圆与圆的位置关系(必修2)
2.2.3.2 圆与圆的位置关系 课件(北师大必修2)
C2:x2+y2-2x-14y+k=0相交、相切、相离?
解:将两圆的一般方程化为标准方程: C1:(x+2)2+(y-3)2=1, C2:(x-1)2+(y-7)2=50-k. 所以圆C1的圆心为C1(-2,3),半径r1=1; 圆C2的圆心为C2(1,7),半径r2= 50-k(k<50). 从而|C1C2|= -2-12+3-72=5, 当1+ 50-k=5,即k=34时,两圆外切.
实数m的取值范围是 A.[0,+∞) C.(0,4) B.(0,+∞) D.(0,4] ( )
解析:由条件知C1(0,0),r1=1,C2(3,0),r2= m(m>0), ∵两圆相离,∴|C1C2|>r1+r2,即3>1+ m>0,∴0<m<4. m ,∴m<4.又
答案:C
3.实数k为何值时,圆C1:x2+y2+4x-6y+12=0,圆
(2)常见的圆系方程有:
①设两相交圆C1:x2+y2+D1x+E1y+F1=0,C2:x2
+y2+D2x+E2y+F2=0,则C3:x2+y2+D1x+E1y+F1+
λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)表示过两相交圆交点
的圆(不包括C2);当λ=-1时,(D1-D2)x+(E1-E2)y+
由题意知,圆心(3,4)到已知直线l1的距离等于半径 |3k-4-k| 3 2,即 =2,解之得k=4. 2 k +1 所求直线l1的方程为x=1或3x-4y-3=0.
(2)依题意设D(a,2-a),又已知圆C的圆心(3,4), r=2,由两圆外切,可知|CD|=5, ∴可知 a-32+2-a-42=5,
C1:(x-m)2+(y+2)2=9;C2:(x+1)2+(y-m)2=4.其 中C1(m,-2),C2(-1,m),r1=3,r2=2. (1)如果C1与C2外切,则有 m+12+m+22 =3+2, 即(m+1)2+(m+2)2=25. ∴m2+3m-10=0,解得m=-5,或m=2.
人教版高中数学必修二 第四章 圆与方程4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用
4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用[学习目标] 1.掌握圆与圆的位置关系及判定方法.2.能利用直线与圆的位置关系解决简单的实际问题.3.体会用代数方法处理几何问题的思想.知识点一 圆与圆的位置关系及判定 1.圆与圆的位置关系圆与圆有五种位置关系,分别是外离、外切、相交、内切、内含. 外离和内含统称为相离;外切和内切统称为相切. 如图:2.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r 1、r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:的关系d >r +r d =r +r|r -r |<d <r +rd =|r -r |d <|r -r |(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎪⎬⎪⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含思考 当两个圆仅有一个公共点时,这两个圆一定外切吗? 答 不一定,也有可能是内切.知识点二 用坐标方法解决平面几何问题的“三步曲”题型一 两圆位置关系的应用例1 已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,问:m 为何值时,(1)圆C 1与圆C 2外切?(2)圆C 1与圆C 2内含? 解 将圆C 1、圆C 2的方程配方,得C 1:(x -m )2+(y +2)2=9,C 2:(x +1)2+(y -m )2=4. (1)若圆C 1与圆C 2外切,则有(m +1)2+(-2-m )2=3+2, 即(m +1)2+(m +2)2=25,m 2+3m -10=0, 解得m =-5或m =2. (2)若圆C 1与圆C 2内含,则有(m +1)2+(-2-m )2<3-2, 即(m +1)2+(m +2)2<1,m 2+3m +2<0, 解得-2<m <-1.反思与感悟 判断两圆的位置关系一般用几何法,用几何法判断两圆的位置关系的步骤: (1)分别计算两圆的半径长r ,R ; (2)计算两圆的圆心距d ;(3)根据d 与r ,R 之间的关系得出结论.跟踪训练1 已知圆C 1的方程为x 2+y 2+2x +4y -20=0,圆C 2的方程为x 2+y 2-4x +4y -2=0,试判断圆C 1与圆C 2的位置关系.解 方法一 将圆C 1与圆C 2的方程联立,得到方程组⎩⎪⎨⎪⎧x 2+y 2+2x +4y -20=0,①x 2+y 2-4x +4y -2=0.②两式相减,得6x -18=0,即x =3. 将x =3代入①或②,解得y 1=-5,y 2=1.因此圆C 1与圆C 2有两个不同的公共点,故两圆相交.方法二 把圆C 1的方程化成标准方程,得(x +1)2+(y +2)2=25, ∴圆C 1的圆心坐标为(-1,-2),半径长为r 1=5.把圆C 2的方程化成标准方程,得(x -2)2+(y +2)2=10, ∴圆C 2的圆心坐标为(2,-2),半径长为r 2=10. ∵圆C 1与圆C 2的圆心距为(-1-2)2+(-2+2)2=3, |r 1-r 2|=5-10,r 1+r 2=5+10,且5-10<3<5+10, ∴|r 1-r 2|<3<r 1+r 2,∴两圆相交. 题型二 与两圆相切有关的问题例2 求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程. 解 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则(a -1)2+b 2=r +1,① b +3a -3=3,② |a +3b |2=r .③ 联立①②③解得a =4,b =0,r =2,或a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思与感悟 两圆相切时常用的性质有:①设两圆的圆心分别为O 1、O 2,半径分别为r 1、r 2,则两圆相切⎩⎪⎨⎪⎧内切⇔|O 1O 2|=|r 1-r 2|,外切⇔|O 1O 2|=r 1+r 2.②两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦). 跟踪训练2 求与圆(x -2)2+(y +1)2=4相切于点A (4,-1)且半径为1的圆的方程. 解 设所求圆的圆心为P (a ,b ),则 (a -4)2+(b +1)2=1.①(1)若两圆外切,则有(a -2)2+(b +1)2=1+2=3,② 联立①②,解得a =5,b =-1,所以,所求圆的方程为 (x -5)2+(y +1)2=1;(2)若两圆内切,则有(a -2)2+(b +1)2=|2-1|=1,③ 联立①③,解得a =3,b =-1,所以,所求圆的方程为 (x -3)2+(y +1)2=1. 综上所述,所求圆的方程为(x -5)2+(y +1)2=1或(x -3)2+(y +1)2=1. 题型三 与两圆相交有关的问题例3 已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.解 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解,①-②得:3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3.又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+(-4)2=95.∴|AB |=2r 21-d 2=232-⎝⎛⎭⎫952=245.即两圆的公共弦长为245.反思与感悟 1.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. 2.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练3 已知圆C 的圆心为(2,1),若圆C 与圆x 2+y 2-3x =0的公共弦所在直线过点(5,-2),求圆C 的方程.解 设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2, 即x 2+y 2-4x -2y +5=r 2, 两圆的方程相减,得公共弦所在的直线的方程为x +2y -5+r 2=0. 因为该直线过点(5,-2),所以r 2=4, 则圆C 的方程为(x -2)2+(y -1)2=4. 题型四 直线与圆的方程的实际应用例4 设有半径长为3 km 的圆形村落,甲、乙两人同时从村落中心出发,甲向东前进而乙向北前进,甲离开村后不久,改变前进方向,斜着沿切于村落边界的方向前进,后来恰好与乙相遇.设甲、乙两人的速度都一定,且其速度比为3∶1,问:甲、乙两人在何处相遇?解 如图所示,以村落中心为坐标原点,以东西方向为x 轴,南北方向为y 轴建立平面直角坐标系. 设甲向东走到D 转向到C 恰好与乙相遇,CD 所在直线的方程为x a +yb=1(a >3,b >3),乙的速度为v ,则甲的速度为3v .依题意,有⎩⎪⎨⎪⎧|ab |a 2+b 2=3,a 2+b 2+a 3v=bv .解得⎩⎪⎨⎪⎧a =5,b =3.75.所以乙向北前进3.75km 时甲、乙两人相遇.反思与感悟 坐标法是研究与平面图形有关的实际问题的有效手段,因此要建立适当的平面直角坐标系,用直线与圆的方程解决问题.建立平面直角坐标系时要尽可能有利于简化运算.跟踪训练4 已知一个圆形的公园,其半径为2 km ,有两个村庄A 和B ,其中村庄A 在公园的正东方向4 km 处,村庄B 在公园的西北方向22km 处(A ,B 相对于公园的位置都是指相对于公园的中心位置).现在要修一条连接村庄A 和村庄B 的公路,但公路不能穿过公园,现有两种方案可供选择:方案一:分别从A ,B 沿与公园相切的方向修路,直至两公路相交;方案二:分别从A ,B 沿与公园相切的方向修路,至切点处,再环绕公园修路,直至连接两个切点.两种方案哪种更好?解 如图所示,以公园中心O 为坐标原点,以连接公园中心与村庄A 的直线为x 轴建立平面直角坐标系.由已知得圆的方程为x 2+y 2=4,A (4,0),B (-2,2),由A 向圆作切线,切点为D ,过B 向圆作切线,切点为E ,两切线相交于C ,易知E (0,2), 直线BC 的方程为y =2.连接OD ,则OD ⊥AC ,在Rt △OAD 中,OD =2,OA =4. ∴∠OAD =30°,∴直线AC 的斜率为k =tan 150°=-33,直线AC 的方程为y =-33(x -4). 由⎩⎪⎨⎪⎧y =2,y =-33(x -4),解得⎩⎨⎧x =4-23,y =2, 即C 点的坐标为(4-23,2), ∴|BC |=6-23,|AC |=4.如果按方案一修路,那么公路的长度为l 1=|BC |+|AC |=10-23(km).过D 作DF ⊥x 轴,垂足为F ,可求得|DF |=3,|OF |=1,即D (1,3),∴|AD |=2 3. 由题意知∠AOD =60°,∴∠DOE =30°, ∴DEl=30180·π·2=π3. 如果按方案二修路,那么公路的长度为l 2=|AD |+DEl +|BE |=23+π3+2(km).∵l 1-l 2>0,∴采用方案二更好.利用圆系方程求圆的方程例5 求过两圆x 2+y 2-1=0和x 2+y 2-4x =0的交点,且与直线x -3y -6=0相切的圆的方程.分析 过两圆x 2+y 2-1=0和x 2+y 2-4x =0的交点的圆的方程可设为x 2+y 2-1+λ(x 2+y 2-4x )=0,通过整理,利用直线与此圆相切,则该圆的圆心到此直线的距离等于半径长,求得λ. 解 设所求圆的方程为x 2+y 2-1+λ(x 2+y 2-4x )=0(λ≠-1), 整理,得x 2+y 2-4λ1+λx -11+λ=0,配方,得⎝⎛⎭⎫x -2λ1+λ2+y 2=4λ2+λ+1(1+λ)2,因为圆与直线x -3y -6=0相切,所以⎝ ⎛⎭⎪⎪⎫⎪⎪⎪⎪2λ1+λ-3×0-61+32=4λ2+λ+1(1+λ)2.化简得11λ+8=0,λ=-811.所以所求圆的方程为3x 2+3y 2+32x -11=0. 经检验x 2+y 2-4x =0也与直线x -3y -6=0相切.所以所求圆的方程为3x 2+3y 2+32x -11=0或x 2+y 2-4x =0.解后反思 因为过两圆x 2+y 2-1=0和x 2+y 2-4x =0的交点的圆系方程x 2+y 2-1+λ(x 2+y 2-4x )=0(λ≠-1)中不包含圆x 2+y 2-4x =0,所以解答此题时容易漏掉圆x 2+y 2-4x =0也适合的条件.因此,在解答完后,应专门对圆系之外的圆x 2+y 2-4x =0进行检验.1.两圆x 2+y 2=9和x 2+y 2-8x +6y +9=0的位置关系是( ) A.相离 B.相交C.内切 D.外切 答案 B解析 圆C 1:x 2+y 2=9的圆心为C 1(0,0),半径长为r 1=3;圆C 2:x 2+y 2-8x +6y +9=0化为(x -4)2+(y +3)2=16,圆心为C 2(4,-3),半径长为r 2=4,圆心距|C 1C 2|=42+(-3)2=5. 因为|r 1-r 2|<|C 1C 2|<3+4=r 1+r 2,所以两圆相交.2.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A.(1,0)和(0,1) B.(1,0)和(0,-1) C.(-1,0)和(0,-1) D.(-1,0)和(0,1)答案 C解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0,解得⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.3.若直线y =ax +b 通过第一、二、四象限,则圆(x -a )2+(y -b )2=r 2(r >0)的圆心位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 B解析 因为直线通过第一、二、四象限,所以a <0,b >0,故圆心位于第二象限. 4.圆x 2+y 2=50与圆x 2+y 2-12x -6y +40=0的公共弦长为( ) A. 5 B.6C.2 5 D.2 6 答案 C解析 x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0.圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =|2×0+0-15|22+12=35,因此,公共弦长为250-(35)2=2 5.故选C.5.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A 、B 两点,则直线AB 的方程是_____. 答案 x +3y =0解析 ⎩⎪⎨⎪⎧x 2+y 2=10,x 2+y 2-2x -6y =10⇒2x +6y =0,即x +3y =0.1.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作.2.直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程:一、选择题1.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是( ) A.x +y +3=0 B.2x -y -5=0 C.3x -y -9=0 D.4x -3y +7=0答案 C解析 根据题意作出图形,由图可知两圆圆心所在直线即为所求.圆x 2+y 2-4x +6y =0的圆心的坐标是(2,-3),圆x 2+y 2-6x =0的圆心坐标是(3,0),则所求直线方程为y -0-3-0=x -32-3,即3x -y -9=0.2.集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2,r>0},且M∩N=N,则r的取值范围是()A.(0,2-1)B.(0,1]C.(0,2-2]D.(0,2]答案 C解析由已知M∩N=N,知N⊆M,∴圆x2+y2=4与圆(x-1)2+(y-1)2=r2内切或内含,∴2-r≥2,∴0<r≤2- 2.3.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m等于()A.21B.19C.9D.-11答案 C解析圆C2的标准方程为(x-3)2+(y-4)2=25-m.又圆C1:x2+y2=1,∴|C1C2|=5.又∵两圆外切,∴5=1+25-m,解得m=9.4.已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是()A.9B.14C.14-6 5D.14+6 5答案 D解析方程化为(x+2)2+(y-1)2=9,所以圆心为(-2,1),r=3,而x2+y2=((x-0)2+(y-0)2)2.所以x2+y2的最大值为((-2-0)2+(1-0)2+3)2=14+6 5.5.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4B.4 2C.8D.8 2答案 C解析因为两圆C1,C2都和两坐标轴相切,且都过点(4,1),所以两圆C1,C2的圆心都在y=x上.设圆C1,C2的圆心坐标分别为(x1,x1),(x2,x2),则(4-x1)2+(1-x1)2=x21,(4-x2)2+(1-x2)2=x22,即x1,x2是方程(x-4)2+(x-1)2=x2的两根.即x2-10x+17=0.所以x1+x2=10,x1x2=17.所以|C1C2|=2|x1-x2|=2(x1+x2)2-4x1x2=8.6.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米答案 B解析建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h,则A(0.8,h-3.6),半圆所在圆的方程为:x2+(y+3.6)2=3.62把A(0.8,h-3.6).代入得0.82+h2=3.62.∴h=40.77≈3.5(米).7.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是()A.(x -5)2+(y -7)2=25B.(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15C.(x -5)2+(y -7)2=9D.(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9 答案 D解析 设动圆圆心为(x ,y ),若动圆与已知圆外切,则(x -5)2+(y +7)2=4+1,∴(x -5)2+(y +7)2=25;若动圆与已知圆内切,则(x -5)2+(y +7)2=4-1, ∴(x -5)2+(y +7)2=9. 二、填空题8.过两圆x 2+y 2-x -y -2=0与x 2+y 2+4x -4y -8=0的交点和点(3,1)的圆的方程是________. 答案 x 2+y 2-133x +y +2=0解析 设所求圆的方程为(x 2+y 2-x -y -2)+λ(x 2+y 2+4x -4y -8)=0,将(3,1)代入,得λ=-25,故所求圆的方程为x 2+y 2-133x +y +2=0.9.台风中心从A 地以每小时20 km 的速度向东北方向移动,离台风中心30 km 内的地区为危险地区,城市B 在A 地正东40 km 处,B 城市处于危险区内的时间为________. 答案 1 h解析 如图,以A 为原点,正东和正北方向为x 轴、y 轴正方向,则B (40,0).台风中心在直线y =x 上移动.则问题转化成以点B 为圆心,30 km 为半径的圆与直线y =x 相交的弦长就是B 处在危险区内台风中心走过的距离.则圆B 的方程为(x -40)2+y 2=302,圆B 与直线y =x 截得弦长为CD =2·302-⎝⎛⎭⎫4022=20(km).故B 城市处于危险区的时间为t =2020=1(h).10.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度为________. 答案 4解析 如图所示,在Rt △OO 1A 中,OA =5,O 1A =25,∴OO 1=5,∴AC =5×255=2,∴AB =4.11.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是______________.答案 (x -2)2+(y -2)2=2解析 曲线化为(x -6)2+(y -6)2=18,其圆心C 1(6,6)到直线x +y -2=0的距离为d =|6+6-2|2=5 2.过点C 1且垂直于x +y -2=0的直线为y -6=x -6,即y =x ,所以所求的最小圆的圆心C 2在直线y =x 上,如图所示,圆心C 2到直线x +y -2=0的距离为52-322=2,则圆C 2的半径长为 2.设C 2的坐标为(x 0,y 0),则|x 0+y 0-2|2=2,解得x 0=2(x 0=0舍去),所以圆心坐标为(2,2), 所以所求圆的标准方程为(x -2)2+(y -2)2=2. 三、解答题12.已知圆C 1:x 2+y 2=4和圆C 2:x 2+(y -8)2=4,直线y =52x +b 在两圆之间穿过且与两圆无交点,求实数b 的取值范围.解 直线方程是5x -2y +2b =0. 当直线与圆C 1相切时,|2b |5+4=2, 解得b =±3.当直线与圆C 2相切时,|-16+2b |5+4=2,解得b =5或b =11. 结合图,知3<b <5.13.求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程. 解 方法一 设经过两圆交点的圆系方程为 x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1),即x 2+y 2-41+λx -4λ1+λy -6=0,所以圆心坐标为(21+λ,2λ1+λ).又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二 由⎩⎪⎨⎪⎧ x 2+y 2-4x -6=0,x 2+y 2-4y -6=0得两圆公共弦所在直线的方程为y =x ,由⎩⎪⎨⎪⎧y =x ,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3. 所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点分别为A (-1,-1)、B (3,3),线段AB 的垂直平分线所在直线的方程为y -1=-(x -1).第11页 共11页 由⎩⎪⎨⎪⎧ y -1=-(x -1),x -y -4=0得⎩⎪⎨⎪⎧x =3,y =-1, 所以所求圆的圆心为(3,-1),半径为(3-3)2+[3-(-1)]2=4. 所以所求圆的方程为(x -3)2+(y +1)2=16.。
2.2.3.2 圆与圆的位置关系 课件(北师大必修2)
4.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的相交 弦方程为 A.x+2y-6=0 C.x-2y+6=0 B.x-3y+5=0 D.x+3y-8=0 ( )
解析:两圆方程相减得:
C2:x2+y2-2x-14y+k=0相交、相切、相离?
解:将两圆的一般方程化为标准方程: C1:(x+2)2+(y-3)2=1, C2:(x-1)2+(y-7)2=50-k. 所以圆C1的圆心为C1(-2,3),半径r1=1; 圆C2的圆心为C2(1,7),半径r2= 50-k(k<50). 从而|C1C2|= -2-12+3-72=5, 当1+ 50-k=5,即k=34时,两圆外切.
F1-F2=0表示两圆的公共弦所在的直线方程.
②方程x2+y2+Dx+Ey+F+λ(ax+by+c)=0,
表示过圆x2+y2+Dx+Ey+F=0与直线ax+by+c=0
交点的圆.
6.(2011· 江西九江检测)求与直线x+y-2=0和曲线x2+
y2-12x-12y+54=0都相切,且半径最小的圆的标
实数m的取值范围是 A.[0,+∞) C.(0,4) B.(0,+∞) D.(0,4] ( )
解析:由条件知C1(0,0),r1=1,C2(3,0),r2= m(m>0), ∵两圆相离,∴|C1C2|>r1+r2,即3>1+ m>0,∴0<m<4. m ,∴m<4.又
答案:C
3.实数k为何值时,圆C1:x2+y2+4x-6y+12=0,圆
2.求两圆的公共弦所在的直线方程,只 Nhomakorabea把两个圆的方程相减即可.而在求两圆的公共弦长时,则应注 意数形结合思想方法的灵活运用. 3.过圆x2+y2+D1x+E1y+F1=0与圆x2+y2+D2x+ E2y+F2=0交点的圆方程可设为(x2+y2+D1x+E1y+F1) +λ(x2+y2+D2x+E2y+F2)=0(λ≠-1),这就是过两圆交 点的圆系方程,特别地,λ=-1时,为两圆公共弦的方 程.
必修二4.2.2圆与圆的位置关系
图形示意
复习作业:
习题4.2 A组8、9、10、11.
易错探究 例4:求与圆(x-2)2+(y+1) 2=4相切于点A(4,-1)且半径长 为1的圆的方程. 错解:设所求圆的圆心C(a,b),则
由①②解得a=5,b=-1. ∴所求圆的方程为(x-5) 2+(y+1) 2=1.
错因分析:两圆相切包括内切和外切两种情况,错解中 认为相切就是外切,思考不到位,丢掉了内切的情况, 造成错解. 正解:设所求圆的圆心C(a,b),则 2 2 ( a 4) (b 1) 1, ① 2 2 ( a 2) ( b 1) 3, ② (1)当两圆外切时,有 由①②解得a=5,b=-1. ∴所求圆的方程为(x-5)2+(y+1) 2=1.
1、点和圆的位置关系有几种?如何判定?
答:三种。点在圆外;点在圆上;点在圆内。
设点P(x0,y0),圆(x-a)2+(y-b)2=r2, 圆心(a,b)到P(x0,y0)的距离为d,则:
几何法:点在圆内d<r 点在圆上d=r 点在圆外d>r 代数法:点在圆内(x0 -a)2+(y0 -b)2<r2 点在圆上(x0 -a)2+(y0 -b)2=r2 点在圆外(x0 -a)2+(y0 -b)2>r2
题型三: 与两圆相切有关的问题 例2:求与圆x2+y2-2x=0外切且与直线 x 3 y 0 相切于点 (3, 3) 的圆的方程. 分析:先设出圆的方程(x-a) 2+(y-b) 2=r2 (r>0),利用 题设条件,得到关于a、b、r的三个方程,解方程组 求得a,b,r即可.
新课标高中数学人教A版必修二全册课件4.2.2圆与圆的位置关系
第四页,编辑于星期日:十三点 十六分。
讲授新课
例1. 已知圆C1: x2+y2+2x+8y-8=0, 圆C2: x2+y2-4x-4y-2=0,试判断 圆C1与圆C2的位置关系.
第五页,编辑于星期日:十三点 十六分。
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
第六页,编辑于星期日:十三点 十六分。
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
方法:通常是通过解方程或不等式
等方法加以解决.
第七页,编辑于星期日:十三点 十六分。
例2.圆C1的方程是: x2+y2-2mx+4y+m2 -5=0, 圆C2的方程是: x2+y2+2x-2my+m2 -3=0,
4.2.2圆与圆 的位置关系
第一页,编辑于星期日:十三点 十六分。
复习引入
1. 两圆的位置关系有哪几种?
第二页,编辑于星期日:十三点 十六分。
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
第三页,编辑于星期日:十三点 十六分。
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
第十三页,编辑于星期日:十三点 十六分。
2. 已知圆C与圆x2 y2 2x 0相外切, 并 且与直线x 3 y 0相切于点Q(3, 3), 求圆C的方程 .
3. 求两圆x2+y2=1和(x-3)2+y2=4的外 公切线方程.
第十二页,编辑于星期日:十三点 .129到P.130; 2. 《习案》二十八.
人教版数学必修二4.2.2圆与圆的位置关系
课堂小结
1.本节课你收获了什么? (1)知识方面:
判断圆与圆的位置关系的两种方法,以及这两种方法的优劣。 求圆与圆相交弦所在直线方程的方法。 求圆与圆相交弦的弦长的方法。
(2)数学思想方面:
数形结合的思想,等价转化的思想,类比思想。
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
|r1-r2|< c1c2 < |r1+r2| c1c2 = |r1-r2| c1c2 < |r1-r2|
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
例题讲解
例1.已知圆C1 : x2+y2+2x+8y-8=0和圆C2 : x2+y2-4x-4y-2=0,试判断圆C1与圆C2的 位置关系.
普通高中课程准实验教科书
数 学2 必修
A 人民教育出版社 版
4.2.2 圆与圆的位置关系
复习回顾
1. 平面中直线和圆的位置关系的判断有哪两种方法?
(1)几何法:
r o
d l
r o
dl
r
od
l
(1)直线l 和⊙O相离 d>r
(2)直线l 和⊙O相切
d=r
(3)直线l 和⊙O相交
d<r
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
例题讲解
例1.已知圆C1 : x2+y2+2x+8y-8=0和圆C2 : x2+y2-4x-4y-2=0,试判断圆C1与圆C2的 位置关系.
《圆与圆的位置关系》课件2 (北师大版必修2)
两个圆有一个公共点
两个圆没有公共点
后退 前进
两个圆没有公共点
两圆外离 两圆内含
两个圆有一个公共点
两圆外切
相切 两圆内切
后退 前进
两圆外离
两个圆没有公共点,并且每个 圆上的点都在另一个圆的外部 两个圆有一个公共点,并且除 了这个公共点以外,每个圆上 的点都在另一个圆的外部 两个圆有两个公共点 两个圆有一个公共点,并且除 了这个公共点以外,一个圆上 的点都在另一个圆的内部 两个圆没有公共点 (两圆同心是内含的特例)后退 前进
两 两圆外切 个 圆 的 位 两圆相交 置 关 系 两圆内切
两圆内含
思考:两个圆是否也组成一个轴对称图形?
O1
O2
结论1、通过两圆圆心的 直线叫做连心线。
O1
O2
O2
结论2、如果两个圆相切, 那么切点一定在连心线上。
后退 前进
R
两 个 圆 的 位 置 关 系 的 判 断
r
O1
d
O2
复习:
(1)点与圆有哪几种位置关系? 如何判断?
(2)直线与圆有哪几种位置关系? 如何判断?
问题:两个圆有哪几种位置关
系呢?如何判断?
后退 前进
注:d是指点到圆心的距离
点在圆外
d>R
点在圆上
d=R
点在圆内
d<R
后退 前进
注:d是指圆心到直线的距离
相离
d>R
相切
d=R
相交
d<R
返回 后退 前进
d 指 圆 心 距
后退 前进
R
两 个 圆 的 位 置 关 系 的 判 断
高中数学必修二教学课件圆与圆的位置关系共9张PPT
图 形
公共 点个
数
性质 及判 定方
法
例题讲解
例1:判断下列两圆的位置关系
(1) x2 y2 4x 4 y 7 0
与 x2 y2 4x 10 y 13 0
(2)
x2
y2
4
与
x y
3 2cos 1 2cos
判断两圆位置关系的方法:
1.几何方法
小结:
1、圆和圆的五种位置关系、判断及应用。 2、相交两圆的有关计算。 3、圆的几何性质及运用。
A
O
Bx
6. 过两圆 x2 + y2 + 6x – 4 = 0
和 x2 + y2 + 6y – 28 = 0 的交点 且圆心在直线 x - y - 4 = 0上的圆方程是( ) (A)x2+y2+x-5y+2=0 (B)x2+y2-x-5y-2=0 (C)x2+y2-x+7y-32=0 (D)x2+y2+x+7y+32=0
的公切线有且仅有
条。
3. 求与点A(1,2)的距离为1,且与 点B(3,1)之距离为2的直线共有 条。
4.已知以C(- 4,3)为圆心的圆
与圆 x2 y2 1相切,求圆C的方程。
5.过圆 x2 + y2 = 4外一点 P( 3 , 4 )
作圆的两条切线,切点分别为数方法
例题讲解
例1:判断下列两圆的位置关系
(1) x2 y2 4x 4 y 7 0 与 x2 y2 4x 10 y 13 0
(2)
x2 y2 4
与
x y
32 1
高中数学必修二 圆与圆的位置关系 附答案解析版
4.2.2圆与圆的位置关系基础巩固1.圆C 1:(x+2)2+(y-2)2=1与圆C 2:(x-2)2+(y-5)2=16的位置关系是()A.外离B.相交C.内切D.外切2.圆C 1:x 2+y 2+4x+8y-5=0与圆C 2:x 2+y 2+4x+4y-1=0的位置关系为()A.相交B.外切C.内切D.外离3.已知圆A 与圆B 相切,圆心距为10cm,其中圆A 的半径为4cm,则圆B 的半径为()A .6cm 或14cmB .10cmC .14cmD .无解4.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x-a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是()A.{1,-1}B.{3,-3}C.{1,-1,3,-3}D.{5,-5,3,-3}5.圆x 2+y 2+4x-4y+7=0与圆x 2+y 2-4x+10y+13=0的公切线的条数是()A.1B.2C.3D.46.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程为()A .(x-4)2+(y+3)2=16B .(x+4)2+(y-3)2=36C .(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36D .(x+4)2+(y-3)2=16或(x+4)2+(y-3)2=367.圆C 1:x 2+y 2-12x-2y-13=0和圆C 2:x 2+y 2+12x+16y-25=0的公共弦所在的直线方程是.8.若圆C 1:(x-3)2+(y-4)2=16与圆C 2:x 2+y 2=m (m>0)内切,则实数m=.9.已知圆O :x 2+y 2=25和圆C :x 2+y 2-4x-2y-20=0相交于A ,B 两点,则公共弦AB 的长为.10.求与圆O :x 2+y 2=1外切,切点为1,22P ⎛-- ⎝⎭,半径为2的圆的方程.能力提升1.圆C 1:(x+1)2+(y+2)2=4与圆C 2:(x+2)2+(y+3)2=1的位置关系是()A.外离B.外切C.相交D.内切2.若圆x 2+y 2=4与圆x 2+y 2+ay-2=0的公共弦的长度为,则常数a 的值为()A .2±B .2C .-2D .4±3.已知圆C :(x-3)2+(y-4)2=1和两点A (-m ,0),B (m ,0)(m>0).若圆C 上存在点P ,使得90APB ∠=︒,则m的最大值为()A .7B .6C .5D .4★4.若圆(x-a )2+(y-a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值范围是()A.22⎛ ⎝⎭B.22⎛-- ⎝⎭C.,2222⎛⎛-- ⎝⎭⎝⎭D.22⎛⎫⎪ ⎪⎝⎭5.若点A (a ,b )在圆x 2+y 2=4上,则圆(x-a )2+y 2=1与圆x 2+(y-b )2=1的位置关系是.6.求和圆(x-2)2+(y+1)2=4相切于点(4,-1)且半径为1的圆的方程.7.一动圆与圆C 1:x 2+y 2+6x+8=0外切,与圆C 2:x 2+y 2-6x+8=0内切,求动圆圆心的轨迹方程.★8.圆O 1的方程为x 2+(y+1)2=4,圆O 2的圆心O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且AB =求圆O 2的方程.参考答案基础巩固1.【解析】圆C 1的圆心是C 1(-2,2),半径r 1=1,圆C 2的圆心是C 2(2,5),半径r 2=4,则圆心距|C 1C 2|=5.因为|C 1C 2|=r 1+r 2,所以两圆外切.【答案】D2.【解析】由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d=|C 1C 2|=2,所以d=|r 1-r 2|.故两圆内切.【答案】C3.【解析】令圆A 、圆B 的半径分别为r 1,r 2,当两圆外切时,r 1+r 2=10,所以r 2=10-r 1=10-4=6;当两圆内切时,|r 1-r 2|=10,即|4-r 2|=10,r 2=14或r 2=-6(舍),即圆B 的半径为6cm 或14cm .【答案】A4.【解析】因为两个圆有且只有一个公共点,所以两个圆内切或外切.当两圆内切时,|a|=1;当两圆外切时,|a|=3,即实数a 的取值集合是{1,-1,3,-3}.故选C .【答案】C5.【解析】两圆的圆心分别为C 1(-2,2),C 2(2,-5),则两圆的圆心距d =又半径分别为r 1=1,r 2=4,则d>r 1+r 2,即两圆外离,因此它们有4条公切线.【答案】D6.【解析】设所求圆的方程为(x-4)2+(y+3)2=r 2(r>0).因为圆C 与圆O 相切,所以|r-1|=5或r+1=5,解得r=6或r=4(负值舍去).故所求圆的方程为(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36.【答案】C7.【解析】两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.【答案】4x+3y-2=08.【解析】圆心距5d =,由题意得两圆半径差的绝对值45-=,解得m=81.【答案】819.【解析】两圆方程相减得弦AB 所在的直线方程为4x+2y-5=0.圆x 2+y 2=25的圆心到直线AB 的距离d ==故公共弦AB 的长为AB =10.【解析】设所求圆的圆心为C (a ,b ),则所求圆的方程为(x-a )2+(y-b )2=4.因为两圆外切,切点为1,22P ⎛-- ⎝⎭,所以|OC|=r 1+r 2=1+2=3,|CP|=2.所以2222913422a b a b ⎧+=⎪⎪⎛⎨⎛⎫+++= ⎪ ⎪ ⎝⎭⎪⎝⎭⎩,解得322a b ⎧=-⎪⎪⎨⎪=-⎪⎩.所以圆心C 的坐标为333,22⎛-- ⎝⎭,所求圆的方程为223422x y ⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭.能力提升1.【解析】圆心距d =,两圆半径的和为2+1=3,两圆半径之差的绝对值为1,1212r r d r r -<<+,所以两圆的位置关系是相交.【答案】C2.【解析】两圆方程左右两边分别相减得公共弦所在直线的方程为ay+2=0.由题意知0a ≠.圆x 2+y 2=4的圆心到直线ay+2=0的距离为2a,又公共弦长为,所以=解得2a =±.【答案】A3.【解析】因为A (-m ,0),B (m ,0)(m>0),所以使90APB ∠=︒的点P 在以线段AB 为直径的圆上,该圆的圆心为O (0,0),半径为m.而圆C 的圆心为C (3,4),半径为1.由题意知点P 在圆C 上,故两圆有公共点.所以两圆的位置关系为外切、相交或内切,故11m CO m -≤≤+,即151m m -≤≤+,解得46m ≤≤.所以m 的最大值为6.故选B .【答案】B4.【解析】圆(x-a )2+(y-a )2=4的圆心C (a ,a ),半径r=2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R=1,则这两个圆相交,圆心距d =,则|r-R|<d<r+R ,则13<<,所以22a<<,所以22a-<<或22a <<.【答案】C5.【解析】因为点A (a ,b )在圆x 2+y 2=4上,所以a 2+b 2=4.又圆x 2+(y-b )2=1的圆心C 1(0,b ),半径r 1=1,圆(x-a )2+y 2=1的圆心C 2(a ,0),半径r 2=1,则122d C C ===,所以d=r 1+r 2.所以两圆外切.【答案】外切6.【解析】设所求圆的圆心为(a ,b ),1=.①若两圆外切,则有123+=.②由①②,解得5,1a b ==-,所以所求圆的方程为(x-5)2+(y+1)2=1.若两圆内切,则有211-=.③由①③,解得3,1a b ==-,所以所求圆的方程为(x-3)2+(y+1)2=1.综上,可知所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.7.【解析】圆C 1:(x+3)2+y 2=1,所以圆心为(-3,0),半径r 1=1;圆C 2:(x-3)2+y 2=1,所以圆心为(3,0),半径r 2=1.设动圆圆心为(x ,y ),半径为r ,由题意得1r =+1r =-,2,化简并整理,得8x 2-y 2=8(1x ≥).所以动圆圆心的轨迹方程是8x 2-y 2=8(1x ≥).8.【解析】(1)设圆O 1的半径为r 1,圆O 2的半径为r 2.因为两圆外切,所以|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=1-),故圆O 2的方程是(x-2)2+(y-1)2=1-)2.(2)设圆O 2的方程为(x-2)2+(y-1)2=22r .因为圆O 1的方程为x 2+(y+1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在直线的方程224480x y r ++-=,①作O 1H ⊥AB ,则|AH|=12,O 1,由圆心O 1(0,-1)到直线①的距离得=,得224r =或2220r =,故圆O 2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。
高中数学人教新课标B版必修2--《4.2.2圆与圆的位置关系》课件
例题
已知圆C1:x 2+y2+2x+8 y-8=0 ,圆 C2:x2+y2-4x-4 y-2=0
试判断圆 C1与圆C2 的位置关系?
解法一: 圆C1与圆C2的方程联立, 得到方程组
x2+y2+2x+8y-8=0 (1)
x2+y2 - 4x - 4 y - 2=0 (2)
(1)-(2),得 x + 2y -1=0
如何判断圆与圆的位置关系步骤:
已知两圆 C1:x 2+y2+D1x+E1 y+F1=0
C2:x 2+y2+D2 x+E2 y+F2=0 ,如何判断圆与圆的位置
关系?
1、将两圆的方程化为标准方程;
2、求两圆的圆心坐标(a,b)和半径r1和r2; 几
3、求两圆的圆心距d;
何 法
4、比较d与|r2-r1|,r2+r1的大小关系。
0个
数
两圆的位置关系
相交 内切或 外离或 外切 内含
法
圆与圆的位置关系判定:
相离:
r1
r2
d > r1 + r2
d
外切:
r1 r2
d
d = r1 + r2
内切: r1 d
r2
d = r1 - r2
相交:
r1 r2
d
r1 - r2 < d < r1 + r2
内含:
r1 d
r2
0 ≤d < r1 - r2
例题
已知圆 C1:x 2+y2+2x+8 y-8=0 ,圆 C2:x2+y2-4x-4 y-2=0
高中数学《圆和圆的位置关系》课件1北师大版必修2
这是一块铁板,上面有A、B、C三个点,经 测量,AB=9cm,BC=13cm,CA=14cm,以各 顶点为圆心的三个圆两两外切。求各圆的半 径。
A
B
C
你一定能行
一个内径3cm的圆钢管在内径为 10cm的钢管内沿管壁滚动。
(1)小钢管的圆心与大钢管的圆心的距 离是多少?
(2)小钢管的圆心经过的路线是什么?
圆和圆的位置关系
两个圆没有公共点,并且每个圆上的点
都在另一个圆的外部时,叫做这两个圆外离
两个圆有唯一的公共点,并且除了
这个公共点以外,每个圆上的点都在另
一个圆的外部时,叫做这两个圆 外切 这个唯一的公共点叫做 切点
两个圆有两个公共点时,叫
做这两个圆 相交
两个圆有唯一的公共点,并且 除了这个公共点以外,一个圆上的 点都在另一个圆的内部时,叫做这
PB=13cm
答案
请 你 参 加
设圆O和圆P的半径分别为R、r,圆心 距为d。在下列情况下,两圆的位置关系怎 样?
R=6,r=3,d=4 R=6,r=3,d=0
R=3,r=7,d=4
R=5,r=3,d=3
1、若两圆有唯一公共点,且两圆 半径分别为5和2,则两圆圆心距 为。
2、 已知,两圆相外切,半径分别 是1㎝和2㎝ ,要作和这两个已知 圆都相切且半径等于3㎝的圆,可 作_____个。
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)C1 : x2 y2 9 C2 : (x 2)2 y2 1
解:C1(0, 0) r1 3
C2 (2, 01 r2 内切
(3) C1:x2 y2 2x 8y 8 0 C2:x2 y2 4x 4 y 1 0
相交
几何方法
两圆心坐标及半径 (配方法)
思考
C1 : x2 y2 2x 8y 8 0 C2 : x2 y2 4x 4 y 2 0
把C1与C2两式相减,得到的方程表示什么图形? 这条直线与两圆的公共弦所在直线又有什么关系?
我们是否可以用这种方法求任意两个圆的公共弦 所在的直线呢? 结论:只能在已知两圆位置关系是相交、相切 时才可以用来求公共弦所在直线,和过公共点 的切线方程。
直线与圆的三种位置关系
d
d
d
公共点个数 判别式
d与r的关系
相交
相切
相离
2个
1个
方程有两个 方程只有一 解 △>0 个解 △=0
dr d r
0个
方程无解 △<0
dr
小结:判断直线和圆的位置关系
方法一
方法二
求圆心坐标及半径r (配方法)
圆心到直线的距离d (点到直线距离公式)
(x a)2 ( y b)2 r 2
❖ 解:联立两个方程组得
x2 y2 2x 8 y 8 0 ①
x2
y2
4x
4y
2
0
②
①-②得
x 2y 1 0 ③
把上式代入①
x2 2x 3 0 ④
(2)2 41 (3) 16
得 x1=-1,x2=3 把x1,x2代入方程③得到 y1=1,y2=-1
所以圆C1与圆C2有两个不同的交点A(-1,1),B(3,-1) 最后得到公共弦所在直线:x+2y-1=0,
O1O2 两圆心间的距离
内切
外切
0 内含
R-r 相交
R+r 外离
x
(1)外离 | O1O2 | R r (2)外切 | O1O2 | R r (3)相交 R r | O1O2 | R r (4)内切 | O1O2 || R r |
(5)内含 0 | O1O2 || R r |(特殊情况,同心圆O1O2=0)
A(x1,y1),B(x2,y2)
反思
(1)当Δ=0时,有一个交点,两圆位置关系是 内切或外切
(2)当Δ<0时,没有交点,两圆位置关系可以是 内含或相离
几何方法直观,但不能 求出交点; 代数方法能求出交点,但Δ=0, Δ<0时,不能判 圆的位置关系,最后还是借助几何法。
如果要求相交时的公共弦所在的直线,怎么求?
切于原点的圆的方程。
设所求圆的圆心为 A(a,b)
y
C(5, 5)
C、A、O三点共线
kCO kAO
5 0 b 0 5 0 a 0
a b (1)
| AO | 3 2
A
Ox CB
a2 b2 3 2 (2) 由(1)、(2)可知,a=b=3,或 a=b=-3
小结:判断两圆位置关系
利用几何性质
反思
代数方法
圆心距d (两点间距离公式)
比较d和r1,r2的 大小,下结论
?
判断C1和C2的位置关系
C1 : x2 y2 2x 8y 8 0 C2 : x2 y2 4x 4 y 2 0
判断C1和C2的位置关系
❖ 解:联立两个方程组得
x2 y2 2x 8 y 8 0 ①
猜想
圆与圆的位置关系是不是也可以由这两方面 来判断?
圆与圆的 五 种 位置关系
Rr
O1
O2
外离
|O1O2|>R+r
Rr
O1
O2
外切
|O1O2|=R+r
Rr O1 O2
相交
|R-r|< |O1O2|<R+r
R
O1 O2r
R
O1 O2r
R
O
1O
r
2
内切
内含
同心圆 (一种特殊的内含)
|O1O2|=|R-r| 0≤ |O1O2|<|R-r| |O1O2|=0
代数方法
两圆心坐标及半径 (配方法)
圆心距d (两点间距离公式)
比较d和r1,r2的 大小,下结论
(
(x a1)2 ( y b1)2 x a2 )2 ( y b2 )2
r12 r22
消去二次项、y(或x)
px2 qx r 0
0 : 相交
0
:内切或外切
0 : 相离或内含
对称:圆是轴对称图形,两个圆是否也组成轴 对称图形呢?如果能组成轴对图形,那么对称 轴是什么?我们一起来看下面的实验。
从以上实验我们可以看到,两个圆一定组成 一个轴对称图形,其对称轴是两圆连心线。 当两圆相切时,切点一定在连心线上。
问题探究
求半径为 3 2 ,且与圆x2 y2 10x 10 y 0
x2
y2
4x
4y
2
0
②
联立方程组
①-②得
x 2y 1 0 ③
消去二次项
把上式代入①
x2 2x 3 0 ④
(2)2 41 (3) 16
消元得一元 二次方程
把所x以1,方x程2代④入有方两程个③不得相到等y1的,实y2根x1,x两2用圆Δ判的断位 所以圆C1与圆C2有两个不同的交点 置关系
Ax
By
C
0
消去y(或x)
px2 qx t 0
d r : 相交 d r : 相切 d r : 相离
0 : 相交 0 : 相切 0 : 相离
4.2.2 圆与圆的位置 关系
问 :圆与圆的位置关系有几种?分别是什么?
直线和圆的位置关系
d与r的大小关系 (几何性质)
类比
方程组解的组数 (代数)
限时训练(5分钟)
• 判断C1和C2的位置关系 (1)C1 : (x 2)2 ( y 2)2 49
解:C1(2, 2) r1 7
C2 : (x 4)2 ( y 2)2 9 C2 (4, 2) r2 3
d (2 4)2 2 22 6 r1 r2 d r1 r2 相交