+CE 2+BF 2+DF 2= AE 2+(BC -BE )2+(BC +CF )2+DF 2=AE 2+BC 2-2BC ·BE +BE 2+BC 2+2BC ·CF +CF 2+DF 2= AE 2+BC 2+BE 2+BC 2+CF 2+DF 2=2(AB 2+BC 2)2. 对角线互相垂直四边形四边形ABCD 对角线,AC ⊥BD ,结论:S =12AC ·BD AB 2+CD 2=BC 2+AD 23. 中点四边形任意四边形中点四边形均为平行四边形对角线垂直的四边形的中点四边形为矩形对角线相等的四边形的中点四边形为菱形对角线垂直且相等的四边形的中点四边形为正方形4. 三角形一边的中线等于这边的一半,则该三角形为直角三角形.由图,知∠ACB=x+y=90°.5. 正方形中的“蝴蝶”四边形ABCD为正方形,BN⊥AM,则BN=AM.典例解析1.【特殊四边形判定】【例1】(2021·重庆渝中区月考)下列命题中,是真命题的是( )A.对角线相等的平行四边形是菱形B.一组邻边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.四个角相等的四边形是菱形【答案】C.【解析】解:A、对角线相等的平行四边形是矩形,A错误;B、一组邻边相等的平行四边形是菱形,B错误;C、对角线互相垂直的平行四边形是菱形,C正确;D、四个角相等的四边形是矩形,D错误;故答案为:C.【变式1-1】下列命题中,正确的是()A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形【答案】B.【解析】解:两邻边相等的平行四边形是菱形,故A错误;一条对角线平分一个内角的平行四边形是菱形,故B正确;对角线垂直且一组邻边相等的四边形不一定是菱形,比如筝形,故C错误;对角线垂直的平行四边形是菱形,故D错误;故答案为:B.【例2】(2020·银翔实验中学月考)下列四个命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直平分的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的平行四边形是正方形【答案】B.【解析】A、对角线互相平分的四边形是平行四边形,是真命题;B、对角线相等且平分的四边形是矩形,原命题是假命题;C、对角线互相垂直的平行四边形是菱形,是真命题;D、对角线互相垂直且相等的平行四边形是正方形,是真命题;故答案为:B.【变式2-1】(2020·河南开封期末)下列命题中,真命题是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.一组邻边相等且对角线互相垂直的四边形是菱形D.有一个角是直角且对角线互相垂直平分的四边形是正方形【答案】D.【解析】A.一组对边平行且另一组对边相等的四边形是平行四边形或等腰梯形,错误;B.有一个角是直角的平行四边形是矩形,错误;C.一组邻边相等且对角线互相垂直的四边形不一定是菱形,错误;D.有一个角是直角且对角线互相垂直平分的四边形是正方形,正确.故答案为:D.【变式2-2】(2020·河南驻马店期末)下列说法正确的个数是()①对角线互相垂直或有一组邻边相等的矩形是正方形;②对角线相等或有一个角是直角的菱形是正方形;③对角线互相垂直且相等的平行四边形是正方形;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个【答案】D.【解析】解:①对角线互相垂直或有一组邻边相等的矩形是正方形,正确;②对角线相等或有一个角是直角的菱形是正方形,正确;③对角线互相垂直且相等的平行四边形是正方形,正确;④对角线互相垂直平分且相等的四边形是正方形,正确;故答案为:D.【例3】(2020·石家庄市期中)如图,在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE//AC,DF//AB,分别交AB、AC于E、F两点,下列说法错误的是()A.四边形AEDF是平行四边形B.若AD平分∠BAC,则四边形AEDF是菱形C.若AB⊥AC,则四边形AEDF是矩形D.若BD=CD,则四边形AEDF是正方形【答案】D.【解析】解:∵DE//AC,DF//AB,∴四边形AEDF是平行四边形,故A正确;若AD平分∠BAC,则∠EAD=∠FAD,又∵∠EAD=∠FDA,∴∠FAD=∠FDA∴FA=FD,∴平行四边形AEDF是菱形,故B正确;∵AB⊥AC,∴平行四边形AEDF是矩形,故C正确;若BD=CD,则四边形AEDF不一定是正方形;选项D错误.故答案为:D.【变式3-1】(2021·上海月考)已知四边形ABCD是平行四边形,下列结论中不正确的是()=时,四边形ABCD是菱形A.当AB BC^时,四边形ABCD是菱形B.当AC BDÐ=o时,四边形ABCD是矩形C.当90ABC=时,四边形ABCD是正方形D.当AC BD【答案】D.【解析】解:根据邻边相等的平行四边形是菱形,A叙述正确;根据对角线互相垂直的平行四边形是菱形,B叙述正确;根据有一个角是直角的平行四边形是矩形,C叙述正确;根据对角线相等的平行四边形是矩形,D叙述错误,符合题意;故答案为:D.>,【变式3-2】(2021·辽宁铁岭市期末)如图,点O为矩形ABCD的对称中心,AD AB 点E从点B出发(不含点B)沿BC向点C运动,移动到点C停止,延长EO交AD于点F,则四边形BEDF形状的变化依次为()A.平行四边形→菱形→正方形→矩形B.平行四边形→正方形→菱形→矩形C.平行四边形→菱形→平行四边形→矩形D.平行四边形→正方形→平行四边形→矩形【答案】C.【解析】解:连接BD∵点O为矩形ABCD的对称中心,∴BD经过点O,OD=OB,∵AD∥BC,∴∠FDO=∠EBO,∴△DFO≌△BEO,∴DF=BE,∵DF∥BE,∴四边形BEDF是平行四边形,观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故答案为:C.【例4】(2021·广东模拟)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=5,DF=2,求四边形DBEC面积.【答案】(1)见解析;(2)【解析】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=12 AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=5,DF=2,∴DF是△ABC的中位线,AC=2AD=10,S△BCD =12S△ABC∴BC=2DF=4.∵∠ABC=90°,∴AB==,∵平行四边形DBEC是菱形,∴S 四边形DBEC =2S △BCD =S △ABC =12AB •BC =142´=.【变式4-1】(2021·山东济宁市)在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形.【答案】见解析.【解析】解:(1)∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,∴AE =DE ,∵∠AEF =∠DEB ∴△AEF ≌△DEB ;(2)由(1)可知,AF =BD ,∵D 是BC 的中点,∴BD =CD ,∴AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形,∵△ABC 为直角三角形,∴AD =CD ,∴四边形ADCF 是菱形.【例5】(2021·湖南娄底市)如图,已知平行四边形ABCD ,若M ,N 是BD 上两点,且BM =DN ,AC =2OM ,(1)求证:四边形 AMCN 是矩形;(2)△ABC 满足什么条件,四边形AMCN 是正方形,请说明理由.【答案】见解析.【解析】(1)证明:四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB-BM=OD-DN,即OM=ON,∴四边形AMCN是平行四边形,∴MN=2OM,∵AC=2OM,∴MN=AC,∴四边形AMCN是矩形;(2)当AB=BC时,四边形AMCN是正方形;∵AB=BC,四边形ABCD是平行四边形,∴四边形ABCD是菱形,∴AC⊥BD,∴AC⊥MN,由(1)可知四边形ABCD是矩形,∴四边形ABCD是正方形;【变式5-1】(2020·赣州市期中)如图,在Rt△ABC中,∠ACB=90°,过点C的直线m//AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD、BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若点D是AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?【答案】见解析.【解析】(1)证明:∵直线m//AB,∴EC//AD.∵∠ACB=90°,∴BC⊥AC.又∵DE⊥BC,∴DE//AC.∵EC//AD,DE//AC,∴四边形ADEC是平行四边形,∴CE=AD.(2)当点D是AB中点时,四边形BECD是菱形.证明:∵D是AB中点,∴DB=DA,又∵直线m//AB,CE=AD,∴DB=CE,DB//CE,∴四边形BDCE是平行四边形,又∵DE⊥BC,∴四边形BECD是菱形,(3)当∠A的大小是45°时,四边形BECD是正方形.证明:∵D是AB中点,∴DB=DA,又∵直线m//AB,CE=AD,∴DB=CE,DB//CE,∴四边形BDCE是平行四边形,∵DE⊥BC,∴四边形BECD是菱形,∴BC 平分∠EBD ,∵∠A =45°,∴∠CBA =45°,∴∠EBD =90°,∴菱形BECD 是正方形.【变式5-2】(2020·四川广安市期末)如图,在ABC V 中,点O 是AC 边上的一个动点,过点O 作直线//BC MN ,设MN 交BCA Ð的角平分线于点E ,交BCA Ð的外角ACG Ð的平分线于点F ,连接AF .(1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)在(2)的条件下,ABC V 满足什么条件时,四边形AECF 是正方形?并说明理由.【答案】见解析.【解析】(1)证明:∵MN ∥BC∴∠3=∠2.又∵CF 平分∠ACG ,∴∠1=∠2,∴∠1=∠3,∴OC =OF ,同理,OC =OE ,∴OE =OF .(2)解:当点O运动到AC的中点时,四边形AECF是矩形,证明如下:当点O运动到AC的中点时,OA=OC.又∵OE=OF,∴四边形AECF是平行四边形,由(1)可知,OC=OF,∴AC=EF,∴四边形AECF是矩形.(3)在(2)的条件下,∠ACB=90°时,四边形AECF是正方形.理由:由(2)知,当点O运动到AC的中点时,四边形AECF是矩形.∵MN∥BC,∴∠AOE=∠ACB,当∠ACB=90°时,∠AOE=90°,即AC⊥EF,∴四边形AECF是正方形.2.【特殊四边形性质应用】【例6】(2020·吉水县期末)如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是_____.【解析】解:连接CH,∵四边形ABCD,四边形EFCG都是正方形,∴∠F=∠D=90°,∴△CFH与△CDH都是直角三角形,在Rt△CFH与Rt△CDH中,∵CF CD CH CH=ìí=î,∴△CFH≌△CDH(HL).∴∠DCH=12∠DCF=12(90°﹣30°)=30°.在Rt△CDH中,CD=3,∴DH..【变式6-1】(2021·重庆南开中学月考)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF,8BD=,则菱形ABCD的周长为( )A.B.16C.D.32【答案】C.【解析】解:∵E,F分别是AB,BC边上的中点,EF=∴AC=2EF=∵四边形ABCD是菱形,BD=8,∴AC ⊥BD ,OA =12AC=,OB =12BD =4,∴AB,∴菱形ABCD的周长为:4=.故答案为:C .【变式6-2】(2021·四川成都市期中)如图,在等腰Rt △ABC 中,∠ACB =90°,AC =3,以斜边AB 为边向外作正方形ABDE ,连接CE ,则CE 的长为( )A .5BC .D【答案】C .【解析】解:过E 作EF ⊥AC ,交CA 的延长线于F ,∵四边形ABDE 为正方形,∴∠BAE =90°,AE =AB ,∵∠EAF +∠AEF =90°,∠EAF +∠BAC =90°,∴∠AEF =∠BAC ,在△AEF 和△BAC 中,F ACBAEF BAC AE ABÐ=ÐìïÐ=Ðíï=î,∴△AEF ≌△BAC (AAS ),∴EF =AC =AF =BC =3,在Rt △ECF 中,EF =3,FC =FA +AC =3+3=6,根据勾股定理得:CE =.故答案为:C .【例7】(2020·渠县期末)如图,在ABC V 中,90ABC Ð=°,BD 为AC 的中线,过点C 作CE BD ^于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .若13AG =,6CF =,则四边形BDFG 的周长为______.【答案】20.【解析】解:∵AG ∥BD ,BD =FG ,∴四边形BGFD 是平行四边形,∵CF ⊥BD ,∴CF ⊥AG ,又∵点D 是AC 中点,∴BD =DF =12AC ,∴四边形BGFD 是菱形,设GF =x ,则AF =13-x ,AC =2x ,在Rt △AFC 中,由勾股定理可得:36+(13-x )2=(2x )2,解得:x =5,即GF =5∴四边形BDFG 的周长=4GF =20.故答案为:20.【例8】(2021·沭阳县月考)如图,在四边形ABCD 中,AC =BD =6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2的值为( )A .9B .18C .36D .48【答案】C .【解析】解:连接EF 、FG 、GH 、EH ,设EG 和FH 交于点O ,∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,∴EF ∥AC ,HG ∥AC ,EF =12AC ,FG =12BD ,∴EF ∥HG ,同理:EH ∥FG ,∴四边形EFGH 为平行四边形,∵AC =BD ,∴EF =FG ,∴平行四边形EFGH 为菱形,∴EG ⊥FH ,EG =2OG ,FH =2OH ,∴EG 2+FH 2=(2OE )2+(2OH )2=4(OE 2+OH 2)=4EH 2=4×(12BD )2=62=36;故答案为:C .【例9】(2020·四川广安市期末)如图,O 是菱形ABCD 的对角线,AC BD 的交点,E ,F 分别是,OA OC 的中点给出下列结论:①ADE EOD S S V V =;②四边形BFDE 也是菱形;③四边形ABCD 的面积大小等于EF BD ×;④ADE EDO Ð=Ð;⑤是轴对称图形.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】C .【解析】解:∵E 、F 分别是OA 、OC 的中点.∴AE =OE .∵S △ADE 12=´AE ×OD 12=´OE ×OD =S △EOD ∴S △ADE =S △EOD ①正确.∵四边形ABCD 是菱形,E ,F 分别是OA ,OC 的中点.∴EF ⊥OD ,OE =OF .∵OD =OB .∴四边形BFDE 是菱形.②正确∵菱形ABCD 的面积12=AC ×BD .∵E 、F 分别是OA 、OC 的中点.∴EF 12=AC .∴菱形ABCD 的面积=EF ×BD .③正确由已知可求得∠FDO =∠EDO ,而无法求得∠ADE =∠EDO .④不正确∵EF ⊥OD ,OE =OF ,OD =OD .∴△DEO ≌△DFO .∴△DEF 是轴对称图形.⑤正确∴正确的结论有四个,分别是①②③⑤,故答案为:C .【例10】(2020·浙江杭州月考)如图,菱形ABCD 的边长为4cm ,且60ABC °Ð=,E 是BC 中点,P 点在BD 上,则PE PC +的最小值为_______.【答案】【解析】解:在菱形ABCD 中,点A 、C 关于BD 对称,AB =BC ,连接AE ,与BD 的交点即为所求作的点P ,∵∠ABC = 60°,AB =BC ,∴△ABC 是等边三角形,∵AB =BC =4,点E 是BC 的中点,∴BE =2,∴AE ⊥BC ,∴AE =即PE +PC 的最小值为故答案为:【例11】(2020·广东惠州市期末)如图,在矩形ABCD 中,点O 为对角线AC 的中点,过点O 作EF AC ^交BC 于点E ,交AD 于点F ,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)连接OB ,若4AB =,5AF =,求OB 的长.【答案】见解析.【解析】证明:(1)∵O 是AC 的中点,且EF ⊥AC ,∴AF =CF ,AE =CE ,OA =OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFO =∠CEO ,在△AOF 和△COE 中,AFO CEO AOF COE OA OC Ð=ÐìïÐ=Ðíï=î,∴△AOF ≌△COE (AAS ),∴AF =CE ,∴AF =CF =CE =AE ,∴四边形AECF 是菱形;(2)如图,连接BO ,∵AB =4,AF =AE =EC =5,∴BE3==,∴BC =8,∴AC==,∵AO =CO ,∠ABC =90°,∴BO =12AC =【变式11-1】(2021·山东潍坊市期末)如图,在四边形ABCD 中,,E F 分别是,AD BC 的中点,,G H 分别是对角线,BD AC 的中点,依次连接,,,E G F H 连接,EF GH.(1)求证:四边形EGFH 是平行四边形;(2)当AB CD =时,EF 与GH 有怎样的位置关系?请说明理由;(3)若,20,70AB CD ABD BDC =Ð=°Ð=°,则GEF Ð= °.【答案】(1)(2)见解析;(3)25.【解析】证明:(1)∵E 、G 分别是AD 、BD 的中点,∴EG ∥AB ,AB =2EG同理可证:FH ∥AB ,AB =2HF∴EG ∥HF ,EG =HF∴四边形EGFH 是平行四边形;(2)GH ⊥EF ,理由:∵G 、F 分别是BD 、BC 的中点,∴FG =12CD ,由(1)知GE =12AB ,又∵AB =CD ,∴GE =GF又四边形EGFH 是平行四边形,∴四边形EGFH 是菱形,∴GH ⊥EF ;(3)由题意,EG ∥AB ,HF ∥AB ,GE =12AB ∴EG ∥HF ,同理,EH ∥FG ,GF =12CD ∴四边形EGFH 是平行四边形,∵AB =CD ,∴GE =GF ,∴四边形EGFH 是菱形,∵∠ABD =20°,∠BDC =70°,EG ∥AB ,GF ∥CD ,∴∠EGD =∠ABD =20°,∠BGF =∠BDC =70°,∴∠DGF =180°-∠BGF =110°,∴∠EGF =∠EGD +∠DGF =20°+110°=130°,∴∠GEH =180°-∠EGF =50º,∵FE 平分∠GEH ,∴∠GEF =12∠GEH =25°.故答案为:25.【例12】(2020·河南郑州月考)如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC V .(1)求证:BE DG =;(2)若60B Ð=°,当BC =______AB 时,四边形ABFG 是菱形;(3)若60B Ð=°,当BC =______AB 时,四边形AECG 是正方形.【答案】(1)见解析;(2)32;(3.【解析】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD .∵AE ⊥BC ,∴CG ⊥AD ,AE =CG ,∴∠AEB =∠CGD =90°.在Rt △ABE 与Rt △CDG 中,AE CG AB CD =ìí=î,∴Rt △ABE ≌Rt △CDG (HL ),∴BE =DG .(2)当BC =32AB 时,四边形ABFG 是菱形.证明:∵AB ∥GF ,AG ∥BF ,∴四边形ABFG 是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∴BE=12 AB,∵BE=CF,BC=32 AB,∴EF=12 AB.∴AB=BF.∴四边形ABFG是菱形.故答案是:32;(3)BC AB时,四边形AECG是正方形.∵AE⊥BC,GC⊥CB,∴AE∥GC,∠AEC=90°,∵AG∥CE,∴四边形AECG是矩形,当AE=EC时,矩形AECG是正方形,∵∠B=60°,∴EC=AE,BE=12 AB,∴BC AB..【变式12-1】(2020·渠县月考)如图所示,O为ABCV的边AC上一动点,过点O的直//MN BC,设MN分别交ACBÐ的平分线及其外角平分线于点,E F.=(1)求证:OE OF(2)当点O在何处时,四边形AECF是矩形?V中添加条件,使四边形AECF变为正方形,并说明你(3)在(2)的条件下,请在ABC的理由.【答案】见解析.【解析】(1)证明:∵MN∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:当点O运动到AC的中点时,且∠ACB为直角时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC∠ACB=90°,∴∠AOE=∠ACB=90°,∴AC⊥EF,∴四边形AECF是正方形.【例13】(2021·广东深圳期末)如图,在直角坐标系中,四边形OABC是矩形,OA=8,OC=6,点D是对角线AC的中点,过点D的直线分别交OA、BC边于点E、F.(1)求证:四边形EAFC是平行四边形;(2)当CE=CF时,求EF的长;(3)在条件(2)的情况下,P为x轴上一点,当以E,F,P为顶点的三角形为等腰三角形时,请求出点P的坐标.【答案】(1)见解析;(2)152;(3)点P的坐标为(8,0)或(374,0)或(﹣234,0)或(434,0).【解析】(1)证明:∵四边形OABC是矩形,∴BC∥OA,∴∠FCD=∠DAE,∠CFD=∠AED,∵D是AC的中点,∴CD=AD,∴△CDF≌△ADE,∴DF=DE,∴四边形EAFC是平行四边形;(2)解:∵四边形EAFC是平行四边形,CE=CF,∴四边形EAFC是菱形,∴CE=EA,AC⊥EF,设CE=AE=x,∵OC2+OE2=CE2,∴62+(8﹣x)2=x2,∴x=25 4,∴CE=25 4,∵OA=8,OC=6,∴AC=10,∴CD=12AC=5,∴ED=15 4,∴EF=2ED=15 2;(3)由(2)可知,AE=CE=254,OE=74,①若PE=PF,点P与点A重合,∴P(8,0),②若EF=EP=15 2,当点P在x轴的正半轴上,OP=OE+PE=71542+=374,∴P(374,0),当点P在x轴的负半轴上,OP=PE﹣OE=15724-=234,∴P(﹣234,0),③若EF=FP,过点F作FG⊥AE于点G,则EG=CF﹣OE=254﹣74=92,∴EP=9,∴OP=OE+EP=74+9=434,∴P(434,0).综上可得,点P 的坐标为(8,0)或(374,0)或(﹣234,0)或(434,0).【变式13-1】(2021·广东佛山期末)如图,在Rt ABC △中,90C Ð=°,10AC =,60A Ð=°.点P 从点B 出发沿BA 方向以每秒2个单位长度的速度向点A 匀速运动,同时点Q 从点A 出发沿AC 方向以每秒1个单位长度的速度向点C 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P 、Q 运动的时间是t 秒.过点P 作PM BC ^于点M ,连接PQ 、QM .(1)请用含有t 的式子填空:AQ =______,AP =______,PM =______;(2)是否存在某一时刻使四边形AQMP 为菱形?如果存在,求出相应的t 值;如果不存在,说明理由;(3)当t 为何值时,PQM V 为直角三角形?请说明理由.(备用图)【答案】见解析.【解析】解:(1)由题意知,AQ =t ,∵∠C =90°,AC =10,∠A =60°,∴∠B =30°,∴AB =2AC =20,∴AP =AB -BP =20-2t ,∵PM⊥BC,∴∠PMB=90°,∴PM=12PB=t.故答案为:AQ=t,AP=20-2t,PM=t.(2)存在,理由如下:由(1)知,AQ=PM ∵AC⊥BC,PM⊥CB∴AQ∥PM∴四边形AQMP是平行四边形.当AP=AQ时,四边形AQMP是菱形即20-2t=t,解得:t=20 3.故当t=203时四边形AQMP为菱形.(3)①当∠MPQ=90°时,此时四边形CMPQ为矩形在Rt△APQ中,∠A=60°,∠APQ=30°∴AP=2AQ,即20-2t=2t,解得:t=5②当∠MQP=90°时,同理,AQ=2AP,即t=2(20-2t),解得:t=8③当∠PMQ=90°时,此种情况不存在.综上所述,t=5或t=8时,△PQM为直角三角形.【变式13-2】(2020·江苏泰州市月考)对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN 时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),在Q1(0,4)、Q2(2,-4)、Q3(1)中,可以是线段OA的中垂点是;(2)如图2,点A为x轴上一点,若点Q(2,为线段OA的“完美中垂点”,请求出线段OQ的“完美中垂点”的坐标;(3)若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴上,在线段PA上方画出线段AP的“完美中垂点”M,请问∠MQA的度数是否是一个定值?若是,请求出这个定值;若不是,请说明理由.【答案】(1)(2,-4);(2)(4,0)或(-2,);(3)∠MQA =90°,见解析.【解析】解:(1)根据“中垂点”的定义得:QM=QN,∴点Q在线段OA的垂直平分线上,∵O(0,0),A(4,0),∴线段OA的垂直平分线是:x=2,在Q1(0,4)、Q2(2,-4)、Q3(1)中,只有Q2(2,-4)符合题意,∴可以是线段OA的中垂点是Q2(2,-4),故答案为:Q2(2,-4);(2) ∵Q(2,),∴OQ=4,∵点Q(2,为线段OA的“完美中垂点”,∴OA=QA=OQ=4,即A(4,0)为线段OQ的“完美中垂点”,设线段OQ的另外一个“完美中垂点”为D,如图所示:则OD=QD=OA=QA=OQ=4,∴四边形AODQ为菱形,∴DQ∥OA,∴D (-2,),∴线段 OQ 的“完美中垂点”的坐标为(4,0)或(-2,);(3) ∠MQA 的度数是一个定值,∠MQA =90°,理由如下:如图所示,点M 为线段 AP 的“完美中垂点”,∵点Q 为线段 OA 的“完美中垂点”,∴PA =PM =AM ,OA =QA =OQ ,∴△OAQ 和△PAM 为等边三角形,∴∠OAQ =∠PAM =60°,∴∠OAP =∠QAM ,在△OAP 和△QAM 中,OA QA OAP QAM PA AM =ìïÐ=Ðíï=î,∴△OAP ≌△QAM (SAS ),∴∠MQA =∠POA =90°.【变式13-3】(2020·株洲市期中)如图所示,在四边形ABCD 中,AD ∥BC ,∠B =90°,AD =24cm ,BC =26cm 动点P 从点A 出发沿AD 方向向点D 以1cm /s 的速度运动,动点Q 从点C 出发沿着CB 方向向点B 以3cm /s 的速度运动.点P ,Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.。
特殊平行四边形专题总结
特殊平行四边形专题总结一、菱形(一)菱形的定义:有一组邻边相等的平行四边形叫做菱形(二)菱形的性质:1、菱形既是轴对称图形又是中心对称图形,每条对角线所在的直线都是菱形的对称轴,两条对角线的交点是菱形的对称中心;2、菱形的四条边相等3、菱形的对角线相互垂直(三)菱形的判定:1、对角线相互垂直的平行四边形是菱形2、四条边相等的四边形是菱形注意:1、菱形是特殊的平行四边形,因此菱形具有平行四边形的所有性质2、菱形的两个判定定理有着不同的适用范围,在应用是应要注意区分题型一:求与菱形有关的图形面积例1:已知BD是ABC∆的角平分线,DE//BC,交AB于点E.(1)如图一,求证:BED∆是等腰三角形;(2)如图二,在线段BC上取一点F,使四边形BFDE是菱形,连结EF交BD于点O,在不添加任何辅助线的情况下,请写出与BEF∆面积一定相等的所有三角形(不包括BEF∆本身)。
1、如图,四边形ABCD 是菱形,AB DH DB AC ⊥==,,68与点H ,则=DH ( ) 524.A 512.B 12.C 24.D题型二:综合运用菱形的性质与判定解题例2:如图,F E ,为线段BD 的两个三等分点,四边形AECF 是菱形。
(1)试判断四边形ABCD 的形状,并加以证明;(2)若菱形AECF 的周长为20,BD 的长为24,试求四边形ABCD 的面积。
2、如图,已知F E ,分别是平行四边形ABCD 的边AD BC ,的中点,且︒=∠90BAC(1)求证:四边形AECF 是菱形;(2)若1035==BC AB ,,求菱形AECF 的面积。
题型三:与菱形有关的图形变换问题例3:如图,在ABC ∆和EDC ∆中,︒=∠=∠===09,DCE ACB CD CB CE AC ,AB 与CE 交于点F ,BC AB ED 、与分别交于H M 、.(1)求证:CH CF =;(2)如图2,ABC ∆不动,将EDC ∆绕点C 旋转到︒=∠45BCE 时,试判断四边形ACDM 是什么四边形,并证明你的结论。
初二数学八下平行四边形所有知识点总结和常考题型练习题
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的外角和定理:。
推论:多边形的内角和定理:多边形的外角和定理:。
2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为___________。
二、平行四边形1.定义: 2.平行四边形的性质: 平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:(2)边:(3)对角线:(4)面积:①_________________; ②平行四边形的对角线将四边形分成_____个面积相等的三角形.3.平行四边形的判别方法三、矩形1. 矩形定义:2. 矩形性质3. 矩形的判定:4. 矩形的面积四、菱形 1. 菱形定义:2. 菱形性质3. 菱形的判定:.4. 菱形的面积五、正方形1. 正方形定义:它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。
2. 正方形性质3. 正方形的判定:4. 正方形的面积平行四边形练习2.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A .75º B.115º C.65º D.105ºA BDO C C DB A O 12(第2题图) 第3题图 第4题图B (第7题图)3.如图3,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于)是( )6.过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE=6,则DF 的长是 .7. 如图7,□ABCD 中,∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE∥BD,EF⊥BC ,DF=2,则EF= .8. 在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .9. 在□ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在□ABCD 所在的平面内,连接B ′D .若△AB ′D 是直角三角形,则BC 的长为.10.如图,已知:□ABCD 中,∠BCD 的平分线CE 交AD 于点E ,∠ABC 的平分线BG 交CE 于点F ,交AD 于点G .求证:AE=DG .11.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.C . 36D . 3613.如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D′的位置,经测量得∠EFB=65°,第12题图 第14题图 第5题图 第13题图 第15题图A B C DEF G14.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则的16.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1 D.S 1•S 3=S 2•S 417.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为 .18.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 或 秒时.△ABP 和△DCE 全等.19.已知,如图,在四边形ABCD 中,AB∥CD,E ,F 为对角线AC 上两点,且AE=CF ,DF∥BE,AC平分∠BAD.求证:四边形ABCD 为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .对角线AC ,BD 相交于点O ,OE⊥AB,OF⊥CB,垂足分别是E ,F .求证OE=OF .21. 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,第17题图 第16题图 第18题图然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22. 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.。
新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析
新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。
特殊的平行四边形专题(题型详细分类)要点
特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。
·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。
对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。
平行四边形和特殊的平行四边形知识梳理+典型例题
平行四边形的性质知识点一、概念1、定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形不相邻的两个顶点连成的线段是平行四边形的对角线. 理解:只有两组对边都平行时,四边形才是平行四边形,只要是两组对边分别平行的四边形都是平行四边形。
2、平行四边形的基本元素:边、角、对角线3、表示方法:用“口”表示平行四边形,例如:平行四边形ABCD 记作口ABCD ,读作“平行四边形ABCD”,字母注意同一方向,要按顺时针或按逆 时针,中间不能有跳跃。
(顺序性)【典型例题】【例1】如图,在平行四边形ABCD 中,过点P 作线段EF 、GH 分别平行于AB 、BC ,则图中共有 个平行四边形。
【例2】如图,在平行四边形ABCD 中,∠A:∠B=2:7,则∠C 的度数是 .【练习1】在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是 .【练习2】如图,在平行四边形ABCD 中,∠A=130°,在AD 上取DE=DC ,则∠ECB 的度数是 .(例1图) (例2图) (练习1图) (练习2图) 知识点二、平行四边形性质定理平行四边形的有关性质都是从边、角、对角线、对称性四个方面的特征进行:(1)边:平行四边形两组对边分别平行且相等; (2)角:平行四边形的对角相等;邻角互补; (3)对角线:平行四边形的对角线相互平分;(4)对称性:平行四边形是中心对称图形,对称中心是两条对角线的交点。
补充:若一条直线过平行四边形的两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中心,且这条直线二等分平行四边形的面积。
ABCDO如右图:有OE=OF ,且四边形AFED 的面积等于四边形FBCE 的面积。
知识点三、平行线之间的距离定义:两条平行线中,一条直线上的任意一点到另一条直线的 ,叫做这两条平行线间的距离. 注:① 距离是指垂线段的长度,是正值.如右图,若直线a ∥b ,点A 、B 分别在直线a 、b 上,且AB ⊥a,AB ⊥b,则线段AB 的长度叫做直线a 与直线b 之间的距离。
特殊的平行四边形16个必考点全梳理
考点梳理:特殊的平行四边形16个必考点全梳理(精编Word)一、菱形的性质(求角的度数)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.1.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=33°,则∠OBC的度数为()A.33°B.57°C.59°D.66°2.在菱形ABCD中,若∠B=60°,点E、F分别在AB、AD上,且BE=AF,则∠AEC+∠AFC度数等于3.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,若∠CDF=27°,则∠DAB的度数为.4.如图,在菱形ABCD中,过点A作AH⊥BC,分别交BD,BC于点E,H,F为ED的中点,∠BAF=120°,则∠C的度数为.二、菱形的性质(等面积法)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DE ⊥AB 于点E ,若AC =8cm ,BD =6cm ,则DE =()A.53 cmB.25 cmC.245 cmD.485cm 6.如图,在菱形ABCD 中,AB =5,对角线BD =8,过BD 的中点O 作AD 的垂线,交AD 于点E ,交BC 于点F ,连接DF ,则DF 的长度为()A.125B.245C.85 5D.813 57.如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE ⊥BC 于点E .PF ⊥AB 于点F .若菱形ABCD 的周长为20,面积为24,则PE +PF 的值为()A.4B.245C.6D.4858.如图,菱形ABCD 的边长为5,对角线AC 的长为8,延长AB 至E ,BF 平分∠CBE ,点G 是BF 上任意一点,则△ACG 的面积为()A.63B.12C.20D.24三、菱形的性质(求点的坐标)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.9.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(4,4)10.如图,在平面直角坐标系xOy 中,已知菱形ABCD 的顶点A (3,3),C (-1,-1),对角线BD 交AC 于点M ,交x 轴于点N ,若BN =2ND ,则点B 的坐标是()A.(-32 ,72 )B.(-2 ,22 )C.(4,-2)D.(-2,4)11.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23 ),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为() A.(-2,-23 )或(23 ,-2) B.(2,23 ) C.(-2,23 )D.(-2,-23 )或(2,23 )12.如图,在菱形OABC 中,点A 的坐标是(2,1),点B 的横坐标是3,则点C 的坐标是.四、菱形的性质(最值问题)13.如图,菱形ABCD 的的边长为6,∠ABC =60°,对角线BD 上有两个动点E 、F (点E 在点F 的左侧),若EF =2,则AE +CF 的最小值为()A.210B.42C.6D.814.如图,菱形ABCD 的边长为23 ,∠ABC=60°,点E 、F 在对角线BD 上运动,且EF =2,连接AE 、AF ,则△AEF 周长的最小值是() A.4 B.4+3 C.2+23 D.615.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对角线BD 上的动点,且BE =DF ,则AE +AF 的最小值为.16.如图,在菱形ABCD 中,AB =6,∠B =60°,点G 是边CD 边的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF +ED 的最小值是.五、菱形的判定与性质(计算与证明)17.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.18.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.19.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,DE=2,求CF的长.20.如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)求证:四边形CDMN为菱形;(3)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求NC的长.六、矩形的性质掌握矩形的性质是解决此类问题的关键,矩形具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等.21.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 交AD 于点M ,交BC 于点N ,连结BM 、DN .若AB =4,AD =8,则MD 的长为()A.3B.4C.5D.622.如图,在矩形ABCD 中,AB =2,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E .若BE =EO ,则AD 的长是()A.62B.23C.32D.2523.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若DF ⊥AC ,∠ADF :∠FDC =3:2,则∠BDF =()A.18°B.36°C.27°D.54°24.如图,矩形ABCD 的对角线AC 、BD 交于点E ,∠ACB =52°,AM 平分∠BAC ,交BC 于点M ,过点B 作BF ⊥AM .垂足为点F ,则∠DBF 的度数为()A.43°B.34°C.33°D.19°七、矩形的性质(最值问题)25.如图,在矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是()A.2B.4C.2D.22 26.如图,在矩形ABCD 中,AD =2AB =4,点E 是AD 的中点,点M 是BE 上一动点,取CM 的中点为N ,则AN 的最小值是.27.学习新知:如图1、图2,P 是矩形ABCD 所在平面内任意一点,则有以下重要结论:AP 2+CP 2=BP 2+DP 2.该结论的证明不难,同学们通过勾股定理即可证明.应用新知:如图3,在△ABC 中,CA =4,CB =6,D 是△ABC 内一点,且CD =2,∠ADB =90°,则AB 的最小值为.28.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A '处.在EF 上任取一点G ,连接GC ,GA ',CA ’,则△CGA '的周长的最小值为.八、矩形的判定与性质(计算与证明)矩形的判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.29.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AD=5,BE=3,求线段OE的长.30.如图,在△ABC中,点O是AC边的中点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.(1)求证:四边形CEAF是矩形;(2)若AE=3,EC=4,AB=12,BC=13,求四边形ABCF的面积.31.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.32.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.九、直角三角形斜边上的中线应用掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.33.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°34.如图,在△ABC中,∠BCA=90°,D为AC边上一动点,O为BD中点,DE⊥AB,垂足为E,连结OE,CO,延长CO交AB于F,设∠BAC=α,则()A.∠EOF=32 αB.∠EOF=2αC.∠EOF=180°-αD.∠EOF=180°-2α35.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°36.如图,CE、BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为.十、正方形的性质掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.37.如图,正方形ABCD 中,AB =2 ,点E 是对角线AC 上一点,EF ⊥AB 于点F ,连结DE ,当∠ADE =22.5°时,EF 的长是()A.1B.22 -2C.2 -1D.1438.如图,已知正方形ABCD 的边长为4,点E ,F 分别在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为()A.2B.2.5C.3D.3.539.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE ⊥CF 于点G .若BC =4,AF =1,则CE 的长为()A.3B.125C.195D.16540.如图,正方形ABCD 的边长为4,点E ,F 分别在AB ,AD 上,若CE =25 ,且∠ECF =45°,则CF 的长为()A.4103 B.5103 C.210 D.7103 十一、正方形的性质(最值问题)41.如图,在边长为6的正方形ABCD 中,点M 为对角线BD 上一动点,ME ⊥BC 于E ,MF ⊥CD 于F ,则EF 的最小值为()A.32B.62C.3D.242.如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点,且BE =CF ,连接BF 、DE ,则BF +DE 的最小值为()A.12B.20C.48D.8043.如图,平面内三点A 、B 、C ,AB =4,AC =3,以BC 为对角线作正方形BDCE ,连接AD ,则AD 的最大值是()A.5B.7C.72D.722 44.如图,在正方形ABCD 中,M ,N 是边AB 上的动点,且AM =BN ,连接MD 交对角线AC 于点E ,连接BE 交CN 于点F ,若AB =3,则AF 长度的最小值为.十二、正方形的判定与性质(计算与证明)45.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.46.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.47.如图,已知四边形ABCD 为正方形,AB =42 ,点E 为对角线AC 上一动点,连接DE 、过点E 作EF ⊥DE .交BC 点F ,以DE 、EF 为邻边作矩形DEFG ,连接CG .(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.48.四边形ABCD 为正方形,点E 为线段AC 上一点,连接DE ,过点E 作EF ⊥DE ,交射线BC 于点F ,以DE 、EF 为邻边作矩形DEFG ,连接CG(1)如图,求证:矩形DEFG 是正方形;(2)若AB =22 ,CE =2,求CG 的长;(3)当线段DE 与正方形ABCD 的某条边的夹角是40°时,直接写出∠EFC 的度数.十三、中点四边形49.如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA的中点,对于四边形MNPQ的形状,以下结论中,错误的是()A.当∠ABC=90°时,四边形MNPQ为正方形B.当AC=BD时,四边形MNPQ为菱形C.当AC⊥BD时,四边形MNPQ为矩形D.四边形MNPQ一定为平行四边形50.已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件时,四边形EGFH是菱形;②当AB与CD满足条件时,四边形EGFH是矩形.51.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件时,四边形GEHF是矩形;(3)当EF和BD满足条件时,四边形GEHF是菱形.52.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.十四、四边形的判定(动点问题)53.如图,在菱形ABCD中,AB=6,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)①当AM的值为时,四边形AMDN是矩形;②若AM=6,求证:四边形AMDN是菱形.54.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.55.如图,▱ABCD 中,AB =2cm ,AC =5cm ,S ▱ABCD =8cm 2,E 点从B 点出发,以1cm 每秒的速度,在AB 延长线上向右运动,同时,点F 从D 点出发,以同样的速度在CD 延长线上向左运动,运动时间为t 秒.(1)在运动过程中,四边形AECF 的形状是;(2)t =时,四边形AECF 是矩形;(3)求当t 等于多少时,四边形AECF 是菱形.56.如图,平行四边形ABCD 中,AD =9cm ,CD =32 cm ,∠B =45°,点M 、N 分别以A 、C 为起点,1cm /秒的速度沿AD 、CB 边运动,设点M 、N 运动的时间为t 秒(0≤t ≤6)(1)求BC 边上高AE 的长度;(2)连接AN 、CM ,当t 为何值时,四边形AMCN 为菱形;(3)作MP ⊥BC 于P ,NQ ⊥AD 于Q ,当t 为何值时,四边形MPNQ 为正方形.十五、四边形综合(多结论选择题)57.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论,其中,所有正确的结论是()①△FPD是等腰直角三角形;②AP=EF=PC;③AD=PD;④∠PFE=∠BAP.A.①②B.①④C.①②④D.①③④58.如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD =3;其中正确的结论个数是()A.1个B.2个C.3个D.4个59.如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个60.如图,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H作HG⊥BD于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A.1个B.2个C.3个D.4个十六、边形综合(旋转问题)61.在正方形ABCD中,点E、F分别在边BC、AD上,DE=EF,过D作DG⊥EF于点H,交AB边于点G.(1)如图1,求证:DE=DG;(2)如图2,将EF绕点E逆时针旋转90°得到EK,点F对应点K,连接KG,EG,若H为DG中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG长度相等的线段(不包括EG).62.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.63.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)64.如图1,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.的值(写出结论,不需要证明);(1)探究PG与PC的位置关系及PGPC(2)如图2,将原问题中的正方形ABCD和正方形BEFG换成菱形ABCD和菱形BEFG,且的值,写出你的猜想并加以证明;∠ABC=∠BEF=60度.探究PG与PC的位置关系及PGPC(3)如图3,将图2中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的边BG恰好与菱形ABCD的边AB在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.考点梳理:特殊的平行四边形16个必考点全梳理(精编Word )一、菱形的性质(求角的度数)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.1.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =33°,则∠OBC 的度数为()A.33°B.57°C.59°D.66°【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,∠MAO =∠NCO AM =CN ∠AMO =CNO,∴△AMO ≌△CNO (ASA ),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =33°,∴∠BCA =∠DAC =33°,∴∠OBC =90°-33°=57°,选B .【小结】考查菱形性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.2.在菱形ABCD 中,若∠B =60°,点E 、F 分别在AB 、AD 上,且BE =AF ,则∠AEC +∠AFC 度数等于【分析】菱形的四边相等,对角线平分每一组对角,因为∠B =60°,连接AC ,AC 和菱形的边长相等,可证明△ACE ≌△CDF ,可得到一个角为60°的等腰三角形从而可证明EFC 是等边三角形,进而利用四边形的内角和为360°即可得出答案.【解析】连接AC ,∵在菱形ABCD 中,∠B =60°,∴AC =AB =BC =CD =AD ,∵BE =AF ,∴AE =DF ,∵∠B =60°,AC 是对角线,∴∠BAC =60°,∴∠BAC =∠D =60°,∴△ACE ≌△CDF ,∴EC =FC .∠ACE =∠DCF ,∵∠DCF +∠ACF =60°,∴∠ACE +∠ACF =60°,∴△ECF 是等边三角形.故可得出∠ECF =60°,又∠EAF=120°,∴∠AEC +∠AFC =360°-(60°+120°)=180°【小结】本题考查了菱形的性质,四边相等,对角线平分每一组对角,以及等边三角形的判定,有一个角是60°的等腰三角形是等边三角形,难度一般.3.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,若∠CDF=27°,则∠DAB的度数为.【分析】根据菱形的性质求出∠DAB=2∠DAC,AD=CD;再根据垂直平分线的性质得出AF=DF,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB的度数.【解析】连接BD,BF,∵四边形ABCD是菱形,∴AD=CD,∴∠DAC=∠DCA.∵EF垂直平分AB,AC垂直平分BD,∴AF=BF,BF=DF,∴AF=DF,∴∠FAD=∠FDA,∴∠DAC+∠FAD+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°【小结】此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.4.如图,在菱形ABCD中,过点A作AH⊥BC,分别交BD,BC于点E,H,F为ED的中点,∠BAF= 120°,则∠C的度数为.【分析】根据菱形的性质得出AD∥BC,∠ABD=∠CBD,进而利用三角形的内角和解答即可.【解析】设∠CBD=x,∵四边形ABCD为菱形,∴AD∥BC,∠ABD=∠CBD=x,∴∠ADB=∠CBD=x,∵AH⊥BC,AD∥BC,∴∠DAH=∠AHB=90°,∵F为ED的中点.∴AF=FD,∴∠FAD=∠ADB=x,∵∠BAF=120°,∴∠BAD=120°+x,∵AD∥BC,∴∠BAD+∠ABC=180°,可得:2x+120°+x=180°,解得:x=20°,∴∠BAD=120°+x=140°∵四边形ABCD为菱形,∴∠C=∠BAD=140°.【小结】此题考查菱形的性质,关键是根据菱形的性质得出AD∥BC,∠ABD=∠CBD解答.二、菱形的性质(等面积法)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DE ⊥AB 于点E ,若AC =8cm ,BD =6cm ,则DE =()A.53 cmB.25 cmC.245 cmD.485cm 【解析】∵四边形ABCD 是菱形,AC =8cm ,BD =6cm ,∴S 菱形ABCD =12 AC •BD =12×6×8=24,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12 AC =4cm ,OB =OD =3cm ,∴在直角三角形AOB 中,AB =OB 2+OA 2 =32+42 =5cm ,∴DH =S 菱形ABCD AB=245 cm .选C .【小结】本题考查了菱形的性质以及勾股定理的应用.注意菱形的面积等于对角线积的一半或底乘以高.6.如图,在菱形ABCD 中,AB =5,对角线BD =8,过BD 的中点O 作AD 的垂线,交AD 于点E ,交BC 于点F ,连接DF ,则DF 的长度为()A.125B.245C.85 5D.813 5【解析】连接AC ,如图:∵四边形ABCD 是菱形,O 是BD 的中点,∴OD =OB =12BD =4,AD =AB =5,AC ⊥BD ,∴OA =52-42 =3,∵OE ⊥AD ,∴△AOD 的面积=12 AD ×OE =12OA ×OD ,∴OE =OA ×OD AD=3×45 =125 ,同理:OF =125 ,∴EF =OE +OF =245 ,∵DE =OD 2-OE 2 =42-(125 )2 =165 ,EF ⊥AD ,∴DF =DE 2+EF 2 =(165 )2+(245)2 =813 5 ;选D7.如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE ⊥BC 于点E .PF ⊥AB 于点F .若菱形ABCD 的周长为20,面积为24,则PE +PF 的值为()A.4B.245C.6D.485【分析】连结BP ,如图,根据菱形的性质得BA =BC =5,S △ABC =12S 菱形ABCD =12,然后利用三角形面积公式,由S △ABC =S △PAB +S △PBC ,得到12 ×5×PE +12×5×PF =12,再整理即可得到PE +PF 的值.【解析】连结BP ,如图,∵四边形ABCD 为菱形,菱形ABCD 的周长为20,∴BA =BC =5,S △ABC =12 S 菱形ABCD=12,∵S △ABC =S △PAB +S △PBC ,∴12 ×5×PE +12×5×PF =12,∴PE +PF =245,选B .【小结】本题考查了菱形的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.8.如图,菱形ABCD 的边长为5,对角线AC 的长为8,延长AB 至E ,BF 平分∠CBE ,点G 是BF 上任意一点,则△ACG 的面积为()A.63B.12C.20D.24【分析】连接BD 交AC 于O ,由菱形的性质和勾股定理求出OB =3,得出△ABC 的面积=12,依据∠ACB =∠CBF ,得出AC ∥BF ,进而得出△ACG 的面积=△ABC 的面积=12.【解析】如图所示,连接BD 交AC 于O ,∵四边形ABCD 是菱形,∴∠ACB =12 ∠BCD ,AB =5,OA =12AC =4,AB ∥CD ,AC ⊥BD ,∴∠BCD =∠CBE ,OB =AB 2-OA 2 =52-42 =3,∴△ABC 的面积=12 AC ×OB =12×8×3=12,∵BF 平分∠CBE ,∴∠CBF =12∠CBE ,∴∠ACB =∠CBF ,∴AC ∥BF ,∴△ACG 面积=△ABC 面积=12,三、菱形的性质(求点的坐标)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.9.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(4,4)【分析】连接AC 、BD 交于点E ,由菱形的性质得出AC ⊥BD ,AE =CE =12 AC ,BE =DE =12BD ,由点B 的坐标和点D 的坐标得出OD =2,求出DE =4,AC =4,即可得出点C 的坐标.【解析】连接AC 、BD 交于点E ,如图所示:∵四边形ABCD 是菱形,∴AC ⊥BD ,AE =CE =12AC ,BE =DE =12BD ,∵点B 的坐标为(8,2),点D 的坐标为(0,2),∴OD =2,BD =8,∴AE =OD =2,DE =4,∴AC =4,∴点C 的坐标为:(4,4);选D .【小结】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质是解决问题的关键.10.如图,在平面直角坐标系xOy 中,已知菱形ABCD 的顶点A (3,3),C (-1,-1),对角线BD 交AC 于点M ,交x 轴于点N ,若BN =2ND ,则点B 的坐标是()A.(-32 ,72 )B.(-2 ,22 )C.(4,-2)D.(-2,4)【分析】先求出BD 的解析式,设点B (a ,-a +2),则点D (2-a ,a ),由等腰直角三角形的性质和BN =2ND ,可得2 (-a +2)=2×2 ×(-a ),即可求解.【解析】∵点A (3,3),C (-1,-1),∴直线AC 为y =x ,M (1,1),∵四边形ABCD 是菱形,∴AC ⊥BD ,∴设直线BD 为y =-x +b ,∵点M 在直线BD 上,∴1=-1+b ,∴b =2,∴直线BD 为y =-x +2,设点B (a ,-a +2),则点D (2-a ,a ),∵BN =2ND ,∴2 (-a +2)=2×2 ×(-a ),∴a =-2,∴点B (-2,4),选D .11.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为()A.(-2,-23 )或(23 ,-2)B.(2,23 )C.(-2,23 )D.(-2,-23 )或(2,23 )【解析】∵菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23 ),∴AO =22+(23 )2 =4,OB =4,∴菱形的边长为4,△AOB 是等边三角形,分两种情况讨论:如图所示,当点A 在x 轴正半轴上时,过C 作CD ⊥AO 于D ,则OD =12 CO =2,CD =23 ,∴点C 的坐标为(-2,-23 );如图所示,当点A 在x 轴负半轴上时,过C 作CD ⊥AO 于D ,则OD =12 CO =2,CD =23 ,∴点C 的坐标为(2,23 );综上所述,点C 的对应点的坐标为(-2,-23 )或(2,23 ),选D .12.如图,在菱形OABC 中,点A 的坐标是(2,1),点B 的横坐标是3,则点C 的坐标是.【解析】作AD ⊥x 轴于D ,BF ⊥x 轴于F ,AE ⊥BF 于E ,BG ⊥y 轴于H ,CG ⊥BH 于G ,CM ⊥Y 轴于M ,如图所示:四边形BHOF 是矩形,四边形ADFE 是矩形,四边形GHMC 是矩形,∠ADO =∠AEB =∠C GB =∠CMO =90°,∵点A 的坐标是(2,1),点B 的横坐标是3,∴OD =2,EF =AD =1,BH=3,∴AE =1,∴AE =AD ,∵四边形OABC 是菱形,∴OA =AB =BC =OC ,在Rt △ABE 和Rt △AOD 中,AB =OA AE =AD ,∴Rt △ABE ≌Rt △AOD (HL ),∴BE =OD =2,∴BF =3=BH ,同理可证:△CBG ≌△AOD ,∴CG =AD =1,BG =OD =2,∴HM =1,OM =3-1=2,∴C (1,2);四、菱形的性质(最值问题)13.如图,菱形ABCD 的的边长为6,∠ABC =60°,对角线BD 上有两个动点E 、F (点E 在点F 的左侧),若EF =2,则AE +CF 的最小值为()A.210B.42C.6D.8【解析】如图,连接AC ,作AM ⊥AC ,使得AM =EF =2,连接CM 交BD于F ,∵AC ,BD 是菱形ABCD 的对角线,∴BD ⊥AC ,∵AM ⊥AC ,∴AM ∥BD ,∴AM ∥EF ,∵AM =EF ,AM ∥EF ,∴四边形AEFM 是平行四边形,∴AE =FM ,∴AE +CF =FM +FC =CM ,根据两点之间线段最短可知,此时AE +FC 最短,∵四边形ABCD 是菱形,AB =6,∠ABC =60°,∴BC =AB ,∴△ABC 是等边三角形,∴AC =AB =6,在Rt △CAM 中,CM =AM 2+AC 2 =22+62 =210 ,∴AE +CF 的最小值为210 .选A .14.如图,菱形ABCD 的边长为23 ,∠ABC =60°,点E 、F 在对角线BD 上运动,且EF =2,连接AE 、AF ,则△AEF 周长的最小值是()A.4B.4+3C.2+23D.6【解析】作AH ∥BD ,使得AH =EF =2,连接CH 交BD 于F ,则AE +AF的值最小,即△AEF 的周长最小.∵AH =EF ,AH ∥EF ,∴四边形EFHA 是平行四边形,∴EA =FH ,∵FA =FC ,∴AE +AF =FH +CF =CH ,∵菱形ABCD 的边长为23 ,∠ABC =60°,∴AC =AB =23 ,∵四边形ABCD 是菱形,∴AC ⊥BD ,∵AH ∥DB ,∴AC ⊥AH ,∴∠CAH =90°,在Rt △CAH 中,CH =AC 2+AH 2 =(23 )2+22 =4,∴AE +AF 的最小值4,∴△AEF 的周长的最小值=4+2=6,选D .15.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对角线BD 上的动点,且BE =DF ,则AE +AF 的最小值为.【解析】如图,BC 的下方作∠CBT =30°,在BT 上截取BT ,使得BT =AD ,连接ET ,AT .∵四边形ABCD 是菱形,∠ABC =60°,∴∠ADC =∠ABC =60°,∠ADF =12∠ADC =30°,∵AD =BT ,∠ADF =∠TB E =30°,DF =BE ,∴△ADF ≌△TB E (SAS ),∴AF =ET ,∵∠ABT =∠ABC +∠CBT =60°+30°=90°,AB =AD =BT =2,∴AT =AB 2+BT 2 =22+22 =22 ,∴AE +AF =AE +ET ,∵AE +ET ≥AT ,∴AE +AF ≥22 ,∴AE +AF 的最小值为22,【小结】本题考查菱形的性质,全等三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.16.如图,在菱形ABCD 中,AB =6,∠B =60°,点G 是边CD 边的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF +ED 的最小值是.【分析】作DH ⊥AC 垂足为H 与AG 交于点E ,点H 关于AG 的对称点为F ,此时EF +ED 最小=DH ,先证明△ADC 是等边三角形,在RT △DCH 中利用勾股定理即可解决问题.【解析】如图作DH ⊥AC 垂足为H 与AG 交于点E ,∵四边形ABCD 是菱形,∴AB =AD =CD =BC =6,∵∠B =60°,∴∠ADC =∠B =60°,∴△ADC 是等边三角形,∵AG 是中线,∴∠GAD =∠GAC∴点F 关于AG 的对称点H 在AC 上,此时EF +ED 最小=DH .在RT △DHC 中,∵∠DHC =90°,DC =6,∠CDH =12 ∠ADC =30°,∴CH =12 DC =3,DH =CD 2-CH 2 =62-32 =33 ,∴EF +DE 的最小值=DH =33 ,故答案为33 .五、菱形的判定与性质(计算与证明)17.如图,在▱ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上一点,连接EO 并延长,交BC 于点F .连接AF ,CE ,EF 平分∠AEC .(1)求证:四边形AFCE 是菱形;(2)若∠DAC =60°,AC =2,求四边形AFCE的面积.【解析】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO =CO ,∴∠AEF =∠CFE ,在△AOE 和△COF 中,∠AEF =∠CFE ∠AOE =∠COF AO =CO,∴△AOE ≌△COF (AAS ),∴OF =OE ,∵AO =CO ,∴四边形AFCE 是平行四边形;∵EF 平分∠AEC ,∴∠AEF =∠CEF ,∴∠CFE =∠CEF ,∴CE =CF ,∴四边形AFCE 是菱形;(2)由(1)得:四边形AFCE 是菱形,∴AC ⊥EF ,AO =CO =12 AC =1,∴∠AOE =90°,∵∠DAC =60°,∴∠AEO =30°,∴OE =3 AO =3 ,∴EF =2OE =23 ,∴四边形AFCE 的面积=12 AC ×EF =12×2×23 =23 .18.如图,在四边形ABCD 中,AD ∥BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若BD =24,MN =10,求菱形BNDM的周长.(1)证明:∵AD ∥BC ,∴∠DMO =∠BNO ,∵MN 是对角线BD 的垂直平分线,∴OB =OD ,MN ⊥BD ,在△MOD 和△NOB 中,∠DMO =∠BNO ∠MOD =∠NOB OD =OB,∴△MOD ≌△NOB (AAS ),∴OM =ON ,∵OB =OD ,∴四边形BNDM 是平行四边形,∵MN ⊥BD ,∴四边形BNDM 是菱形;(2)∵四边形BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12 BD =12,OM =12 MN =5,在Rt △BOM 中,由勾股定理得:BM =OM 2+OB 2 =52+122 =13,∴菱形BNDM 的周长=4BM =4×13=52.19.如图,在△ABC 中,BD 平分∠ABC 交AC 于D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若∠BDE =15°,∠C =45°,DE =2,求CF的长.【解析】(1)∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∵EF 垂直平分BD ,∴BE =DE ,BF =DF ,∵∠EBD =∠EDB ,∠FBD =∠FDB ,∴∠EBD =∠BDF ,∠EDB =∠DBF ,∴BE ∥DF ,DE ∥BF ,∴四边形DEBF 是平行四边形,且BE =DE ,∴四边形BEDF 是菱形;(2)过点D 作DH ⊥BC 于点H ,∵四边形BEDF 是菱形,∴BF =DF =DE =2,∴∠FBD =∠FDB =∠BDE =15°,∴∠DFH =30°,且DH ⊥BC ,∴DH =12 DF =1,FH =3 DH 3 ,∵∠C =45°,DH ⊥BC ,∴∠C =∠CDH =45°,∴DH =CH =1,∴FC =FH +CH =3 +1.20.如图,在▱ABCD 中,M 、N 分别是AD 、BC 的中点,∠AND =90°,连接CM 交DN 于点O .(1)求证:△ABN ≌△CDM ;(2)求证:四边形CDMN 为菱形;(3)过点C 作CE ⊥MN 于点E ,交DN 于点P ,若PE =1,∠1=∠2,求NC 的长.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∠B =∠CDM ,∵M 、N 分别是AD ,BC 的中点,∴BN =DM ,∵在△ABN 和△CDM 中,AB =CD ∠B =∠CDM BN =DM,∴△ABN ≌△CDM (SAS );(2)证明:∵M 是AD 的中点,∠AND =90°,∴NM =AM =MD ,∵BN =NC =AM =DM ,∴NC =MN =DM ,∵NC ∥DM ,NC =DM ,∴四边形CDMN 是平行四边形,又∵MN =DM ,∴四边形CDMN 是菱形.(3)∵M 是AD 的中点,∠AND =90°,∴MN =MD =12AD ,∴∠1=∠MND ,∵AD ∥BC ,∴∠1=∠CND ,∵∠1=∠2,∴∠MND =∠CND =∠2,∴PN =PC ,∵CE ⊥MN ,∴∠CEN =90°,∠END +∠CNP +∠2=180°-∠CEN =90°,又∵∠END =∠CNP =∠2,∴∠2=∠PNE =30°,∵PE =1,∴PN =2PE =2,∴CE =PC +PE =3,∴NC =23.六、矩形的性质掌握矩形的性质是解决此类问题的关键,矩形具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等.21.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 交AD 于点M ,交BC 于点N ,连结BM 、DN .若AB =4,AD =8,则MD 的长为()A.3B.4C.5D.6【分析】根据线段垂直平分线的的性质,求出DM =BM ,在Rt △A MB 中,根据勾股定理得出BM 2=AM 2+AB 2,即可列方程求解.【解析】∵对角线BD 的垂直平分线MN 交AD 于点M ,交BC 于点N ,∴MB =MD ,设MD 长为x ,则MB =DM =x ,在Rt △A MB 中,BM 2=AM 2+AB 2,即x 2=(8-x )2+42,解得:x =5,∴MD 长为5.选C .【小结】本题主要考查了矩形的性质以及勾股定理的运用,解题时注意,线段垂直平分线上任意一点,到线段两端点的距离相等.22.如图,在矩形ABCD 中,AB =2,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E .若BE =EO ,则AD 的长是()A.62B.23C.32D.25【分析】由矩形的性质可得OB =OD =OA =OC ,AC =BD ,由线段垂直平分线的性质可得OA =AB =OB ,可证△OAB 是等边三角形,可得∠ABD =60°,由直角三角形的性质可求解.【解析】∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA =OB ,∵BE =EO ,AE ⊥BD ,∴AB =AO ,∴OA =AB =OB ,即△OAB 是等边三角形,∴∠ABD =60°,∴∠ADE =90°-∠ABD =30°,∴AD =3 AB =23 ,选B .【小结】本题考查了矩形的性质,等边三角形的判定与性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.23.如图,在矩形ABCD中,对角线AC、BD相交于点O,若DF⊥AC,∠ADF:∠FDC=3:2,则∠BDF=()A.18°B.36°C.27°D.54°【分析】根据∠ADC=90°,求出∠CDF和∠ADF,根据矩形性质求出OD=OC,推出∠BDC=∠DCO,求出∠BDC,即可求出答案.【解析】设∠ADF=3x,∠FDC=2x,∵四边形ABCD是矩形,∴∠ADC=90°,∴2x+3x=90°,∴x=18°,即∠FDC=2x=36°,∵DF⊥AC,∴∠DMC=90°,∴∠DCO=90°-36°=54°,∵四边形ABCD是矩形,∴AC=2OC,BD=2OD,AC=BD,∴OD=OC,∴∠BDC=∠DCO=54°,∴∠BDF=∠BDC-∠FDC=54°-36°=18°,选A.【小结】本题考查了矩形性质、三角形的内角和定理、等腰三角形的判定与性质等知识;求出∠BDC和∠CDF的度数是解题的关键.24.如图,矩形ABCD的对角线AC、BD交于点E,∠ACB=52°,AM平分∠BAC,交BC于点M,过点B作BF⊥AM.垂足为点F,则∠DBF的度数为()A.43°B.34°C.33°D.19°【分析】由矩形的性质得∠ABC=90°,AE=BE,求出∠ABD=∠BAC=38°,由角平分线定义得出∠BAM=∠CAM=12 ∠BAC=19°,则∠ABF=90°-∠BAM=71°,由∠DBF=∠ABF-∠ABD即可得出结果.【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AE=BE,∴∠BAC=90°-∠ACB=90°-52°=38°,∴∠ABD=∠BAC=38°,∵AM平分∠BAC,∴∠BAM=∠CAM=12 ∠BAC=12 ×38°=19°,∵BF⊥AM,∴∠ABF=90°-∠BAM=90°-19°=71°,∴∠DBF=∠ABF-∠ABD=71°-38°=33°,选C.【小结】本题考查了矩形的性质、等腰三角形的性质、角平分线定义、三角形内角和定理等知识;熟练掌握矩形的性质和角平分线定义是解题的关键.。
特殊的平行四边形知识点和专题练习
特殊的平行四边形知识点和专题练习知识点归纳1. 定义:两组对边分别平行的四边形是平行四边形.2. 平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.(3)对角线:平行四边形的对角线互相平分.(4)对称性:平行四边形是中心对称图形,对角线的交点为对称中心.3. 平行四边形的判定方法(1)定义识别:两组对边分别平行的四边形是平行四边形.(2)用平行四边形的判定定理识别:判定定理①:两组对边分别相等的四边形是平行四边形.~判定定理②:对角线互相平分的四边形是平行四边形.判定定理③:一组对边平行且相等的四边形是平行四边形.4. 三角形中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线.每个三角形都有三条中位线.(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.5. 直角三角形特殊性质(1)斜边上的中线等于斜边的一半。
(2)300所对的直角边等于斜边的一半。
(3)(4)·(5)射影定理,勾股定理,面积不变定理6.有关矩形面积的计算::①面积公式:矩形面积=长⨯宽②矩形ABCD的两条对角线相交于O,则14 ABO BCO CDO ADOS S S S S∆∆∆∆====矩形ABCD7.有关菱形的面积计算由于菱形的对角线互相垂直平分,11()22ABD CBDS S S BD OA OC BD AC ∆=+=+=⋅也可以用平行四边形的面积计算公式=底⨯高8.梯形定义:一组对边平行而另一组对边不平行的四边形叫做梯形梯形的底:梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底!梯形的腰:梯形中不平行的两边叫做梯形的腰梯形的高:梯形两底之间的距离叫做梯形的高等腰梯形:两腰相等的梯形;直角梯形:一腰垂直于底的梯形9.梯形的判定:①判定四边形一组对边平行,另一组对边不平行②一组对边平行但不相等的四边形是梯形10.等腰梯形的性质:①两底平行,两腰相等;②等腰梯形在同一底上的两个角相等③等腰梯形的两条对角线相等;|④等腰梯形是轴对称图形,只有一条对称轴,一底的垂直平分线是它的对称轴11.等腰梯形的判定:①两腰相等的梯形是等腰梯形②在同一底上的两个角相等的梯形是等腰梯形(以前出现,但是在新课标中没有出现的判定方法:对角线相等的梯形是等腰梯形)12.梯形的面积:面积=(上底+下底)×高÷2经典例题讲解、例1:如图1,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:∠BAE =∠DCF.例2如图2,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.%(O—B CDF(图2)求证:BE = CF.例3已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、 CD 上,且BE = 2EA ,CF = 2FD. 求证:∠BEC =∠CFB.,例4如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1ABE ≌△CDF ;(2)若M 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四边形,并证明你的结论.例5如图7, ABCD 的对角线ACAD ,BC 分别相交于点E ,F.求证:四边形AFCE 是菱形.例6如图8,四边形ABCD 是矩形,O 是它的中心,E 、F 是对角线AC 上的点.(1)如果,则△DEC ≌△BFA (请你填上一个能使结论成立-的一个条件);(2)证明你的结论.特殊的平行四边形专题练习2. 已知平行四边形ABCD 的周长32, 5AB=3BC,则AC 的取值范围为( ) A. 6<AC<10; B. 6<AC<16; C. 10<AC<16; D. 4<AC<16ADB CE F(图6)、NB图8C~RPD CBA E!F第12题图 4.延长平形四边形ABCD 的一边AB 到E ,使BE =BD ,连结DE 交BC 于F ,若∠DAB =120°, (∠CFE =135°,AB =1,则AC 的长为( )(A )1 (B ) (C ) 32 (D ) 5.若菱形ABCD 中,AE 垂直平分BC 于E ,AE =1cm ,则BD 的长是( ) (A )1cm (B )2cm (C )3cm (D )4cm 7. 如图,等腰△ABC 中,D 是BC 边上的一点,DE ∥AC ,DF ∥AB ,AB=5 那么四边形AFDE 的周长是 ( )(A )5 (B )10 (C )15 (D )20 8.9..10.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处, 点A 落在点F 处,折痕为MN ,则线段CN 的长是( ). (A )3cm (B )4cm (C )5cm (D )6cm9. 如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AC 将梯形分成两个三角形,其中△ACD 是周长为18 cm 的等边三角形,则该梯形的 中位线的长是( ).(A)9 cm (B)12cm (c)29cm (D)18 cm 10.如图,在周长为20cm 的□ABCD 中,AB≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,%则△ABE 的周长为( )(A)4cm (B)6cm (C)8cm (D)10cm 11. 如图2,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6, 则AF 等于 ( )(A )34 (B )33 (C )24(D )812.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是 AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论 成立的是 ( )A 、线段EF 的长逐渐增大B 、线段EF 的长逐渐减小C 、线段EF 的长不变D 、线段EF 的长与点P 13. 在梯形ABCD 中,AD cm AC 5 B. 7cmC.D. 6cm ^(二)细心填一填4.已知:平行四边形ABCD 的周长是30cm ,对角线AC ,BD 相交于点O ,△AOB 的周长比△BOCABCDOEABCD "图 2A !DEFO第10题图DAB "CP MN(1) (2)》图10的周长长5cm ,则这个平行四边形的各边长为_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊平行四边形知识点汇总及题型————————————————————————————————作者:————————————————————————————————日期:新天宇教育授课讲义授课科目初三上册授课时间(2016.9.11)授课内容特殊的平行四边形1基础知识1.基础知识点(概念、公式)1.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.菱形判定方法2:四边都相等的四边形是菱形.2.矩形矩形定义: 有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的一切特征)矩形性质1: 矩形的四个角都是直角.矩形性质2: 矩形的对角线相等且互相平分.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.2.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等.......的平行四边形.....叫做正方形.正方形是中心对称......并且有一个角是直角图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.2.本节课的重点、难点(1)对平行四边形和特殊的几种图形的性质要注意理解(2)对证明特殊平行四边形的方法进行掌握3.学生容易混淆的知识点(1)各种四边形对角线的特点。
(2)各种特殊平行四边形的证明方式。
4.针对不同层次学生的题型例1.矩形1已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD 的距离AE的长.2已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.3.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.4、如图,在 ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.例2.菱形1 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .2已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.3、如图,在 ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.F E DC B AABCDEFO124、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M , 若AB=AE,∠EAD=2∠BAE 。
求证:AM=BE 。
5. (10湖南益阳)如图,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .(1)求线段BE 的长.6、如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。
请你猜想DE 与DF 的大小有什么关系?并证明你的猜想例3.正方形1 已知:如图,正方形ABCD 中,对角线的交点为O ,E 是OB 上的一点,DG ⊥AE 于G ,DG 交OA 于F . 求证:OE=OF .BM ADCED A B CO E602精讲例题2 已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形3. 如图所示,在正方形ABCD中,M为AB的中点,MN MD⊥,BN平分∠CBE并交MN于N。
求证:MD=MN。
D CNA MB E4课后作业作业:1.以不在同一直线上的三个点为顶点作平行四边形,最多能作()A.4个B.3个C.2个D.1个2.若平行四边形的一边长为10cm,则它的两条对角线的长度可以是();A.5cm和7cm B.18cm和28cmC.6cm和8cm D.8cm和12cm3.如图,平行四边形ABCD中,经过两对角线交点O的直线分别交BC于点E,交AD于点F. 若BC=7,CD=5,OE=2,则四边形ABEF的周长等于().A.14 B.15 C.16 D.无法确定4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.105.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°6.如图,菱形ABCD 中,对角线AC、BD交于点O,菱形ABCD周长为32,点P是边CD的中点,则线段OP的长为()A.3 B.5 C.8 D.47.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定8.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6 B.C.2(1+)D.1+9.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的点F,那么∠BFC的度数是()A.60°B.70°C.75°D.80°10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A.14 B.12 C.24 D.4811.如图,在菱形ABCD中,AC,BD是对角线,如果∠BAC=70°,那么∠ADC等于.12.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若AC=4,则四边形CODE的周长为13.如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.14.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.15.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为_________ .16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD 边的F点上,则DF的长为.17.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF 的最小值是.18.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB 的最小值是.19.如图,点E、F、G、H分别为矩形ABCD四条边的中点,证明:四边形EFGH是菱形.20.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.21.如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG ⊥AD于点G.(1)求证:BF=AE+FG;(2)若AB=2,求四边形ABFG的面积.22.如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.23.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.24.已知:矩形ABCD中,对角线AC与BD交与点O,∠BOC=120°,AC=4cm.求:矩形ABCD的周长和面积。