20秋西南大学[0931]《工程数学》作业辅导资料

合集下载

西南大学[0931]《工程数学》参考资料

西南大学[0931]《工程数学》参考资料

西南大学 网络与继续教育学院欢迎您! %E9%A9%AC%E5%8A%9B 同学 学号:W**************单项选择题1、1. 2. 3. 4.2、1. 2. 3.4.3、1. C.2.3.4.4、1. D.2.3. 4.5、1.2.3.4.6、1. 2.3. 4.7、1.2.3. 4.8、1. 2.3. 4.9、1.2.3.4.10、1. F.2.3. 4.11、1. 2.3. 4.12、1. 2. 3. 4.13、1.2.3. 4.14、1. 2.3. 4.15、1.2. 3. 4.16、1. 2.3. 4.17、1. 2.3. 4.18、1.B.2.3. 4.19、1. 2.3. 4.20、1. A.2.3.4.21、1. E.2.3. 4.22、1.2.3.4.23、1. 2.3. 4.24、1. 2. 3. 4.25、1. 2.3. 4.26、1. 2.3. 4.主观题27、参考答案: 8/328、参考答案:29、参考答案: 0.130、参考答案:31、参考答案:232、参考答案:33、参考答案:AB=BA34、参考答案:3/435、参考答案:336、参考答案:(0 4 18 32) 37、参考答案:38、参考答案:2/339、参考答案:9/6440、参考答案:2/341、参考答案:1/342、参考答案:143、参考答案:1244、参考答案:9/6445、参考答案:046、参考答案:1–(1–P)3 47、参考答案:248、参考答案:ABC49、参考答案:8/320/9 50、参考答案:p51、参考答案:952、参考答案:53、参考答案:54、参考答案:055、参考答案:0.30.556、参考答案:-1257、参考答案:58、参考答案:59、参考答案:60、参考答案:61、参考答案:62、参考答案:63、参考答案:64、参考答案:65、参考答案:66、参考答案:67、参考答案:68、参考答案:69、参考答案:70、参考答案:71、参考答案:72、参考答案:73、参考答案:74、参考答案:75、参考答案:76、参考答案:77、参考答案:。

工程数学试卷及答案汇总(完整版)

工程数学试卷及答案汇总(完整版)

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。

9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。

国开《工程数学(本)》形成性考核作业1-4参考答案(1)

国开《工程数学(本)》形成性考核作业1-4参考答案(1)

国家开放大学《工程数学(本)》形成性考核作业 1-4 参考答案15501-1.n阶行列式中元素的代数余子式与余子式之间的关系是(A).a.b.c.d.正确答案是:1-2. 三阶行列式的余子式M23=(B).a.b.c.d.正确答案是:2- 1.设A为3×4 矩阵,B为4×3 矩阵,则下列运算可以进行的是(C) .a. A+Bb. B+Ac. ABd. BA'正确答案是:AB2-2. 若A为3×4 矩阵,B为2×5 矩阵,且乘积AC'B'有意义,则C为 (B) 矩阵.a. 2×4b. 5×4c. 4×2d. 4×5正确答案是:5×43-1.设,则BA-1(B) .a.b.c.d.正确答案是:3-2.设,则 (A) .a.b.c.d.正确答案是:4- 1.设A,B均为n阶可逆矩阵,则下列运算关系正确的是(C).a.b.c.d.正确答案是:4-2.设A,B均为n阶方阵,k>0且,则下列等式正确的是(A).a.b.c.d.正确答案是:5-1.下列结论正确的是(C).a. 若A,B均为n阶非零矩阵,则AB也是非零矩阵b. 若A,B均为n阶非零矩阵,则c. 对任意方阵A,A+A'是对称矩阵d. 若A,B均为n阶对称矩阵,则AB也是对称矩阵正确答案是:对任意方阵A,A+A'是对称矩阵5-2.设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是(A).a.b.c.d.正确答案是:6-1.方阵A可逆的充分必要条件是(B).a.b.c.d.正确答案是:6-2.设矩阵A可逆,则下列不成立的是(C).a.b. c. d.正确答案是:7-1.二阶矩阵(B).a.b.c.d.正确答案是:7-2.二阶矩阵(B)..... dc b a正确答案是:的秩是(D).a. 1b. 2c. 4d. 3正确答案是: 3的秩为(C).a. 2b. 4c. 3d. 5正确答案是: 39-1.设向量组为组.a.b.c. ,则(B)是极大无关8-2.向量组8-1.向量组d.正确答案是:9-2.向量组的极大线性无关组是(D).a.b.c.d.正确答案是:10-1.方程组的解为(A).a.b.c.d.正确答案是:的解为(C).10-2.用消元法得a.b.c.d.正确答案是:11-1.行列式的两行对换,其值不变.(×)11-2.两个不同阶的行列式可以相加.(×)12-1.同阶对角矩阵的乘积仍然是对角矩阵.( √ )12-2.设A是对角矩阵,则A=A'.( √ )13-1.若为对称矩阵,则a=-3.(×)13-2. 若为对称矩阵,则x=0.( √ )14-1.设,则.(×)14-2. 设,则.( √ )15-1.设A是n阶方阵,则A可逆的充要条件是r(A)=n.( √ )15-2.零矩阵是可逆矩阵.(×)16-1.设行列式,则 -6 .正确答案是: -616-2. 7 .正确答案是: 7是关于 x 的一个一次多项式,则该多项式一次项的系数是 .正确答案是: 217-2. 若行列式 ,则 a= 1 .正确答案是: 118-1.乘积矩阵 中元素 C 23= 10 .正确答案是: 1018-2. 乘积矩阵 中元素 C 21= -16 .正确答案是: -1619-1.设 A,B 均为 3 阶矩阵,且正确答案是: -7219-2. 设 A,B 均为 3 阶矩阵,且正确答案是: 920-1.矩阵的秩为 2 .正确答案是: 217-1.29 .-72 .,则 ,则20-2. 矩阵的秩为 1 .正确答案是: 12设线性方程组的两个解,则下列向量中(B)一定是的解.a.b.c.d.设线性方程组的两个解,则下列向量中 (B ) 一定是的解.a.b.c.d.设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D).a.b.c..设与分别代表非齐次线性方程组个方程组有解,则(A).a. b. c. d.以下结论正确的是(D).a. 方程个数小于未知量个数的线性方程组一定有解b. 方程个数等于未知量个数的线性方程组一定有唯一解c. 方程个数大于未知量个数的线性方程组一定有无穷多解d. 齐次线性方程组一定有解若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(D).a. 有无穷多解b. 有唯一解c. 无解d. 可能无解若 向量组线性无关,则齐次线性方程组(D).a. 有非零解b. 有无穷多解d 的系数矩阵和增广矩阵,若这2c. 无解d. 只有零解若向量组线性相关,则向量组内 (D) 可被该向量组内其余向量线性表出.a.至多有一个向量b. 任何一个向量c. 没有一个向量d. 至少有一个向量矩阵A的特征多项式,则A的特征值为(B).a.b.c.d.,,矩阵的特征值为(A).a. -1,4b. -1,2c. 1,4d. 1,-1已知可逆矩阵A的特征值为-3,5 ,则A-1的特征值为 (C) .....的特征值为 0,2,则 3A 的特征值为 (D) .a. 2,6b. 0,0c. 0,2d. 0,6 设是矩阵 A 的属于不同特征值的特征向量,则向量组秩是(D).a. 不能确定b. 1c. 2d. 3设 A ,B 为 n 阶矩阵, 既是 A 又是 B 的特征值,x 既是 A 又是 B 的特征向 量,则结论(A)成立.a. x 是 A+B 的特征向量d c b a 设矩阵 的b. 是A-B的特征值c. 是A+B的特征值d. 是AB的特征值设A,B为两个随机事件,下列事件运算关系正确的是(C).a.b.c.d.设A,B为两个随机事件,则(B)成立.a.b.c.d.若事件A,B满足,则A与B一定(B).a. 互不相容b. 不互斥c. 相互独立d. 不相互独立如果(B)成立,则事件A与B互为对立事件.a.b. 且c. A 与 互为对立事件.袋中有 5 个黑球, 3 个白球, 一次随机地摸出 4 个球, 其中恰有 3 个白球 的概率为(D).....某购物抽奖活动中,每人中奖的概率为 0.3. 则 3 个抽奖者中恰有 1 人中奖的概率为(A).a. b.c. d. 0.3非齐次线性方程组 相容的充分必要条件是 . ( √ )线性方程组 可能无解.(×)当 1 时,线性方程组 只有零解.( √ )当 1 时,线性方程组 有无穷多解.(×)d c b a d 2设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(× )设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.( √ )若向量组线性相关,则也线性相关.(×)若向量组线性无关,则也线性无关.( √ )若A矩阵可逆,则零是A的特征值.(×)特征向量必为非零向量.( √ )当 1 时,齐次线性方程组有非零解.若线性方程组有非零解,则 -1 .一个向量组中如有零向量,则此向量组一定线性相关 .向量组线性相关.向量组的秩与矩阵的秩相等.设齐次线性方程组的系数行列式,则这个方程组有非零解。

工程数学辅导(重点基础知识)

工程数学辅导(重点基础知识)

工程数学(本科)考试形式本课程的考核形式为形成性考核和期末考试相结合的方式。

考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。

其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。

形成性考核的内容及成绩的评定按《中央广播电视大学人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。

期末考试的考核内容为线性代数、概率论与数理统计两个部分,包括行列式、矩阵、线性方程组、矩阵的特征值及二次型、随机事件与概率、随机变量的分布和数字特征、数理统计基础等方面的知识。

期末考试采用半开卷笔试形式,题型不变。

卷面满分为100分,考试时间为90分钟。

半开卷考试是介于闭卷考试和开卷考试两者之间考试方式。

半开卷考试与开卷考试的差别就在于允许考生携带的资料的不同,开卷考试允许考生携带任何资料,而半开卷考试只允许考生携带指定的资料,比如允许考生携带一张统一印制A4纸,考生可以将自己对课程学习内容的总结包括重点、难点、不好记忆的公式、定理等写在这张A4纸上带入考场,作为答卷的参考。

工程数学(本科)知识点(线性代数部分)第一章行列式本章重点要求1. n 阶行列式,当2=n 时,21122211222112112a a a a a a a aD -==∆当2>n 时,∑==+++=nij ij ij n n n A a A a A a A a D 1112121111其中数ij a 为第i 行第j 列的元素,()ij ji ij M A +-=1 为ij a 的代数余子式,ij M 为ij a 的余子式,它是由n D 划去第i 行和第j 列后余下元素构成的1-n 阶行列式,即nnnj nj n n i j i j i i n i j i j i i n ij ij ij a a a a a a a a a a a a a a a a M1111111111111111111111+-+++-++-+----+-=要注意,元素ij a 的余子式ij M 与代数余子式ij A 之间仅仅相差一个代数符号ji +-)(1。

20秋西南大学[0350]《数学教育学》作业辅导资料

20秋西南大学[0350]《数学教育学》作业辅导资料

0350 20202单项选择题1、理性思维的含义包括的四个方面是1.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理违背逻辑。

2.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;合情推理需要逻辑推理。

3.博采众长,不独断猜想;尊重群众,不采纳少数意见;思辨分析,不混淆是非;严谨理,不违背逻辑。

4.合作交流,不独自思考;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理违背逻辑。

2、数学史教育应该遵循的四个原则是1. B. 科学性、实用性、趣味性、广泛性2.普及性、实用性、趣味性、广泛性3.科学性、实用性、趣味性、民族性4.科学性、教育性、趣味性、广泛性3、《周易》对中国古代数学发展的影响主要表现在以下三个方面1.第一,易数在各领域的广泛应用和发展;第二,《周易》对中国古代数学家知识结构响;第三,《周易》对中国古代数学思维方式的影响。

2.第一,提出了勾股定理;第二,阐述了“割圆术”;第三,提出了“杨辉三角”3.第一,易数在各领域的广泛应用和发展;第二,阐述了“割圆术”;第三,算命4.第一,提出了勾股定理;第二,《周易》对中国古代数学家知识结构的影响;第三,易》对中国古代数学思维方式的影响。

4、中学数学教学中最重要的三种基本思想方法是1. F. 函数思想、方程思想和数形结合思想2.化归思想、方程思想和概率统计思想3.函数思想、算法思想和概率统计思想4.函数思想、方程思想和概率统计思想5、古希腊文明的数学标志性著作是1.《高观点下的初等数学》2.《几何原本》3.《九章算术》4.《怎样解题》6、波利亚认为中学数学教育的根本任务是1.教会学生解题2.教会学生思考3.教会学生应用4.教会学生猜想7、.在数学教学成为一门科学学科的历史发展过程中,有两门学科对其有过根本性的影响,它们是1. C. 数学和心理学2.数学与物理学3.教育学与数学4.教育学与心理学8、决定数学教学目标的主要依据是1.学生的年龄特征2.学生的情感因素3.教师的教学能力4.教材的难度9、波利亚在“怎样解题表”中,将解题过程分为1. E. 了解问题、拟定计划、实现计划三大步骤2.了解问题、拟定计划、实现计划和回顾四大步骤3.读题、解题、反思三大步骤4.读题、解题过程、作答三大步骤10、中国古代数学的标志性著作是1.《九章算术》2.《几何原本》3.《周髀算经》4.《易经》11、《全日制义务教育数学课程标准(实验稿)》的基本理念给义务教育数学课程的定位是1. A. 基础性、普及性与灵活性2. D. 基础性、普及性与发展性3.选择性、基础性与操作性4.基础性、选择性与发展性12、中国古代数学教育的主要目的是1.选拔人才2.经世致用3.普及算法4.思维训练多项选择题13、数学命题的教学设计的重点是1.结论的发现过程2.推导的思考过程3.熟记命题的方法4.弄清命题的条件与结论14、中国数学双基教学的特征是1.重复练习依赖变式获得提升2.记忆通向理解直至形成直觉3.运算速度赢得思维效率4.重视逻辑演绎保持严谨准确15、“提高课堂效益的初中数学教改实验”的指导思想、原则和方法是1.积极前进,循环上升2.开门见山,适当集中3.淡化形式,注重实质4.先做后说,师生共作16、美籍匈牙利数学教育家波利亚关于解数学解题理论的代表作是1.《数学的发现》2.《中小学生数学能力心理学》3.《数学与猜想》4.《怎样解题》17、构建数学课堂文化最重要的因素是1.创造2.安静3.合作4.民主18、弗赖登塔尔关于现实数学教育中的数学化的两种形式是1.将数学问题转化为实际应用问题2.将数学概念还原成为现实生活实例3.实际问题转化为数学问题的数学化,即发现实际问题中的数学成分,并对这些成分作化处理。

工程数学第6讲资料讲解

工程数学第6讲资料讲解

1
O
1
c
1
O
1
Ei(c)是由单位矩阵第i行(或列)乘c(c0)得到.
(ii) 初等倍加矩阵
1
O
1
Eij (c)
MO
cL 1
O
1
Eij(c)是由单位矩阵第i行乘c加到第j行而得到 的, 或由第j列乘c加到第i列而得到.
(iii) 初等对换矩阵
1
O
0L
1
1
Eij
MO
M
1
1L
0
O
1
Eij是由单位矩阵第i,j行(或列)对换而得到的.
定义2 设A是一个n阶矩阵,
a11 a12 L A a21 a22 L
M M O an1 an2 L
a1n
a2n
M
[aij
]nn
ann
Aij是行列式|A|中元素aij的代数余子式. 称
A11 A12 L cof AA21 A22 L
M M O An1 An2 L
A1n
A2n M
[Aij
]nn
不难证明下面的一般结论:
Ei(c)A Eij(c)A EijA BEi(c) BEij(c) BEij
表示A的第i行乘c; 表示A的第i行乘c加至第j行; 表示A的第i行与第j行对换位置; 表示B的第i列乘c; 表示B的第j列乘c加至第i列; 表示B的第i列与第j列对换位置.
初等矩阵的行列式都不等于零, 因此初等矩阵 都是可逆矩阵. 由于对初等矩阵再作一次初等 变换就化为单位矩阵, 即
).
A2 - 3A -10I A2 - 4A A - 4I - 6I 0
(A I)(A- 4I) 6I

西南大学1903[0931工程数学》机考大作业

西南大学1903[0931工程数学》机考大作业
西南大学网络与继续教育学院课程考试试题卷
类别:网教(网教/成教)专业:土木工程2019年3月
课程名称【编号】:工程数学【0931】A卷
大作业满分:100分
计算题:共5个大题(每小题20分,共100分)
一、计Байду номын сангаас行列式 .
二、求矩阵 的秩,并求它的一个最高阶非零子式,其中 .
三、求解方程组 .
四、某工厂有甲、乙、丙三个车间,生产同一种产品,每个车间的产量分别占全厂的30%、30﹪、40﹪,各车间产品的次品率分别为5%、4﹪、2﹪。求全厂产品的次品率。
五、某篮球运动员投中篮圈的概率是0.9,求他两次独立投篮投中次数 的概率分布.

《工程数学(1)》教学大纲

《工程数学(1)》教学大纲

《工程数学(1)》教学大纲课程编号:1000050 课程中文名称:工程数学(1)课程英文名称:Engineering Mathematics 学时:54 学分:3 基本面向:7专业本科 一、 本课程的教学目的的性质和任务本课程是高等院校电子专业的一门基础课,复变函数是研究复自变量复值函数的分析过程,积分变换是通过积分运算,把一个函数变成另一个更为简单且易于处理的函数,通过本课程的学习,使学生初步掌握复变函数与积分变换的基本理论和方法,为学习工程力学、电工学,电磁学、振动力学、电子技术等课程奠定必要的基础。

二、 本课程的基本要求通过对本课程的学习,要求学生系统地获得复变函数和积分变换的基本知识,切实掌握所涉及的基本概念、基本理论和基本方法,具有较熟练的运算能力和初步解决实际问题的能力。

为后继课程的学习奠定良好的数学基础。

第一章 复数与复变函数1. 理解复数的概念及各种表示法2. 掌握复数的四则运算及乘方、开方运算及它们的几何意义,会进行一些不太复杂的运算3. 理解区域的有关概念4. 掌握用复数方程来表示常用曲线及用不等式表示区域的方法5. 理解复变函数及映射的概念,复变函数与一对二元实函数的关系6. 知道复变函数的极限与连续 第二章 解析函数1. 理解复变函数的导数的定义,掌握求导的方法2. 理解解析函数的定义,掌握函数解析的充要条件,会判断一个函数是否解析3. 了解指数函数,对数函数,幂函数,三角函数,反三角函数的定义,及它们的解析性质、运算性质第三章 复变函数的积分1. 了解复变函数积分的概念,积分的存在性及计算公式,复变函数积分与两个二维曲线积分的关系。

2. 理解柯西—古萨基本定理,掌握积分与路径无关的条件,了解原函数与不定积分的概念3. 理解复合闭路定理及柯西积分公式,会计算某些围道的积分4. 理解高阶导数公式,会应用高阶导数公式计算某些积分5. 了解调和函数的概念,掌握解析函数与调和函数的关系,能由解析函数实(虚)部求虚(实)部第四章 级数1. 知道复数列收敛的概念2. 了解复数项级数收敛的有关定理,能判断复数项级数的收敛性3. 理解阿贝尔定理,了解幂级数的收敛情况,掌握求幂级数收敛圆的方法,知道幂级数在收敛域的性质。

工程数学形成性考核册作业2、4

工程数学形成性考核册作业2、4

工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为( ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( ).A. 3B. 2C. 4D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则( )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是( ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 . ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 解,且系数列向量ααα123,,是线性 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 . ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。

川大继续教育《工程数学》复习资料2020.6

川大继续教育《工程数学》复习资料2020.6

2
2
22 (2)2 12 3
cos
1
12Biblioteka (2)2 12 3则方向导数
(M ) cos cos cos 5 2 4 2 2 1 4
l
x M0
y M0
z M0
3
3
33
17、设 A 4xi 2xyj z 2k ,求 A 的散度 divA ,并求 divA 在 M (1,1,3) 处的值。
(求解过程: cos sin sin sin 0 )________ ,外积 e1() e2 () =__
i
j
k
c o s 0 s i n c o sj ________。
s i n c o s 0
(2) F() 2cos3 的傅立叶逆变换 f (t) =__ (t 3) (t 3) (查阅傅立叶变
代入
(M x
)
(1,1,2)
y2
2xz
5
(M ) 2xy z y

M
0
(1,1,2)
代入
(M y
)
2xy z 4
(1,1,2)
(M ) z
y
x2 将 M 0 (1,1,2) 代入
(M ) z
(1,1,2)
y
x2
2
再求矢量{2,2,1} 的方向余弦
cos
2
2
22 (2)2 12 3
cos
证明略,势函数 1 (x2 y2 z2 ) 2xyz C
3 A (x2 2yz)i ( y2 2xz)j (z 2 2xy)k
求解过程:
先求 A 的旋度
i rotA
x x2 2 yz
j

工程数学期末复习辅导-(5819)

工程数学期末复习辅导-(5819)

X ,则下列等式中不正确的是( 2E ( X )
2 2
) .
1)
B . D (2 X
1)
4D( X ) D( X )
D(X )
E ( X ) ( E( X ))
D. D ( X )
正确答案: A 二、 填空题 1.设三阶矩阵 应该填写: 2 2 .线性方程组
A 的行列式 A
1 2
,则 A
1
=

AX
x1 x2 x3 x3
3 ,所以方程组有非零解.
方程组的一般解为:
,其中
x3 为自由元.

x3 =1 得 X 1= (1, 1, 1) ,则方程组的基础解系为
{ X 1} .
通解为 k1X 1,其中 k1 为任意常数. 3 .设随机变量
X ~ N ( 4 , 1) . ( 1 )求 P( X (1) 0. 8413, (1 .5 )
) .
9 D (Y ) 3 D (Y )
B. 4D( X ) D . 2D ( X )
X ~ N( ,
2
),
2
未知,检验总体期望 B . U 检验法 D . F 检验法
采用(
) .
x1
6.方程组
x2 x2 x3 x3
a1 a 2 相容的充分必要条件是 a3
B. D. ( ) ,其中
ai
0, i
1, 2, 3 .
带的资料的不同,开卷考试允许考生携带任何资料,而半开卷考试只允许考生携带指定的资料,比如允许考生携 带一张统一印制 A4 纸,考生可以将自己对课程学习内容的总结包括重点、难点、不好记忆的公式、定理等写在
这张 A4 纸上带入考场,作为答卷的参考。 下面先给出各章的复习要求,然后针对重点内容给出一些综合练习,与大家一起做好期末复习工作。 行列式复习要求 1 .知道 n 阶行列式的递归定义; 2.掌握利用性质计算行列式的方法; 3.知道克莱姆法则。 矩阵复习要求 1 .理解矩阵的概念,了解零矩阵、单位矩阵、数量矩阵、对角矩阵、上 了解初等矩阵的定义; 2.熟练掌握矩阵的加法、数乘矩阵、乘法、转置等运算; 3.掌握方阵乘积行列式定理; 4.理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件; 5.熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,掌握求解简单的矩阵方程的方法; 6.理解矩阵秩的概念,掌握矩阵秩的求法; 7 .会分块矩阵的运算。 线性方程组复习要求 1 .掌握向量的线性组合与线性表出的方法,了解向量组线性相关与线性无关的概念,会判别向量组的线性 相关性; 2.会求向量组的极大线性无关组,了解向量组和矩阵的秩的概念,掌握求向量组的秩和矩阵的秩的方法; 3 .理解线性方程组的相容性定理,理解齐次线性方程组有非零解的充分必要条件。熟练掌握用矩阵初等行 变换方法判断齐次与非齐次线性方程组解的存在性和惟一性; 4.熟练掌握齐次线性方程组基础解系和通解的求法; 5.了解非齐次线性方程组解的结构,掌握求非齐次线性方程组通解的方法。 矩阵的特征值及二次型复习要求 1.理解矩阵特征值、特征多项式及特征向量的定义,掌握特征值与特征向量的求法; 2.了解矩阵相似的定义,相似矩阵的性质; 3.知道正交矩阵的定义和性质; 4.理解二次型定义、二次型的矩阵表示、二次型的标准形,掌握用配方法化二次型为标准形的方法; ( 下 ) 三角矩阵、对称矩阵的定义,

电大国开大学期末复习资料:《工程数学》期末考试练习题(2024秋版本)(简化版)

电大国开大学期末复习资料:《工程数学》期末考试练习题(2024秋版本)(简化版)

工程数学期末考试练习题(共224题)目录【知识点1】【行列式的递归定义】单选6题 (2)【知识点2】【余子式与代数余子式】单选6题 (2)【知识点3】【行列式的性质】单选8题 (3)【知识点4】【矩阵的运算】单选8题 (3)【知识点5】【方阵乘积行列式定理】单选8题 (4)【知识点6】【可逆矩阵(逆矩阵)】单选7题/判断1题 (4)【知识点7】【高斯消元法解线性方程组】单选8题 (5)【知识点8】【极大线性无关组,向量组的秩】单选6题 (5)【知识点9】【(非)齐次线性方程组解的性质及解的结构】单选8题 (6)【知识点10】【特征值与特征向量的求法】单选6题 (7)【知识点11】【随机事件的概率和性质】单选8题 (7)【知识点12】【古典概型】单选8题 (7)【知识点13】【概率的加法公式,条件概率与乘法公式】单选8题 (8)【知识点14】【离散型随机变量的概率分布】单选8题 (8)【知识点15】【连续型随机变量的概率密度,分布函数】单选8题 (9)【知识点16】【方差与方差的性质】单选8题 (9)【知识点17】【正态分布和它的数字特征】单选8题 (10)【知识点18】【统计量】单选4题 (10)【知识点19】【置信区间】单选4题 (10)【知识点20】【假设检验】单选4题 (11)【判断题1】【特殊矩阵】判断8题 (11)【判断题2】【矩阵的秩】判断7题/选择1题 (11)【判断题3】【线性方程组的相容性定理】判断10题 (12)【判断题4】【向量组的线性相关性】判断10题 (13)【判断题5】【矩阵特征值、特征向量的定义】判断8题 (13)【判断题6】【随机事件的关系与运算】判断8题 (13)【判断题7】【事件的独立性,全概公式】判断8题 (14)【判断题8】【数学期望与期望的性质】判断8题 (14)【判断题9】【二项分布和它的数字特征】判断8题 (14)【判断题10】【无偏性与有效性】判断8题 (15)工程数学期末考试练习题说明:题型为单项选择题和判断题,涵盖 1-7 章的内容,其中单项选择题涉及20 个知识点,判断题涉及 10 个知识点,每个知识点下有 6-8 道题目可供练习,预祝大家取得好成绩!【知识点 1】【行列式的递归定义】单选6题1.110240001−−= ( -2 )2.若行列式210140700a−−=,则a =( -1 )3.若行列式000100020200100a a=,则a =( 1 )4.10011111x −−−是关于x 的一个一次多项式,则该多项式一次项的系数是(1). 5.求解二元线性方程组1212321221x x x x −=⎧⎨+=⎩,则x 1=( 2 ),x 2=( -3 )6.计算三阶行列式124221342D −=−=−−( -14 )【知识点 2】【余子式与代数余子式】单选6题1.n 阶行列式n D 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是( ()1i jij ij A M +=− )2.三阶行列式120438012−−的余子式23M =(1201− ) 3.三阶行列式12438012−−的代数余子式32A =( 1048−)4.三阶行列式11111111x −−−中元素x 的代数余子式23A =( 1111−− )5.行列式512107的元素21a的代数余子式21A的值为(-56)6.设111213212223313233a a aD a a aa a a=,21233133a aMa a=,23213331a aNa a=,则12a的余子式(是M)【知识点3】【行列式的性质】单选8题1.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c−−−=(-2)2.设1231231232a a ab b bc c c=,则123112233123222a a aa b a b a bc c c+++=(2)3.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c+++=−−−(-2)4.若1101200153x−−=−,则x=(3)5.若1101200151x−−=+,则x=(-1)6.行列式114228153−−−=(0)7.下列等式成立的是(111111a b a bc d c d+=++),其中a,b,c,d为常数8.行列式111111111D=−=−−(4)【知识点4】【矩阵的运算】单选8题1.若A为3×4矩阵,B为2×5矩阵,且乘积AC B''有意义,则C为(5×4)矩阵.2. 若A为3×4矩阵,B为2×5矩阵,且乘积AC B'有意义,则C为(2×4)矩阵.3.若A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB)4.设4034A ⎢⎥=⎢⎥⎢⎥−⎣⎦,120314B −⎡⎤=⎢⎥−⎣⎦,则()A B ''+=( 063518−⎡⎤⎢⎥−⎣⎦ ) 5.已知10102A a ⎡⎤=⎢⎥−⎣⎦,10210112B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若1131AB ⎡⎤=⎢⎥⎣⎦,则a =( -1 ) 6.设147426310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则2A =( 28148412620⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )7.设147440310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,101426115B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A B +=( 248866425⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )8.已知50302A a ⎡⎤=⎢⎥−⎣⎦,500832B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若A B '=,则a =( -8 ) 【知识点5】【方阵乘积行列式定理】单选8题1.A ,B 都是n 阶矩阵(n >1),则下列命题正确的是( AB A B = )2.设A ,B 均为n 阶方阵,则下列等式成立的是( AB BA = )3.设A ,B 均为n 阶方阵,0k >且1k ≠,则下列等式正确的是( ()nkA k A −=− )4.设A ,B 均为3阶方阵,且1A =−,3B =−,则A B '=( 3 )5.设A ,B 均为n 阶方阵,则下列命题中正确的是( AB A B = )6.设A ,B 均为3阶方阵,且1A =−,1B =,则1AB −=( -1 ) 7. A ,B 是3阶方阵,其中3A =,2B =,则12A B −'⋅=( 12 )8. A ,B 都是n 阶方阵(n >1),则下列命题正确的是( AB A B = ) (题干或为“设A ,B 均为n 阶方阵,n >1,则下列等式正确的是”) 【知识点 6】【可逆矩阵(逆矩阵)】单选7题/判断1题1.设方阵A 可逆,且A 是对称矩阵,则等式( ()11A A −−'= )成立2.设方阵A 可逆,则下列命题中不正确的是( 线性方程组AX O =必有非零解 )3.设方阵A 可逆,则下列命题中正确的是( A O ≠ )4.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()11AB BA −−= )5.方阵A 可逆的充分必要条件是( 0A ≠ )6.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()111AB B A −−−= )7.设矩阵011112210A ⎡⎤⎢⎥=⎢⎥⎢⎥−⎣⎦,判断A 是否可逆?( 是 )8.设A ,B 为三阶可逆矩阵,且0k >,则下式( AB A B '= )成立【知识点 7】【高斯消元法解线性方程组】单选8题1. 用消元法得123233241 0 2x x x x x x +−=⎧⎪+=⎨⎪−=⎩的解123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为( []11,2,2'−− )2.方程组12122125x x x x +=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []3,1'− )3.方程组1212233x x x x −=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []2,1' )4.线性方程组122310x x x x +=⎧⎨+=⎩( 一般解为13231x x x x =+⎧⎨=−⎩(3x 是自由未知量) )5.齐次线性方程组AX O =的系数矩阵经初等行变换化为102101020000A ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦则方程组的一般解为( 1342422x x x x x =−−⎧⎨=⎩(34,x x 是自由未知量) )6.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]102501020000A B ⎡⎤⎢⎥→→⎢⎥⎢⎥⎣⎦则方程组的一般解为( 132252x x x =−+⎧⎨=⎩(3x 是自由未知量) )7.线性方程组12341234134332462 3x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+−=⎩一般解的自由未知量的个数为( 2 )8.设4元线性方程组AX B =有解且()1r A =,那么AX B =的相应齐次方程组的一般解中含有( 3 )个自由未知量【知识点 8】【极大线性无关组,向量组的秩】单选6题1.向量组100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,121⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的秩为( 3 ) 2.向量组[]1,2,3,[]1,2,0,[]1,0,0,[]0,0,0的秩为( 3 )3.设向量组为11100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20011α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则(123,,ααα)是极大无关组4.向量组[]10,0,0α=,[]21,0,0α=,[]30,1,0α=,[]40,0,1α=的极大线性无关组是( 234,,ααα )5.向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的极大线性无关组是( 1234,,,αααα )6.求向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的秩是( 4 )【知识点 9】【(非)齐次线性方程组解的性质及解的结构】单选8题 1.设线性方程组AX B =的两个解为12,X X ,(12X X ≠),则下列向量中(212X X −)一定是AX B =的解2.若0X 是线性方程组AX O =的解,1X 是线性方程组AX B =的解,则有 ( 10X X +是AX B =的解 )3.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]100001020011/2A B ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦,则(方程组AX B =的通解为1230212x x x ⎧⎪=⎪=−⎨⎪⎪=⎩ )4.设齐次线性方程组AX O =的方程组的一般解为1342344576x x x x x x =−⎧⎨=−⎩(其中34,x x 是自由未知量)则它的一个基础解系为( [][]124710,5601X X ''==−− ) 5.设齐次线性方程组AX O =的方程组的一般解为 13232x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1121X '=−) 6.设齐次线性方程组AX O =的方程组的一般解为13233x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1311X '=−)7.设线性方程组AX B =的系数矩阵A 的秩为r ,增广矩阵[]|A B 的秩为r+1,那么方程组:( 无解 )8.如果线性方程组AX B =的系数矩阵A 的列向量线性无关,那么方程组: ( 解的情况取决于向量B )【知识点 10】【特征值与特征向量的求法】单选6题1.矩阵4001A ⎡⎤=⎢⎥−⎣⎦的特征值为( -1,4 ) 2.已知矩阵A 的特征值为-1,4,则2A 的特征值为( -2,8 )3.已知矩阵A 的特征值为2,0,则12A 的特征值为( 1,0 )4.已知矩阵A 的特征值为-1,4,则1A −的特征值为( -1,14)5.设矩阵A 有一个特征值λ,对应的特征向量为ν,那么矩阵T A 的特征值和特征向量是( ,T λν )6.已知矩阵A 的特征多项式为()256f λλλ=−+,那么矩阵A 的特征值为( 2,3)【知识点 11】【随机事件的概率和性质】单选8题1.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 至少有一人没射中目标的概率 )2.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 两人都射中目标的概率 )3.下列所列的概率性质中不正确是(对于任意两个事件A ,B ,有()()()P A B P A P B +=+ )4. 下列所列的概率性质中正确是( 对任一事件A ,有()01P A ≤≤ )5.某购物抽奖活动中,每人中奖的概率为0.3.则{}31A =个抽奖者中恰有人中奖的概率()P A =( 1230.70.3C ⨯⨯ )6.某购物抽奖活动中,每人中奖的概率为0.4.则{}41A =个抽奖者中恰有人中奖的概率()P A =( 1340.60.4C ⨯⨯ )7.关于概率的公式错误的是( ()()()P A B P A P B +=+ ) 8.设()0p AB =,则正确的是( ()()p A B p A −= ) 【知识点 12】【古典概型】单选8题1.掷两颗均匀的骰子,事件“点数之和为5”的概率是( 19 )2.掷两颗均匀的骰子,事件“点数之和为3”的概率是( 118 )3.同时掷3枚均匀硬币,恰好有1枚正面向上的概率为( 38 )4.同时掷3枚均匀硬币,恰好有2枚正面向上的概率为( 38)5.设袋中有3个红球,2个白球,现从中随机抽取2个球,则2个球恰好不同色的概率是( 35)6.袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为( 485C )7.设袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两次都取到白球的概率是( 425)8.袋中有5个球,3个新2个旧,每次取1个,无放回地取两次,则第二次取到新球的概率是( 35)【知识点 13】【概率的加法公式,条件概率与乘法公式】单选8题 1.已知()0P B >,12A A =Φ,则( ()()()1212|||P A A B P A B P A B +=+⎡⎤⎣⎦ )成立 2.设A ,B 是两事件,则下列等式中(()()()P AB P A P B =,其中A ,B 互不相容 )是不正确的3.已知()0.3P A =,()0.5P B =,则当事件A ,B 互不相容时,()P A B +=( 0.8 )4.设A ,B 为两个事件,且B A ⊂,则()P A B +=( ()P A )5.若事件A 与B 互斥,则下列等式中正确的是( ()()()P A B P A P B +=+ )6.设A ,B 为两个事件,且B A ⊂,则()P A B −=( ()()P A P B − )7.假设生男孩和生女孩是等可能的,现考虑有两个小孩的家庭。

工程数学本 工程数学复习

工程数学本 工程数学复习

(06春-12春)复习资料总结一、单项选择题(每小题3分,本题共15分)1. 若0351021011=---x ,则=x (A ). A. 3 B. 2 C. 3- D. 2-2. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是(B ). A 1 B 2 C 3 D 43. 设B A ,为n 阶矩阵,则下列等式成立的是(C )A.BA AB = B. B A AB ''=')( C. B A B A '+'='+)( D. AB AB =')(4. 若A B ,满足(B),则A 与B 是相互独立.A. )()()(A B P A P B P = B. )()()(B P A P AB P = C. )()()(B P A P B A P -=- D. )()()(B A P B P A P = 5. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式( D )成立.A. )]([)(X E X E X D -=B. 22)]([)()(X E X E X D +=C. )()(2X E X D =D. 22)]([)()(X E X E X D -=6.若A 是对称矩阵,则等式( B )成立. A. I AA =-1 B. A A =' C. 1-='A A D. A A =-17.=⎥⎦⎤⎢⎣⎡-15473(D ). A. ⎥⎦⎤⎢⎣⎡--3547 B. 7453-⎡⎤⎢⎥-⎣⎦ C. 7543-⎡⎤⎢⎥-⎣⎦ D. 7543-⎡⎤⎢⎥-⎣⎦8.若(A )成立,则n 元线性方程组AX O =有唯一解.A. r A n ()=B. A O ≠C. r A n ()<D. A 的行向量线性相关 4. 若条件( C )成立,则随机事件A ,B 互为对立事件.A. ∅=AB 或A B U +=B. 0)(=AB P 或()1P A B +=C. ∅=AB 且A B U +=D. 0)(=AB P 且1)(=+B A P9.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,记∑==3131i iX X ,则下列各式中(C )不是统计量. A.XB.∑=31i iX C. ∑=-312)(31i i X μ D. ∑=-312)(31i i X X10.设B A ,都是n 阶方阵,则下列命题正确的是( A ).A .AB A B = B .222()2A B A AB B -=-+C .AB BA = D .若AB O =,则A O =或B O =11.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( B ). A. 1 B. 3 C. 2 D. 4 12.n 元线性方程组AX b =有解的充分必要条件是( A ).A. )()(b A r A r M= B. A 不是行满秩矩阵 C. r A n ()< D. r A n ()= 13. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D ).A.256 B. 103 C. 203 D. 25914.设x x x n 12,,,Λ是来自正态总体N (,)μσ2的样本,则(C )是μ无偏估计.A.321515151x x x ++ B. 321x x x ++ C. 321535151x x x ++ D. 321525252x x x ++15.设B A ,为n 阶矩阵,则下列等式成立的是( A).A .BA AB = B .B A B A +=+C .111)(---+=+B A B AD .111)(---=B A AB16.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( B ),其中0≠ia ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a17.下列命题中不正确的是( D ). A .A 与A '有相同的特征多项式B .若λ是A 的特征值,则O X A I=-)(λ的非零解向量必是A 对应于λ的特征向量C .若λ=0是A 的一个特征值,则O AX =必有非零解D .A 的特征向量的线性组合仍为A 的特征向量18.若事件A 与B 互斥,则下列等式中正确的是( A ).A .P AB P A P B ()()()+=+ B .P B P A ()()=-1C .P A P A B ()()=D .P AB P A P B ()()()=19.设n x x x ,,,21Λ是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =(C ).A .55-xB .5/15-x C .n x /15- D .15-x二、填空题(每小题3分,共15分) 1. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-.2. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则_____=k -1.3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P.0.64. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.0521~X ,那么=)(X E 2.4. 5. 设1021,,,x x x Λ是来自正态总体)4,(μN 的一个样本,则~101101∑=i ix )104,(μN .6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-=8.7.设A 为n 阶方阵,若存在数?和非零n 维向量X ,使得 AX X λ= ,则称X 为A 相应于特征值?的特征向量.8.若5.0)(,8.0)(==B A P A P ,则=)(AB P 0.3.9.如果随机变量X 的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20.10.不含未知参数的样本函数称为 统计量 11.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-=-18.12.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = 0.3.13.设X 为随机变量,已知3)(=X D ,此时D X ()32-=27 . 14.设θˆ是未知参数θ的一个无偏估计量,则有 ˆ()E θθ= .15.设22112112214A x x =-+,则0A =的根是1,-1,2,-2 .16.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量. 17.设A B ,互不相容,且P A ()>0,则P B A ()=0.18.设随机变量X ~ B (n ,p ),则E (X )= np . 19.若样本n x x x ,,,21Λ来自总体)1,0(~N X ,且∑==n i i x n x 11,则~x )1,0(n N .三、计算题(每小题16分,共64分) 1设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=423532211A ,求(1)A ,(2)1-A .解: (1)1111021121110211423532211=---=---=---=A (2)利用初等行变换得→------⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥110922010721001511100201010721001511即 A -=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12017215112. 当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=++-=++-=+-2532342243214321421λx x x x x x x x x x x 有解,在有解的情况下求方程组的全部解.解:将方程组的增广矩阵化为阶梯形 由此可知当λ≠3时,方程组无解。

西南交通大学新学期《工程数学I》在线作业一

西南交通大学新学期《工程数学I》在线作业一

西南交《工程数学I》在线作业一
如果矩阵A满足A^2=A,则( )
A:A=0
B:A=E
C:A=0或A=E
D:A不可逆或A-E不可逆
参考选项:D
A、B均为n阶方阵,则必有
A:det(A)det(B)=det(B)det(A)
B:det(A+B)=det(A)+det(B)
C:(A+B)的转置=A+B
D:(AB)的转置=A的转置乘以B的转置
参考选项:A
设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是
()
A:Ax=0只有零解
B:Ax=0的基础解系含r(A)个解向量
C:Ax=0的基础解系含n-r(A)个解向量
D:Ax=0没有解
参考选项:C
n阶行列式的展开式中共有()项
A:n
B:n^2
C:n!
D:n(n+1)/2
参考选项:C
设3阶实对称矩阵A的特征值分别为2,0,-3,则()
A:|A|≠0
B:A负定
C:A正定
D:|A|=0
参考选项:D
设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A:A=E
B:B=O
C:A=B
D:AB=BA
1。

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
c. 方程个数大于未知量个数的线性方程组一定有无穷多解
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
c.
d.
正确答案是:
试题 7
7-1.二阶矩阵
(B).
a.
b.
c.
d.
正确答案是:
7-2.二阶矩阵
a.
b.
c.
d.
(B).
正确答案是:
试题 8
8-1.向量组
的秩是(D).
a. 1
b. 2
c. 4
d. 3
正确答案是:3
8-2.向量组
的秩为(C).
a. 2
b. 4
c. 3
d. 5
正确答案是:3
试题 9
9-1.设向量组为
1-1.同时掷 3 枚均匀硬币,恰好有 2 枚正面向上的概率为(B).
a. 0.125
b. 0.375
c. 0.25
d. 0.5
1-2.从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是
偶数的概率为(A).
a. 0.4
b. 0.1
c. 0.5
d. 0.3
2-1.设 A,B 是两事件,则下列等式中( A)是不正确的.
正确答案是: 5×4
试题 3
,则 BA-1(B).
3-1.设
a.
b.

(2024)国开-工程数学(本)_工程数学第5次作业

(2024)国开-工程数学(本)_工程数学第5次作业

工程数学(本)形成性考核作业5一、解答题(每题10分,共80分)1.设()3,4X N ,试求:(1)()59P X <<;(2)()7P X >.(已知()10.8413Φ=, ()20.9772Φ=,()30.9987Φ=)2. 设2~(1,2)X N ,试求:(1)(3)P X <;(2)求常数a ,使得(1)0.9974P X a -<=(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).3. 设2~(20,2)X N ,试求:(1)(2226)P X <<;(2)(24)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=)4. 设2~(3,2)X N ,试求:(1)(5)P X <;(2)(9)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).5. 设某一批零件重量X 服从正态分布2(,0.6)N μ,随机抽取9个测得平均重量为5(单位:千克),试求此零件重量总体均值的置信度为0.95的置信区间(已知0.975 1.96u =).6. 为了对完成某项工作所需时间建立一个标准,工厂随机抽查了16名工人分别去完成这项工作,结果发现他们所需的平均时间为15分钟,样本标准差为3分钟. 假设完成这项工作所需的时间服从正态分布,在标准差不变的情况下,试确定完成此项工作所需平均时间的置信度为0.95的置信区间(已知0.975 1.96u =).7. 某校全年级的英语成绩服从正态分布2(85,10)N ,现随机抽取某班16名学生的英语考试成绩,得平均分为80x =. 假设标准差没有改变,在显著水平0.05α=下,问能否认为该班的英语平均成绩为85分(已知0.975 1.96u =).8. 据资料分析,某厂生产的砖的抗断强度X 服从正态分布(32.5,1.21)N . 今从该厂最近生产的一批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.18. 假设标准差没有改变,在0.05的显著性水平下,问这批砖的抗断强度是否合格.(0.975 1.96u =)二、证明题(每题10分,共20分)1.设随机事件A与B相互独立,试证A与B也相互独立.2.设A B,为两个事件,且B A⊂,试证()()+=.P A B P A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档