1.1.1变化率问题 学案

合集下载

《111变更率与导数》导学案.doc

《111变更率与导数》导学案.doc

第一章导数及其应用§1.1.1变化率问题学习目标1.庖受平扬变化率广泛存在于日常牛活之中,经历运用数学描述和刻画现实世界的过程.体会数学的廨人精深以及学习数学的意义;2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景. 学习过程—、课前准备(预习教材,找出疑惑之处)二、新课导学学习探究探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2:高台跳水,求平均速度新知:平均变化率:/<X2)-/U.)= V试试:设y = f(x) , X]是数轴上的一个定点,在数轴x上另取一点勺,乃与x2的差记为Ax , 即~ ~Ar = ____________ 或者x2 = __________ , Ar就表示从禹到x2的变化量或增量,相应地,函数的变化量或增量记为3,即少u _________________ ;如果它们的比值型,则上式就表示为________________ ,此比值就称为平均变化率.反思:所谓平均变化率也就是_____________ 的增量与__________________ 的增量的比值.典型例题例1过曲线y = f(x) = x\k两点P(l,l)和e(l + Ax,l + Ay)作曲线的割线,求出当Ar = 0.1时割线的斜率.变式:已知函数f(x) = -x2 +x的图象上一点(-1,-2)及邻近一点(-1 +Ar,-2 +Ay),则绥=Av例2已知函数/(%) = X2 ,分别计算/(力在下列区间上的平均变化率:(1)[1, 3];(2)[1, 2];(3)[1, 1.11;(4)[1, 1.001]小结:动手试试练1.某婴儿从出生到第12个月的体重变化如图所示,试分別计算从出生到第3个月与第6个刀到第12个刀该婴儿体重的平均变化率.练2.已知函数/(x) = 2x + l, g(x) = -2x,分别计算在区间[-3, -1], [0, 5]上/⑴及g⑴的平均变化率.(发现:y = kx + b在区间[m, n]上的平均变化率有什么特点?)三、总结提升学习小结1 •函数.f(x)的平均变化率是_______________________2.求函数于(兀)的平均变化率的步骤:(1)求函数值的增最 ________________________(2)计算平均变化率 ________________________知识拓展平均变化率是曲线陡們程度的“数量化",曲线陡嵋程度是平均变化率“视觉化”.学习评价当堂检测(吋量:5分钟满分:10分)计分:1.y = 2x4-1在(1,2)内的平均变化率为( )A. 3B. 2C. 1D. 02.设函数y = f(x),当口变量兀由兀。

人教版高中数学全套教案导学案111变化率问题

人教版高中数学全套教案导学案111变化率问题

1. 1.1变化率问题课前预习学案。

知道平均变化率的定义。

,课本中的问题1,2预习目标:“变化率问题”预习内容:气球膨胀率问题1气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水h与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt的时间t(单位:s)存在函数关系h(t)=v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段时间里,在v2?t?1=_________________ 这段时间里,在ot问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案1.学习目标理解平均变化率的概念;2.了解平均变化率的几何意义;.会求函数在某点处附近的平均变化率3.学习重点: .平均变化率的概念、函数在某点处附近的平均变化率学习难点: .平均变化率的概念学习过程一:问题提出率问题:1气球膨胀问题dmrVL__________. 之间的函数关系是)(气球的体积单位(单位::)与半径 ___________.,那么r表示为体积V的函数如果将半径___________. 气球半径增加了增加到1时,⑴当V从0___________.气球的平均膨胀率为___________. 气球半径增加了增加到2时,⑵当V从1___________.气球的平均膨胀率为可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.VV? 气球的平均膨胀率是多少时,思考:当空气容量从增加到h 21___________.问题2 高台跳水问题:)与起跳后的h(单位:m在高台跳水运动中,运动员相对于水面的高度(单位:s)存在怎样的函数关系?时间t mh与起跳后的时)在高台跳水运动中,运动员相对于水面的高度单位:(st___________.间)存在函数关系(单位:1.82,.5,1≤t≤)如何计算运动员的平均速度?并分别计算0≤t ≤0ot.≤2≤t2.2,时间段里的平均速度≤t≤2,v2?.51?t0?t?0的平均速度思考计算:和5.?00?t在__________.;这段时间里,_2t?1?___________. 这段时间里,在65?t0?:计算运动员在探究这段时间里的平均速度,并思考以下问题:49⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?65)0?hh(()2thtt+10+6.5,探究过程:如图是函数(的图像,结合图形可知,)= -4.94965??t0)/m0(s但实际情况是___________.所以虽然运动员在这段时间里的平均速度为,49运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 1)计算和思考,展开讨论;(.)说出自己的发现,并初步修正到最终的结论上(2)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运3(②需要寻找一个量,能更精细地刻画运动员的运动状态;动状态.:二平均变化率概念)xf)?(xf(12xxxf的平均变化.1上述问题中的变化率可用式子)从到, 表示称为函数 (21x?x12.率?x?x?x?f?f(x)?f(x)?x x的一个“增量”可用 (.若设这里看作是对于, 211122?f??y?f(x)?f(x)x?xx) ,代替+同样2112?y?f??___________. 则平均变化率为3.?x?xfx)的图象( 思考:观察函数?f)f(xf(x)?12?? 表示什么平均变化率x?xx?12(1)一起讨论、分析,得出结果;(2)计算平均变化率的步骤:①求自变量的增量Δx=x-x;②求函数的增量Δf=f(x)-f(x);③求平1122f(x)?f(x)?f12?. 均变化率?xx?x12注意:①Δx是一个整体符,而不是Δ与x相乘;②x= x+Δx;12③Δf=Δy=y-y;12三.典例分析2xx??)?2?1,A(xf点)=近一及象的(图上的一点1例.已知函数临?y?)?y?x,?2?B(?1?. ,则?x解:2x?xx?y附近的平均变化率。

1.1.1变化率问题导学案

1.1.1变化率问题导学案
求运动员在 时的瞬时速度,并解释此时的运动状况.课本习题3.12
【深化提高】
1.质点运动规律S(t)=t2+3,则从3到3.3内,质点运动的平均速度为()
A.6.3B.36.3
C.3.3D.9.3
[答案]A
[解析]S(3)=12,S(3.3)=13.89,
∴平均速度 = = =6.3,故应选A.
2.设f(x)=ax+4,若f′(1)=2,则a等于()
变化率,并说明它们的意义.
答案:-3. 5
【当堂检测】
1、已知函数f(x)=x2+2x,求f(x)从a到b的平均变化率.
(1)a=1,b=2;(2)a=-2,b=1.5.
答案:(1)a=1,b=2时,f(1)=12+2×1=3,
f(2)=22+2×2=8,
∴f(x)从1到2的平均变化率为
= =5.
(2)a=-2,b=1.5时,f(-2)=(-2)2+2×(-2)=0,f(1.5)=1.52+2×1.5=5.25,
①求函数的增量Δy=;②求平均变化率 =;
③取极限得导数f′(x0)=.
【合作探究】
例1、气球膨胀率,求平均膨胀率
吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学
的角度如何描述这种现象?
例2、高台跳水,求平均速度
例3、将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油
进行冷却和加热.如果在第xh时,原油的温度(单位: )为 .计算第2h和第6h时,原油温度的瞬时
∴f(x)从-2到1.5的平均变化率为
= = .
2、用导数的定义求函数f(x)= 在x=1处的导数.
[解析](1)Δy= -1,
= = .
li = ,所以y′|x=1= .

人教A版选修2-2 第一章 第一节 1.1.1变化率问题 教案

人教A版选修2-2   第一章 第一节 1.1.1变化率问题  教案

§1.1.1变化率问题教学目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率;教学难点:平均变化率的概念.教学过程设计(一)、情景引入,激发兴趣。

【教师引入】:“生活中存在大量变化快慢的量,如我国国内生产总值在不同年内的增长、某一股票在某一时间内的价格、去年上海商品房在不同月内的价格(幻灯片展示)。

如何从数学的角度解释量的变化快慢问题呢?这节课我们一起学习与变化率有关的问题。

板书课题《变化率问题》【教师过渡】:“为解决这一问题,我们先研究一些生活中的具体实例”(二)、探究新知,揭示概念实例一:气温的变化问题现有南京市某年3月18日-4月20日每天气温最高温度统计图:(注:3月18日为第一天)1、你从图中获得了哪些信息?2 、在“4月18日到20日”,该地市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这样的感觉,这是什么原因呢?3、怎样从数学的角度描述“气温变化的快慢程度”呢?师生讨论,教师板书总结:分析:这一问题中,存在两个变量“时间”和“气温”,当时间从1到32,气温从3.5o C 增加到18.6o C ,气温平均变化当时间从32到34,气温从18.6o C 增加到33.4o C ,气温平均变化因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些。

【教师过渡】:“18.6 3.50.5321-≈- 表示时间从“3月18日到4月18日”时,气温的平均变化率。

提出问题:先说一说“平均”的含义,再说一说你对 “气温平均变化率”的理解。

实例二:气球的平均膨胀率问题。

【提出问题】:回忆吹气球的过程,随着气球内空气容量的增加,气球半径增长的快慢相同吗? 学生思考回答。

假设每次吹入气球内的空气容量是相等的,如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?思考:1、 这一问题与“气温的变化问题”有哪些相同的地方?你打算怎样做呢?2、如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?先独立思考,再在小组内交流你的想法。

1.1.1变化率问题学案

1.1.1变化率问题学案

1.1.1变化率问题学案【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。

【学习重点】通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;1. 掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法; 【学习难点】平均变化率的概念.【自学点拨】一.阅读章引言,并思考章引言写了几层意思? 二、问题提出问题1气球膨胀率问题:气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是__________.如果将半径r 表示为体积V 的函数,那么___________. ⑴ 当V 从0增加到1时,气球半径增加了___________. 气球的平均膨胀率为___________.⑵ 当V 从1增加到2时,气球半径增加了___________. 气球的平均膨胀率为___________.可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? ___________. 问题2 高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系___________.)如何计算运动员的平均速度?并分别计算0≤t ≤0.5,1≤t ≤2,1.8≤t ≤2,2≤t ≤2.2,时间段里的平均速度. 思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,___________.; 在21≤≤t 这段时间里,___________. 探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以___________., 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (1)计算和思考,展开讨论;(2)说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;(二)平均变化率概念:1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xf xy ___________.思考:观察函数f (x )的图象 平均变化率=∆∆xf 1212)()(x x x f x f --表示什么?(1) 一起讨论、分析,得出结果;(2)计算平均变化率的步骤:①求自变量的增量x=x 2-x 1;②求函数的增量Δf=f(x 2)-f(x 1)化率f x∆=∆注意:①Δ与x 相乘; ②x 2= x 1+Δx ; ③Δf=Δy=y 2-y 1;三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy .解:例2. 求2x y =在0x x =附近的平均变化率。

1.1 变化率与导数 导学案(教师版)

1.1 变化率与导数 导学案(教师版)

§1.1 变化率与导数 1.1.1 变化率问题 1.1.2 导数的概念内容要求 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程.2.了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.知识点1 函数的变化率定义实例平均变化率函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1,简记作:ΔyΔx①平均速度;②曲线割线的斜率瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限,即lim x ∆→f (x 0+Δx )-f (x 0)Δx =0lim x ∆→ΔyΔx①瞬时速度:物体在某一时刻的速度;②切线斜率 若一质点的运动方程为s =t 2+1,则在时间段[1,2]中的平均速度是________. 解析 v -=(22+1)-(12+1)2-1=3.答案 3知识点2 函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ΔyΔx =0lim x ∆→ f (x 0+Δx )-f (x 0)Δx称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→Δy Δx = 0limx ∆→f (x 0+Δx )-f (x 0)Δx .【预习评价】设f (x )=2x +1,则f ′(1)=________. 解析 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx =0lim x ∆→ [2(1+Δx )+1]-(2×1+1)Δx =2.答案 2题型一 平均变化率【例1】 已知函数h (x )=-4.9x 2+6.5x +10.(1)计算从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01. (2)根据(1)中的计算,当Δx 越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势? 解 (1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx , ∴ΔyΔx =-4.9Δx -3.3.①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1; ②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2; ③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx =-4.9Δx -3.3=-3.349.(2)当Δx 越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3.规律方法 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.【训练1】 求函数f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率,并求当x 0=2,Δx =0.1时平均变化率的值.解 函数f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为 f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=[3(x 0+Δx )2+2]-(3x 20+2)Δx=6x 0·Δx +3(Δx )2Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.题型二 物体运动的瞬时速度【例2】 一辆汽车按规律s =2t 2+3(时间单位:s ,位移单位:m)做直线运动,求这辆汽车在t =2 s 时的瞬时速度.解 设在t =2 s 附近的时间增量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt )2.因为Δs Δt =8+2Δt ,0lim t ∆→ΔsΔt =0lim t ∆→(8+2Δt )=8,所以这辆汽车在t =2 s 时的瞬时速度为8 m/s.规律方法 求瞬时速度是利用平均速度“逐渐逼近”的方法得到的,其求解步骤如下:(1)由物体运动的位移s 与时间t 的函数关系式求出位移增量Δs =s (t 0+Δt )-s (t 0);(2)求时间t 0到t 0+Δt 之间的平均速度v -=ΔsΔt ,(3)求0lim t ∆→ΔsΔt 的值,即得t =t 0时的瞬时速度.【训练2】 一质点按规律s (t )=at 2+2t +1做直线运动(位移单位:m ,时间单位:s),若该质点在t =1 s 时的瞬时速度为4 m/s ,求常数a 的值. 解 ∵Δs =s (1+Δt )-s (1)=[a (1+Δt )2+2(1+Δt )+1]-(a +3) =a ·(Δt )2+(2a +2)·Δt , ∴ΔsΔt =a ·Δt +2a +2. 在t =1 s 时,瞬时速度为0limt ∆→ΔsΔt=2a +2,即2a +2=4,∴a =1.方向1 求函数在某点处的导数【例3-1】 求函数f (x )=3x 2-2x 在x =1处的导数. 解 ∵Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1) =3(Δx )2+4Δx ,∴Δy Δx =3(Δx )2+4Δx Δx=3Δx +4,∴y ′|x =1=0lim x ∆→ΔyΔx =0lim x ∆→(3Δx +4)=4.方向2 已知函数在某点处的导数求参数【例3-2】 已知函数y =ax -1x 在x =1处的导数为2,求a 的值.解∵Δy=a(1+Δx)-11+Δx-⎝⎛⎭⎪⎫a-11=aΔx+Δx1+Δx,∴ΔyΔx=aΔx+Δx1+ΔxΔx=a+11+Δx,∴limx∆→ΔyΔx=limx∆→⎝⎛⎭⎪⎫a+11+Δx=a+1=2,从而a=1.规律方法求一个函数y=f(x)在x=x0处的导数的步骤如下:(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=limx∆→ΔyΔx.【训练3】利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解由导数的定义知,函数在x=2处的导数f′(2)=limx∆→f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-3(-22+3×2)=-(Δx)2-Δx,于是f′(2)=limx∆→-(Δx)2-ΔxΔx=limx∆→(-Δx-1)=-1.课堂达标1.如果质点M按规律s=3+t2运动,则在时间段[2,2.1]中相应的平均速度是()A.4 B.4.1 C.0.41 D.3解析v-=(3+2.12)-(3+22)0.1=4.1.答案 B2.函数f (x )在x 0处可导,则0lim h ∆→f (x 0+h )-f (x 0)h ( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .与x 0,h 均无关 答案 B3.若质点A 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ) A .6B .18C .54D .81解析 因为Δs Δt =3(3+Δt )2-3×32Δt=18Δt +3(Δt )2Δt =18+3Δt ,所以lim t ∆→ΔsΔt =18.答案 B4.若一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1.解析 Δs Δt =7(t +Δt )2+8-(7t 2+8)Δt=7Δt +14t ,当0lim t ∆→ (7Δt +14t )=14t =1时,t =114.答案 1145.已知函数f (x )=x ,则f ′(1)=________. 解析 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0lim x ∆→1+Δx -1Δx=0limx ∆→11+Δx +1=12.答案 12课堂小结利用导数定义求导数三步曲:(1)作差求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)作比求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限得导数f ′(x 0)=0lim x ∆→ΔyΔx .简记为一差、二比、三极限.基础过关1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx 等于( ) A .4B .4xC .4+2ΔxD .4+2(Δx )2解析 Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2Δx=4+2Δx . 答案 C2.如图,函数y =f (x )在A ,B 两点间的平均变化率是( ) A .1 B .-1 C .2 D .-2解析 Δy Δx =f (3)-f (1)3-1=1-32=-1.答案 B3.如果某物体的运动方程为s =2(1-t 2) (s 的单位为m ,t 的单位为s),那么其在1.2 s 末的瞬时速度为( ) A .-4.8 m/s B .-0.88 m/s C .0.88 m/sD .4.8 m/s解析 物体在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得. 答案 A4.设f (x )=ax +4,若f ′(1)=2,则a 等于________. 解析 因为f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0lim x ∆→a (1+Δx )+4-a -4Δx =a ,所以f ′(1)=a =2. 答案 25.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________.解析 v 初=s ′|t =0=0lim t ∆→s (0+Δt )-s (0)Δt=0lim t ∆→ (3-Δt )=3.答案 36.求函数y =2x 2+4x 在x =3处的导数. 解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx ,∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16.∴y ′|x =3=0lim x ∆→ΔyΔx =0lim x ∆→ (2Δx +16)=16.7.已知f (x )=x 2,g (x )=x 3,求满足f ′(x )+2=g ′(x )的x 的值. 解 由导数的定义知,f ′(x )=0lim x ∆→(x +Δx )2-x 2Δx =2x ,g ′(x )=0lim x ∆→(x +Δx )3-x 3Δx =3x 2.∵f ′(x )+2=g ′(x ),∴2x +2=3x 2, 即3x 2-2x -2=0, 解得x =1-73或x =1+73.能力提升8.设f (x )为可导函数,且满足0lim x →f (1)-f (1-2x )2x =-1,则f ′(1)为( )A .1B .-1C .2D .-2解析 令x →0,则Δx =1-(1-2x )=2x →0,所以 0lim x → f (1)-f (1-2x )2x =0lim x ∆→f (1)-f (1-Δx )Δx=f ′(1)=-1. 答案 B9.设函数f (x )可导,则0lim x ∆→f (1+Δx )-f (1)3Δx 等于( )A .f ′(1)B .3f ′(1) C.13f ′(1)D .f ′(3)解析 根据导数的定义,得 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx ,所以0lim x ∆→f (1+Δx )-f (1)3Δx =13f ′(1),故选C. 答案 C10.过曲线y =x 2+1上两点P (1,2)和Q (1+Δx ,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =________,当Δx =0.001时,割线的斜率k =________.解析 ∵Δy =(1+Δx )2+1-(12+1) =2Δx +(Δx )2,∴ΔyΔx =2+Δx , ∴割线斜率为2+Δx .当Δx =0.1时,割线PQ 的斜率k =2+0.1=2.1. 当Δx =0.001时,割线PQ 的斜率k =2+0.001=2.001. 答案 2.1 2.00111.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 解析 由导数的定义,得f ′(0)=0lim x ∆→f (Δx )-f (0)Δx=0lim x ∆→a (Δx )2+b (Δx )+c -cΔx =0lim x ∆→[a ·(Δx )+b ]=b >0.又⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0,a >0,∴ac ≥b 24,∴c >0. ∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2b b =2.当且仅当a =c =|b |2时等号成立. 答案 212.一质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值. 解 因为Δs =s (2+Δt )-s (2) =a (2+Δt )2+1-a ·22-1 =4a Δt +a (Δt )2,所以Δs Δt =4a +a Δt .所以当t =2时,质点M 的瞬时速度为0lim t ∆→Δs Δt =4a , 即4a =8,所以a =2.创新突破13.用导数的定义求函数y =f (x )=1x 在x =1处的导数. 解 ∵Δy =f (1+Δx )-f (1) =11+Δx -11=1-1+Δx 1+Δx =-Δx1+Δx ·(1+1+Δx ), ∴Δy Δx =-11+Δx ·(1+1+Δx ), ∴0lim x ∆→Δy Δx =0lim x ∆→-11+Δx ·(1+1+Δx ) =-11+0×(1+1+0)=-12,∴y ′|x =1=f ′(1)=-12.。

1.1.1 变化率问题导学案

1.1.1 变化率问题导学案
员相对于水面的 高度 h (单位:m )与起跳后的时间 t (单位:S ) 存在函数关系 h(t ) 4.9t 2 6.5t 10 .计算运动员 在06
65 这段时间里的平均速度, 并思考下面 49
例 2.在自行车比赛中,运动员的位移 s (单位: m )与比赛的时间 t (单位: s )存在函数关系 s 10t 5t2 .求 t 20 , t 0.1, t 0.01 时的 s 与
y 等于( x
) C. 2 x D. 2 (x)2
A. 2
B. 2x
2. 函数 y 2 x2 5 在区间 [2, 2 x ] 内的平均变化 率是 .
-2-

课后作业
1.如果一个质点从固定点 A 开始运动,在时间
t 内的位移函数为 s f (t ) t 3 3 ,当 t1 4 且
(1)求 s ; (2)求 t 0.01 时,
s . t
学习评价
一、当堂检测 1.已知函数 y x 2 1 ,当 x 从 1 变化到 1 x 时, 则
第01课时
问题3:观察函数 y f ( x) 的图像,平均变化率
y f ( x2 ) f ( x1 ) 表示什么? x x2 x1 y
f ( x2 ) f ( x2 ) f ( x1 ) f ( x1 ) x2 x1
1.1.1 变化率问题
学习目标
1.理解并掌握平均变化率的概念. 2.会求函数在指定区间的平均变化率. 3.能利用平均变化率解决生活中的实际问题.
y f (x)
学习过程
一、学前准备 复习:物理学中平均速度和瞬时速度分别是什 么? ◆应用示例
x
x1 x2
例 1. 已知函数 f ( x) x 2 3x 5 , 求函数 f ( x) 从 1 二、新课导学 ◆探究新知(预习教材P2~P6,找出疑惑之处) 问题1: 回忆吹气球的过程,发现随着气球内空气 容量的增加,气球的半径增加得越来越慢,从数 学的角度,如何描述这种现象呢?当空气容量从 V1 增加到 V 2 时,气球的平均膨胀率是多少? 到 2 的平均变化率.

高中数学选修2-2教学设计8:1.1.1 变化率问题教案

高中数学选修2-2教学设计8:1.1.1 变化率问题教案

1.1.1 变化率问题教学目标 通过大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵。

重点难点 平均变化率的意义教学过程一、问题情境1、情境:某市2008年4月20日最高气温为33.4℃,而4月19日和4月18日的最高气温分别为24.4℃和18.6℃,短短两天时间,气温陡增14.8℃,闷热中的人们无不感叹:“天气热得太快了!”时间4月18日 4月19日 4月20日 日最高气温 18.6℃ 24.4℃ 33.4℃该市2007年3月18日到4月18日的日最高气温变化曲线:问题1:你能说出A 、B 、C 三点的坐标所表示意义吗?问题2:分别计算AB 、BC 段温差结论:气温差不能反映气温变化的快慢程度问题3:如何“量化”(数学化)曲线上升的陡峭程度?曲线AB 、BC 段几乎成了“直线”, 由此联想如何量化直线的倾斜程度?二、建构数学一般地,函数f(x)在区间[x1,x2]上的平均变化率为: 说明: t (d)20 30 34 210 20 30A (1, 3.5)B (32, 18.6)0 C (34, 33.4) T (℃)2 10 2121()()f x f x x x--x y ∆∆=(1)平均变化率是曲线陡峭程度的“数量化”,曲线的陡峭程度是平均变化率的“视觉化” (2)用平均变化率量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当x2—x1很小时,这种量化便由“粗糙”逼近“精确”。

例1、某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率;由此你能得到什么结论?(1)1kg/月(2)0.4kg/月结论:该婴儿从出生到第3个月体重增加的速度比第6个月到第12个月体重增加的速度要快。

例2、水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体积 (单位: )计算第一个10s 内V 的平均变化率。

高中数学 1.1 变化率与导数 1.1.1 变化率问题 1.1.2 导数的概念学案 新人教A版选修2-2

高中数学  1.1 变化率与导数 1.1.1 变化率问题 1.1.2 导数的概念学案 新人教A版选修2-2

1.1 变化率与导数1.1.1 变化率问题 1.1.2 导数的概念学习目标:1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)4.理解函数的平均变化率,瞬时变化率及导数的概念.(易混点)[自 主 预 习·探 新 知]1.函数的平均变化率(1)函数y =f (x )从x 1到x 2的平均变化率为Δy Δx=fx 2-f x 1x 2-x 1,其中Δx =x 2-x 1是相对于x 1的一个“增量”,Δy =f (x 2)-f (x 1)=f (x 1+Δx )-f (x 1)是相对于f (x 1)的一个“增量”.(2)平均变化率的几何意义设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx=f x 2-f x 1x 2-x 1=f x 1+Δx -f x 1Δx为割线AB 的斜率,如图1­1­1所示.图1­1­1思考:Δx ,Δy 的值一定是正值吗?平均变化率是否一定为正值?[提示] Δx ,Δy 可正可负,Δy 也可以为零,但Δx 不能为零.平均变化率ΔyΔx 可正、可负、可为零.2.瞬时速度与瞬时变化率(1)物体在某一时刻的速度称为瞬时速度.(2)函数f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限即lim Δx →0Δy Δx=lim Δx →0f x 0+Δx -f x 0Δx.3.导数的概念函数y =f (x )在x =x 0处的导数就是函数y =f (x )在x =x 0处的瞬时变化率,记作f ′(x 0)或y ′| x =x 0,即f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx.[基础自测]1.思考辨析(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.( )(2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.( )(3)在导数的定义中,Δx,Δy都不可能为零.( )提示:(1)由导数的定义知,函数在x=x0处的导数只与x0有关,故正确.(2)瞬时变化率是刻画某一时刻变化快慢的物理量,故错误.(3)在导数的定义中,Δy可以为零,故错误.[答案] (1)√(2)×(3)×2.函数y=f(x),自变量x由x0改变到x0+Δx时,函数的改变量Δy为( )【导学号:31062000】A.f(x0+Δx) B.f(x0)+ΔxC.f(x0)·Δx D.f(x0+Δx)-f(x0)D[Δy=f(x0+Δx)-f(x0),故选D.]3.若一质点按规律s=8+t2运动,则在一小段时间[2,2.1]内的平均速度是( ) A.4 B.4.1C.0.41 D.-1.1B[v=ΔsΔt=s-s2.1-2=2.12-220.1=4.1,故选B.]4.函数f(x)=x2在x=1处的瞬时变化率是________.[解析]∵f(x)=x2.∴在x=1处的瞬时变化率是lim Δx→0ΔyΔx=limΔx→0f+Δx-fΔx=limΔx→0+Δx2-12Δx=limΔx→0(2+Δx)=2.[答案] 25.函数f(x)=2在x=6处的导数等于________.[解析]f′(6)=limΔx→0f+Δx-fΔx=limΔx→02-2Δx=0.[答案] 0[合作探究·攻重难](1)从0.1到0.2的平均变化率;(2)在区间[x 0,x 0+Δx ]上的平均变化率.【导学号:31062001】[解] (1)因为f (x )=3x 2+5, 所以从0.1到0.2的平均变化率为 3×0.22+5-3×0.12-50.2-0.1=0.9.(2)f (x 0+Δx )-f (x 0)=3(x 0+Δx )2+5-(3x 20+5) =3x 20+6x 0Δx +3(Δx )2+5-3x 20-5=6x 0Δx +3(Δx )2. 函数f (x )在区间[x 0,x 0+Δx ]上的平均变化率为6x 0Δx +Δx2Δx =6x 0+3Δx .[规律方法] 1.求函数平均变化率的三个步骤第一步,求自变量的增量Δx =x 2-x 1; 第二步,求函数值的增量Δy =f x 2-f x 1;第三步,求平均变化率Δy Δx=fx 2-f x 1x 2-x 12.求平均变化率的一个关注点求点x 0附近的平均变化率,可用f x 0+Δx -f x 0Δx的形式.[跟踪训练]1.如图1­1­2,函数y =f (x )在A ,B 两点间的平均变化率等于( )图1­1­2A .1B .-1C .2D .-2B [平均变化率为1-33-1=-1.故选B.]2.已知函数y =f (x )=2x 2的图象上点P (1,2)及邻近点Q (1+Δx,2+Δy ),则Δy Δx 的值为( )【导学号:31062002】A .4B .4xC .4+2Δx 2D .4+2ΔxD [Δy Δx =+Δx 2-2×12Δx=4+2Δx .故选D.][探究问题]1.物体的路程s 与时间t 的关系是s (t )=5t 2,如何计算物体在[1,1+Δt ]这段时间内的平均速度?提示:Δs =5(1+Δt )2-5=10Δt +5(Δt )2,v =Δs Δt=10+5Δt .2.当Δt 趋近于0时,探究1中的平均速度趋近于多少?怎样理解这一速度? 提示:当Δt 趋近于0时,ΔsΔt趋近于10,这时的平均速度即为当t =1时的瞬时速度.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 2+t+1表示,求物体在t =1 s 时的瞬时速度.[思路探究] 计算物体在[1,1+Δt ]内的平均速度Δs Δt ――→令Δt →0计算lim Δt →0ΔsΔt―→得t =1 s 时的瞬时速度[解] ∵Δs Δt =s+Δt -sΔt=+Δt2++Δt +1-2+1+Δt=3+Δt ,∴lim Δt →0ΔsΔt=lim Δt →0(3+Δt )=3.∴物体在t =1处的瞬时变化率为3. 即物体在t =1 s 时的瞬时速度为3 m/s.母题探究:1.(变结论)在本例条件不变的前提下,试求物体的初速度. [解] 求物体的初速度,即求物体在t =0时的瞬时速度. ∵Δs Δt =s +Δt -sΔt=+Δt2++Δt +1-1Δt=1+Δt ,∴lim Δt →0(1+Δt )=1.∴物体在t =0时的瞬时变化率为1,即物体的初速度为1 m/s.2.(变结论)在本例条件不变的前提下,试问物体在哪一时刻的瞬时速度为9 m/s. [解] 设物体在t 0时刻的瞬时速度为9 m/s.又Δs Δt =s t 0+Δt -s t 0Δt=(2t 0+1)+Δt .lim Δt →0ΔsΔt=lim Δt →0(2t 0+1+Δt )=2t 0+1. 则2t 0+1=9, ∴t 0=4.则物体在4 s 时的瞬时速度为9 m/s.[规律方法] 求运动物体瞬时速度的三个步骤求时间改变量Δt 和位移改变量Δs =s t 0+Δt -s t 0求平均速度v =Δs Δt求瞬时速度,当Δt 无限趋近于0时,\f(Δs,Δt )无限趋近于常数v ,即为瞬时速度.(1)设函数y =f (x )在x =x 0处可导,且lim Δx →00x 0Δx=1,则f ′(x 0)等于( )A .1B .-1C .-13D .13(2)求函数f (x )=x -1x在x =1处的导数.[思路探究] (1)类比f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx求解.(2)先求Δy ―→再求Δy Δx ―→计算lim Δx →0ΔyΔx(1)C [∵lim Δx →0f x 0-3Δx -f x 0Δx=lim Δx →0⎣⎢⎡⎦⎥⎤f x 0-3Δx -f x 0-3Δx -=-3f ′(x 0)=1,∴f ′(x 0)=-13,故选C.](2)∵Δy =(1+Δx )-11+Δx -⎝ ⎛⎭⎪⎫1-11 =Δx +1-11+Δx =Δx +Δx1+Δx, ∴Δy Δx =Δx +Δx 1+Δx Δx =1+11+Δx , ∴f ′(1)=lim Δx →0Δy Δx =lim Δx →0⎝ ⎛⎭⎪⎫1+11+Δx =2.[规律方法] 求函数y =f (x )在点x 0处的导数的三个步骤简称:一差、二比、三极限. [跟踪训练]3.已知f ′(1)=-2,则lim Δx →0f-2Δx -fΔx=________.【导学号:31062003】[解析] ∵f ′(1)=-2, ∴limΔx →0f-2Δx -fΔx=lim Δx →0f-2Δx -f ⎝ ⎛⎭⎪⎫-12-2Δx=-2lim Δx →0f-2Δx -f -2Δx=-2f ′(1)=-2×(-2)=4.[答案] 44.求函数y =3x 2在x =1处的导数.[解] ∵Δy =f (1+Δx )-f (1)=3(1+Δx )2-3=6Δx +3(Δx )2,∴Δy Δx =6+3Δx ,∴f ′(1)=lim Δx →0ΔyΔx=lim Δx →0(6+3Δx )=6.[当 堂 达 标·固 双 基]1.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度是( )A .0.4B .2C .0.3D .0.2B [v =s-s 2.1-2=4.2-40.1=2.]2.物体自由落体的运动方程为s (t )=12gt 2,g =9.8 m/s 2,若v =lim Δt →0=s 1+Δt -s 1Δt=9.8 m/s ,那么下列说法中正确的是( )【导学号:31062004】A .9.8 m/s 是物体从0 s 到1 s 这段时间内的速率B .9.8 m/s 是1 s 到(1+Δt )s 这段时间内的速率C .9.8 m/s 是物体在t =1 s 这一时刻的速率D .9.8 m/s 是物体从1 s 到(1+Δt )s 这段时间内的平均速率 C [结合平均变化率与瞬时变化率可知选项C 正确.] 3.函数f (x )=x 在x =1处的导数为________. [解析] ∵Δy =f (1+Δx )-f (1)=1+Δx -1, ∴Δy Δx =1+Δx -1Δx =11+Δx +1, ∴f ′(1)=lim Δx →0Δy Δx =lim Δx →011+Δx +1=12.[答案] 124.设f (x )在x 0处可导,若lim Δx →0f x 0+3Δx -f x 0Δx=A ,则f ′(x 0)=________.[解析] lim Δx →0f x 0+3Δx -f x 0Δx=3lim 3Δx →0f x 0+3Δx -f x 03Δx=3f ′(x 0)=A .故f ′(x 0)=13A .[答案] A35.在曲线y =f (x )=x 2+3上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求:(1)Δy Δx ;(2)f ′(1).【导学号:31062005】[解] (1)Δy Δx =f+Δx -fΔx=+Δx2+3-2+Δx=2+Δx .(2)f ′(1)=lim Δx →0f+Δx -fΔx=lim Δx →0(2+Δx )=2.。

高中数学新人教版A版精品教案《1.1.1 变化率问题》

高中数学新人教版A版精品教案《1.1.1 变化率问题》

《变化率》教学设计教材版本:普通高中数学教材人教A版《选修2-2》“变化率”,一、教学内容分析导数是微积分的核心概念之一,是研究函数增减、变化快慢、最值问题的最一般、最有效的工具。

教材按照“平均变化率—瞬时变化率—导数的概念—导数的几何意义”的顺序安排,采用“逼近”的方法,从数形结合的角度定义导数,使导数概念的建立形象、直观而又容易理解,突出了导数概念的本质。

平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。

从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。

在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。

基于上述分析,我将本节课的教学重点确定为:理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。

在平均变化率的基础上去探求瞬时变化率,深刻理解瞬时变化率的内涵二、学生情况分析(一)、学生已有的认知基础1、学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值。

并能从图像中看出函数变化的快与慢。

2、学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度。

(二)可能存在的认知困难1、“吹气球”与“高台跳水”是学生非常熟悉的生活实例,如何从具体实例中抽象出共同的数学本质,能够用“平均变化率”对生活中的变化快慢现象进行合理的数学解释是本节课教学的关键,也是难点所在。

2、利用变化率的有关知识解释生活的中一些现象,需要学生具有一定抽象概括能力和应用数学数学语言表达问题的能力。

1.1.1变化率问题学案理科

1.1.1变化率问题学案理科

题目:§1.1.1变化率问题【学习目标】(1)通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程.(2)会求函数在指定区间上的平均变化率.(3)能利用平均变化率解决或说明生活中的实际问题.【重点、难点】重点:函数在指定区间上的平均变化率难点:利用平均变化率解决或说明生活中的实际问题【使用说明、学法指导】1、先通读教材勾画出本节内容的基本知识,再完成教材助读设置的问题,依据发现的问题,然后再读教材或查阅资料,解决问题。

2、独立完成,限时15分钟。

变化率问题【课前预习案】1、复习回顾:设点11(,)A x y ,22(,)B x y ,直线AB 与x 轴的倾斜角为θ,直线的斜率为k .则有k = ,k = ,它刻画了直线的陡峭程度。

2、教材助读:(1)函数平均变化率的概念:我们把式子 称为函数()y f x =从1x 到2x 的平均变化率.习惯上用x 表示21x x -,即 ,21()()y f x f x =-.平均变化率可以表示为 y x =(x 是一个整体符号,而不是和x 相乘)增量并一定都是正值,也可以是负值,还可以是0.(2)观察函数y=f (x )的图象直线AB【升华】 1. 平均变化率的几何意义就是函数()y f x =图像上两点111,()P x f x (), 222,()P x f x ()所在直线的2.求函数()y f x =从1x 到2x 的平均变化率的步骤:①求自变量的增量=x ②求函数值的增量=y③求平均变化率y x =f (x 1)变化率问题【课堂探究案】1、在高台跳水问题中(2() 4.9 6.510h t t t =-++),计算运动员在65049t ≤≤这段时间里的平均速度,并思考下列问题:(1)运动员在这段时间里是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?2、求函数2x y =在区间[]x x x ∆+00,的平均变化率,并求出当1.0=∆x 时的平均 变化率.【当堂训练】1在求平均变化率中,自变量的增量x ∆ ( )A .0>∆x B. 0<∆x C. 0=∆x D. 0≠∆x2.一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A .-4B .-8C .6D .-63、已知质点按照规律t t s 422+=(距离单位:m ,时间单位:s )运动,求:(1)质点开始运动后3秒内的平均速度;(2)质点在2秒到3秒内的平均速度。

1.1.1变化率问题(教学设计)

1.1.1变化率问题(教学设计)

1.1变化率与导数(教学设计)(1)1.1.1变化率问题教学目标:知识与技能目标:了解导数概念的实际背景,了解变化率和平均变化率的概念。

过程与方法目标:通过问题探索、观察分析、归纳总结等方式,引导学生从变量和函数的角度来描述变化率,为导数概念的产生奠定基础。

情感、态度与价值观目标:通过学习本节课,培养学生的动手能力、合作学习能力,在对实际问题分析的过程中,体会数学的科学价值、应用价值和文化价值,形成良好的思维品质和锲而不舍的铁钻研精神。

教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念.教学过程:一.创设情景、新课引入为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.师生互动、新课讲解 (一)问题提出 问题1 气球膨胀率将班内同学平均分成4组,每组发一只气球,各有一位同学负责将气球吹起,其他同学观察气球在吹起过程中的变化,并做好准备回答以下问题:(1)气球在吹起过程中,随着吹入气体的增加,它的膨胀速度有何变化? (2)你认为膨胀速度与哪些量有关系? (3)球的体积公式是什么?有哪些基本量?(4)结合球的体积公式,试用两个变量之间的关系来表述气球的膨胀率问题?总结:可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π= ⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈-气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 例1(tb11500601)求下列问题的平均变化率(1)已知函数f(x)=x+1 ,求x 取从1到2时的平均变化率; (2)已知函数f(x)=1x,求x 取从1到2时的平均变化率; (3)已知函数f(x)=lnx ,求x 取从1到2时的平均变化率; (4)已知函数f(x)=sinx ,求x 取从1到2时的平均变化率。

1.1.1变化率问题(学生学案)

1.1.1变化率问题(学生学案)

1.1变化率与导数(学生学案)(1)1.1.1变化率问题例1(tb11500601)求下列问题的平均变化率(1)已知函数f(x)=x+1 ,求x 取从1到2时的平均变化率;(2)已知函数f(x)=1x,求x 取从1到2时的平均变化率; (3)已知函数f(x)=lnx ,求x 取从1到2时的平均变化率;(4)已知函数f(x)=sinx ,求x 取从1到2时的平均变化率。

例2:已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy . 变式训练2:如图,函数y=f (x )在A ,B 两点间的平均变化率是( )(A )1 (B )-1 (C )2 (D )-2例3:求2x y =在0x x =附近的平均变化率。

变式训练3:过曲线y=f(x)=x 3上两点P (1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.例4:求函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率,并求当x 0=2,Δx =0.1时平均变化率的值.变式训练4:已知函数f (x )=x 3+3,求f (x )当x 由2变到3时的平均变化率.分层作业A组:1、(课本P10习题1.1A组NO:1)2、(tb11500701)已知某质点运动规律满足s=t2+3,则在时间(3,3+∆t)中相应的平均速度为()(A)6+∆t (B)3+∆t (C) 9+∆t (D)6+∆t+1 t∆3、(tb11500801)在曲线y=x2+1的图象上取一点(1,2)及附近一点(1+∆x,2+∆y),则yx∆∆为()(A)∆x+1x∆+2 (B) ∆x-1x∆-2 (C) ∆x+2 (D)2+∆x-1x∆4、(tb11500801)在平均变化率的定义中,自变量的增量是()(A)∆x>0 (B) ∆x<0 (C) ∆x=0 (D) ∆x≠05.已知函数f=2x2-4的图象上一点及附近一点,则等于( )A.4B.4xC.4+2ΔxD.4+26.函数f(x)=x2在x0到x0+Δx之间的平均变化率为k1,在x0-Δx到x0之间的平均变化率为k2,则k1,k2的大小关系是( )A.k1<k2B.k1>k2C.k1=k2D.无法确定B组:1.水经过吸管从容器甲中流向容器乙,ts后容器甲中水的体积V(t)=5×2-0.1t(单位:cm3),则第一个10s 内V的平均变化率为________cm3/s.2、(tb11500803)函数y=3x2-2x-8在x1=3处有增量∆x=0.5,求f(x)在x1到x1+∆x上的平均变化率。

教学设计5:1.1.1变化率问题

教学设计5:1.1.1变化率问题

说教学设计《平均变化率》大家好,我说课的题目是《平均变化率》,我将从教材、目标、教法、教学过程和评价反馈分析五个方面进行陈述。

一、教材分析《导数及其应用》在整个高中教材中的地位和作用是非常重要的,它既是对函数知识的补充和完善,也为今后进一步学习微积分奠定基础。

新课标对“导数及其应用”内容的处理有了较大的变化,它不介绍极限的形式化定义及相关知识,也有别于以往教材将导数仅仅作为一种特殊的极限、一种“规则”来学习的处理方式。

而是按照:平均变化率—瞬时变化率—导数的概念—导数的几何意义这样的顺序来安排,用“逼近”的方法,分别从代数上的减小区间长度,使区间长度逼近于一个点和几何上的减小割线两点间的距离,使割线逐渐逼近于切线,这两个数形结合的角度定义导数.这种概念建立的方式形象、直观、生动又容易理解,最重要的是能够突出了导数概念的本质。

而我今天说课的内容《平均变化率》又是《导数及其应用》的第一课时,对下一步瞬时变化率和导数概念的形成起到重要的奠基作用。

二、目标分析在讲课的过程中,我们要让学生有一个经历、体会、运用、感受的过程。

于是,我将本堂课的教学目标定为:(1)知识与技能目标要求学生能通过大量实例直观感知、构建平均变化率的概念,并初步运用和加深理解平均变化率的实际意义和数学意义.为后续建立瞬时变化率和导数的数学模型提供丰富的背景。

(2)过程与方法目标通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;(3)情感、态度、价值观感受数学模型在刻画客观世界中的作用,进一步领会变量数学的思想方法,提高能力。

根据课标要求,结合实际情况,我确定平均变化率的概念及其形成过程为教学重点,通过实例理解平均变化率的实际意义和数学意义是本节课的难点。

三、教法分析启发式教学与探究式学习相结合。

通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,从而达到概念的自然形成,进而从数学的外部到数学的内部,启发学生运用概念探究新问题。

1.1变化率与导数第1课时 精品教案

1.1变化率与导数第1课时 精品教案

1.1变化率与导数【课题】:1.1.1变化率问题【学情分析】:吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,但平均变化率及其符号表示对于学生而言还是新内容。

【教学目标】:(1)知识目标:○1感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。

体会数学的博大精深以及学习数学的意义。

○2理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。

(2)情感目标:让学生充分体会到生活中处处有数学。

(3)能力目标:提高学生学习能力与探究能力、归纳表达能力。

【教学重点】:正确理解平均变化率.【教学难点】:平均变化率的概念。

【课前准备】:powerpoint【教学过程设计】:(基础题)1.物体自由落体的运动方程是:()212S t gt =,求1s 到2s 时的平均速度. 解:21314.72S S g m -== ,211t t s -=, 则()212114.7/S S v m s t t -==-2.水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体积 (单位:3cm ),计算第一个10s 内V 的平均变化率。

注:(10)(0)100V V --3.已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率:(1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。

4.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。

t t V 1.025)(-⨯=(难题) 5.思考:(1)课本P4思考题(2)在高台跳水运动中,运动员相对水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在65049t ≤≤这段时间里的平均速度,并思考下面的问题:○1运动员在这段时间里是静止的吗? ○2你认为用平均速度描述运动员的运动状态有什么问题吗? 答案: ○1不是. ○2不能客观描述运动员的运动状态.T(月)3912。

1.1.1变化率问题 学案-精选学习文档

1.1.1变化率问题 学案-精选学习文档

1. 1.1变化率问题 课前预习学案预习目标:“变化率问题”,课本中的问题1,2。

知道平均变化率的定义。

预习内容: 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π= 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 在吹气球问题中,当空气容量V 从0增加到1L 时,气球的平均膨胀率为__________ 当空气容量V 从1L 增加到2L 时,气球的平均膨胀率为__________________ 当空气容量从V 1增加到V 2时,气球的平均膨胀率为_____________ 问题2 高台跳水在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态? 在5.00≤≤t 这段时间里,v =_________________ 在21≤≤t 这段时间里,v =_________________ 问题3 平均变化率已知函数()x f ,则变化率可用式子_____________,此式称之为函数()x f 从1x 到2x ___________.习惯上用x ∆表示12x x -,即x ∆=___________,可把x ∆看做是相对于1x 的一个“增量”,可用+1x x ∆代替2x ,类似有=∆)(x f __________________,于是,平均变化率可以表示为_______________________提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标 1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率.hto学习重点:平均变化率的概念、函数在某点处附近的平均变化率. 学习难点:平均变化率的概念.学习过程一:问题提出问题1气球膨胀率问题:气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是__________. 如果将半径r 表示为体积V 的函数,那么___________.⑴ 当V 从0增加到1时,气球半径增加了___________. 气球的平均膨胀率为___________.⑵ 当V 从1增加到2时,气球半径增加了___________. 气球的平均膨胀率为___________.可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? ___________.问题2 高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系___________.)如何计算运动员的平均速度?并分别计算0≤t ≤0.5,1≤t ≤2,1.8≤t ≤2,2≤t ≤2.2,时间段里的平均速度.思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,___________.; 在21≤≤t 这段时间里,___________. 探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以___________.虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (1)计算和思考,展开讨论;(2)说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态; 二平均变化率概念:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化h to率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xf x y ___________. 思考:观察函数f (x )的图象 平均变化率=∆∆xf1212)()(x x x f x f --表示什么? (1) 一起讨论、分析,得出结果;(2) 计算平均变化率的步骤:①求自变量的增量Δx=x 2-x 1;②求函数的增量Δf=f(x 2)-f(x 1);③求平均变化率2121()()f x f x f x x x -∆=∆-. 注意:①Δx 是一个整体符号,而不是Δ与x 相乘;②x 2= x 1+Δx ; ③Δf=Δy=y 2-y 1; 三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:例2.求2x y =在0x x =附近的平均变化率。

高中数学选修2-2教学设计9:1.1.1 变化率问题教案

高中数学选修2-2教学设计9:1.1.1 变化率问题教案

1.1.1 变化率问题教学目标 1.理解函数平均变化率、瞬时变化率的概念.2.掌握函数平均变化率的求法. 知识梳理知识点一 函数的平均变化率1.平均变化率的概念设函数y =f (x ),x 1,x 2是其定义域内不同的两个点,那么函数的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy=f (x 2)-f (x 1).于是,平均变化率可以表示为Δy Δx. 2.求平均变化率求函数y =f (x )在[x 1,x 2]上平均变化率的步骤如下:(1)求自变量的增量Δx =x 2-x 1;(2)求函数值的增量Δy =f (x 2)-f (x 1);(3)求平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1)Δx . 思考 (1)如何正确理解Δx ,Δy?(2)平均变化率的几何意义是什么?(1)Δx 是一个整体符号,而不是Δ与x 相乘,其值可取正值、负值,但Δx ≠0;Δy 也是一个整体符号,若Δx =x 1-x 2,则Δy =f (x 1)-f (x 2),而不是Δy =f (x 2)-f (x 1),Δy 可为正数、负数,亦可取零.(2)如图所示:y =f (x )在区间[x 1,x 2]上的平均变化率是曲线y =f (x )在区间[x 1,x 2]上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”,⎪⎪⎪⎪Δy Δx 越大,曲线y =f (x )在区间[x 1,x 2]上越“陡峭”,反之亦然.平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数y =f (x )图象上有两点A (x 1,f (x 1)),B (x 2,f (x 2)),则f (x 2)-f (x 1)x 2-x 1=k AB . 知识点二 瞬时速度与瞬时变化率把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s =s (t )描述,设Δt 为时间改变量,在t 0+Δt 这段时间内,物体的位移(即位置)改变量是Δs =s (t 0+Δt )-s (t 0),那么位移改变量Δs 与时间改变量Δt 的比就是这段时间内物体的平均速度v ,即v =Δs Δt =s (t 0+Δt )-s (t 0)Δt. 物理学里,我们学习过非匀速直线运动的物体在某一时刻t 0的速度,即t 0时刻的瞬时速度,用v 表示,物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率s (t 0+Δt )-s (t 0)Δt 在Δt →0时的极限,即v =lim Δt →0 Δs Δt =lim Δt →0 s (t 0+Δt )-s (t 0)Δt.瞬时速度就是位移函数对时间的瞬时变化率.思考 (1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么?(1)其实质是当平均变化率中自变量的改变量趋于0时的值,它是刻画函数值在某处变化的快慢.(2)①区别:平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢;②联系:当Δx 趋于0时,平均变化率Δy Δx趋于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.题型探究题型一 求平均变化率例1 求函数y =f (x )=2x 2+3在x 0到x 0+Δx 之间的平均变化率,并求当x 0=2,Δx =12时该函数的平均变化率.解 当自变量从x 0变化到x 0+Δx 时,函数的平均变化率为Δy Δx =f (x 0+Δx )-f (x 0)Δx =[2(x 0+Δx )2+3]-(2x 20+3)Δx=4x 0Δx +2(Δx )2Δx=4x 0+2Δx . 当x 0=2,Δx =12时,平均变化率的值为4×2+2×12=9. 反思与感悟 平均变化率是函数值的增量与相应自变量的增量的比值,所以求函数在给定区间[x 0,x 0+Δx ]上的平均变化率问题,即求Δy Δx =f (x 0+Δx )-f (x 0)Δx的值. 跟踪训练1 (1)已知函数y =f (x )=2x 2-1的图象上一点(1,1)及其邻近一点(1+Δx,1+Δy ),则Δy Δx=______________.(2)求函数y =f (x )=1x 2在x 0到x 0+Δx 之间的平均变化率(x 0≠0). (1)[答案]2Δx +4[解析]因为Δy =f (1+Δx )-f (1)=2(Δx )2+4Δx ,所以平均变化率Δy Δx=2Δx +4. (2)解 ∵Δy =f (x 0+Δx )-f (x 0)=1(x 0+Δx )2-1x 20 =-Δx (2x 0+Δx )(x 0+Δx )2x 20, ∴Δy Δx=-Δx (2x 0+Δx )(x 0+Δx )2x 20Δx =-2x 0+Δx (x 0+Δx )2x 20. 题型二 实际问题中的瞬时速度例2 一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移单位:m ,时间单位:s).(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2时的平均速度.解 (1)初速度v 0=lim Δt →0s (Δt )-s (0)Δt =lim Δt →03Δt -(Δt )2Δt=lim Δt →0(3-Δt )=3. 即物体的初速度为3 m/s.(2)v 瞬=lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →03(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0-(Δt )2-Δt Δt=lim Δt →0(-Δt -1)=-1. 即此物体在t =2时的瞬时速度为1 m/s ,方向与初速度方向相反.(3)v =s (2)-s (0)2-0=6-4-02=1. 即t =0到t =2时的平均速度为1 m/s.反思与感悟 作变速直线运动的物体在不同时刻的速度是不同的,Δt 趋近于0,指时间间隔Δt 越来越小,但不能为0,Δt ,Δs 在变化中都趋近于0,但它们的比值趋近于一个确定的常数.跟踪训练2 已知一物体作自由落体运动,下落的高度的表达式为s =12gt 2,其中g 为重力加速度,g ≈9.8米/平方秒(s 的单位:米).(1)求t 从3秒到3.1秒、3.01秒、3.001秒、3.000 1秒各段内的平均速度;(2)求t =3秒时的瞬时速度.跟踪训练2 解 (1)当t 在区间[3,3.1]上时,Δt =3.1-3=0.1(秒),Δs =s (3.1)-s (3) =12g ·3.12-12g ·32≈2.989(米). v 1=Δs Δt ≈2.9890.1=29.89(米/秒). 同理,当t 在区间[3,3.01]上时,v 2≈29.449(米/秒),当t 在区间[3,3.001]上时,v 3≈29.404 9(米/秒),当t 在区间[3,3.000 1]上时,v 4≈29.400 49(米/秒).(2)Δs Δt =s (3+Δt )-s (3)Δt =12g (3+Δt )2-12g ·32Δt=12g (6+Δt ), lim Δt →0Δs Δt =lim Δt →0 12g (6+Δt )=3g ≈29.4(米/秒). 所以t =3秒时的瞬时速度约为29.4米/秒.当堂检测1.在求解平均变化率时,自变量的变化量Δx 应满足( )A .Δx >0B .Δx <0C .Δx ≠0D .Δx 可为任意实数[答案]C[解析]因平均变化率为Δy Δx,故Δx ≠0.] 2.沿直线运动的物体从时间t 到t +Δt 时,物体的位移为Δs ,那么lim Δt →0Δs Δt 为( ) A .从时间t 到t +Δt 时物体的平均速度B .t 时刻物体的瞬时速度C .当时间为Δt 时物体的速度D .从时间t 到t +Δt 时位移的平均变化率[答案]B[解析]v =Δs Δt ,而li m Δt →0 Δs Δt 则为t 时刻物体的瞬时速度. 3.以初速度为v 0(v 0>0)作竖直上抛运动的物体,t 秒时的高度为s (t )=v 0t -12gt 2,求物体在t 0时刻的瞬时加速度.解 ∵Δs =v 0(t 0+Δt )-12g (t 0+Δt )2-v 0t 0+12gt 20=(v 0-gt 0)Δt -12g (Δt )2, ∴Δs Δt =v 0-gt 0-12g Δt . 当Δt →0时,Δs Δt→v 0-gt 0. ∴物体在t 0时刻的瞬时速度为v 0-gt 0.由此,类似地可得到物体运动的速度函数为v (t )=v 0-gt , ∴Δv Δt =v 0-g (t 0+Δt )-(v 0-gt 0)Δt=-g . ∴当Δt →0时,Δv Δt→-g . 故物体在t 0时刻的瞬时加速度为-g .。

【数学】高中数学111变化率问题导学案新人教A版选修22

【数学】高中数学111变化率问题导学案新人教A版选修22

【关键字】数学1.1.1变化率问题【学习目标】理解平均变化率的概念, 会用平均变化率公式来求某一区间上的平均变化率【重点难点】在实际背景下,借助函数图像直观的理解平均变化率一、自主学习要点1 平均变化率函数y=f(x)从x1到x2的平均变化率为= .要点2 求函数y=f(x)在点x0附近的平均变化率的步骤(1)求函数自变量的改变量Δx=x-x0;(2)求函数的增量Δy=;(3)求平均变化率= .要点3 平均变化率的几何意义表示函数y=f(x)图像上割线P1P2的斜率(其中P1(x1,f(x1)),P2(x2,f(x2)),即.要点4 平均变化率的物理意义看成时间t的函数s=s(t)在时间段[t1,t2]上的平均速度,即 .2、合作,探究,展示,点评题型一平均变化率例1 求函数y=x2在x=1,2,3附近的平均变化率,取Δx都为,哪一点附近平均变化率最大?思考题1 求函数f(x)=x3在区间[x0,x0+Δx]上的平均变化率.题型二平均速度例2 已知一物体的运动方程为s(t)=t2+2t+3,求物体在t=1到t=1+Δt这段时间内的平均速度.思考题2 一质点作直线运动其位移s 与时间t 的关系s (t )=t 2+1,该质点在[2,2+Δt ](Δt >0)上的平均速度不大于5,求Δt 的取值范围.题型三 曲线的割线的斜率例3 过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率.思考题3 已知曲线y =1x -1上两点A (2,-12)、B (2+Δx ,-12+Δy ),当Δx =1时,割线AB 的斜率为________. 三、知识小结关于平均变化率应注意以下几点:(1)Δx 、Δy 可以是正值也可以是负值,Δy 可以为零,但是Δx 不可以为零.(2)在求函数的平均变化率时,当x 1取定值后,Δx 取不同的数值时,函数的平均变化率不一定相同;当Δx 取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同.(3)平均变化率的几何意义:观察函数f (x )的图像(如左图),我们可以发现x 2-x 1=AC ,f (x 2)-f (x 1)=BC ,所以平均变化率f x 2-f x 1x 2-x 1表示的是直线AB 的斜率.《变化率问题》课时作业 一、选择题1.函数y =x 2+x 在x =1到x =1+Δx 之间的平均变化率为( )A .Δx +2B .2Δx +(Δx )2C .Δx +3D .3Δx +(Δx )22.物体做直线运动所经过的路程s 可表示为时间t 的函数s =s (t )=2t 2+2,则在一小段时间[2,2+Δt ]上的平均速度为( ) A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt 3.设函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,函数的改变量Δy 为( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)4.已知函数f (x )=2x 2-4的图像上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx等于 ( )A .4B .4xC .4+2ΔxD .4+2(Δx )25.某质点沿直线运动的方程为y =-2t 2+1,则该质点从t =1到t =2时的平均速度为( )A .-4B .-8C .6D .-6 6.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为( )A .3B .0.29C .2.09D .2.97.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( ) A .④B .③C .②D .①8.已知y =14x 2和其上一点P (1,14),Q 是曲线上点P 附近的一点,则Q 的坐标为( )A .(1+Δx ,14(Δx )2)B .(Δx ,14(Δx )2)C .(1+Δx ,14(Δx +1)2)D .(Δx ,14(1+Δx )2)二、填空题9.将半径为R 的球加热,若球的半径增加ΔR ,则球的表面积增加量ΔS 等于________.10.一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]上相应的平均速度v 与Δt 满足的关系式为________.11.某物体按照s (t )=3t 2+2t +4的规律作直线运动,则自运动始到4 s 时,物体的平均速度为________. 12.已知函数f (x )=1x,则此函数在[1,1+Δx ]上的平均变化率为________.13.已知圆的面积S 与其半径r 之间的函数关系为S =πr 2,其中r ∈(0,+∞),则当半径r ∈[1,1+Δr ]时,圆面积S 的平均变化率为_______. 三、解答题14.甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?15.婴儿从出生到第24个月的体重变化如图,试分别计算第一年与第二年婴儿体重的平均变化率.16.已知函数f(x)=2x+1,g(x)=-2x,分别计算在下列区间上f(x)及g(x)的平均变化率.(1)[-3,-1];(2)[0,5].17.动点P沿x轴运动,运动方程为x=10t+5t2,式中t表示时间(单位:s),x表示距离(单位:m),求在20≤t≤20+Δt时间段内动点的平均速度,其中(1)Δt=1,(2)Δt=0.1;(3)Δt=0.01.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 1.1变化率问题 课前预习学案
预习目标:“变化率问题”,课本中的问题1,2。

知道平均变化率的定义。

预习内容: 问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是3
3
4)(r r V π= 如果将半径r 表示为体积V 的函数,那么3
43)(π
V V r = 在吹气球问题中,当空气容量V 从0增加到1L 时,气球的平均膨胀率为__________ 当空气容量V 从1L 增加到2L 时,气球的平均膨胀率为__________________ 当空气容量从V 1增加到V 2时,气球的平均膨胀率为_____________ 问题2 高台跳水
在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态? 在5.00≤≤t 这段时间里,v =_________________ 在21≤≤t 这段时间里,v =_________________ 问题3 平均变化率
已知函数()x f ,则变化率可用式子_____________,此式称之为函数()x f 从1x 到2x ___________.习惯上用x ∆表示12x x -,即x ∆=___________,可把x ∆看做是相对于1x 的一个“增量”,可用+1x x ∆代替2x ,类似有=∆)(x f __________________,于是,平均变化率可以表示为_______________________
提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
学习目标 1.理解平均变化率的概念;
2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率.
h
t
o
学习重点:
平均变化率的概念、函数在某点处附近的平均变化率. 学习难点:
平均变化率的概念.
学习过程
一:问题提出
问题1气球膨胀率问题:
气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是__________. 如果将半径r 表示为体积V 的函数,那么___________.
⑴ 当V 从0增加到1时,气球半径增加了___________. 气球的平均膨胀率为___________.
⑵ 当V 从1增加到2时,气球半径增加了___________. 气球的平均膨胀率为___________.
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? ___________.
问题2 高台跳水问题:
在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在怎样的函数关系?
在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系___________.
)如何计算运动员的平均速度?并分别计算0≤t ≤0.5,1≤t ≤2,1.8
≤t ≤2,2≤t ≤2.2,时间段里的平均速度.
思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,___________.; 在21≤≤t 这段时间里,___________. 探究:计算运动员在49
65
0≤
≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h (t )= -4.9t 2
+6.5t +10的图像,结合图形可知,)0()49
65
(
h h =, 所以___________.虽然运动员在49
65
0≤
≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (1)计算和思考,展开讨论;
(2)说出自己的发现,并初步修正到最终的结论上.
(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态; 二平均变化率概念:
1.上述问题中的变化率可用式子
1
212)
()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化
h t
o

2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用
x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)
3. 则平均变化率为
=∆∆=∆∆x
f x y ___________. 思考:观察函数f (x )的图象 平均变化率
=
∆∆x
f
1212)()(x x x f x f --表示什么? (1) 一起讨论、分析,得出结果;
(2) 计算平均变化率的步骤:①求自变量的增量Δx=x 2-x 1;②求函数的增量Δf=f(x 2)-f(x 1);③求平均变化率
2121
()()f x f x f x x x -∆=∆-. 注意:①Δx 是一个整体符号,而不是Δ与x 相乘;
②x 2= x 1+Δx ; ③Δf=Δy=y 2-y 1; 三.典例分析
例1.已知函数f (x )=x x +-2
的图象上的一点)2,1(--A 及临近一点
)2,1(y x B ∆+-∆+-,则
=∆∆x
y
. 解:
例2.求2
x y =在0x x =附近的平均变化率。

解:
四.有效训练
1.质点运动规律为32
+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 . 2.物体按照s (t )=3t 2
+t +4的规律作直线运动,求在4s 附近的平均变化率.
3.过曲线y =f (x )=x 3
上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率.
反思总结:1、平均变化率的概念
2、如何求函数在某点附近的平均变化率 当堂检测
1、函数()2
x x f =在区间[]3,1-上的平均变化率是( )
A 、4
B 、2
C 、
41
D 、4
3 2、经过函数2
2x y -=图象上两点A 、B 的直线的斜率(1,5.1==B A x x )为_______;函数
22x y =在区间[1,1.5]上的平均变化率为_________________
3、如果质点M 按规律2
3t s +=运动,则在时间[2,2.1]中相应的平均速度等于______。

相关文档
最新文档