最新初中数学代数式经典测试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学代数式经典测试题及答案

一、选择题

1.下列计算,正确的是( )

A .2a a a -=

B .236a a a =

C .933a a a ÷=

D .()236a a = 【答案】D

【解析】

A.2a 和a,和不能合并,故本选项错误;

B.2356a a a a ⋅=≠ ,故本选项错误;

C.9363a a a a ÷=≠,和不能合并,故本选项错误;

D.()236 a a =,故本选项正确;

故选D.

2.下列计算正确的是( )

A .a 2+a 3=a 5

B .a 2•a 3=a 6

C .(a 2)3=a 6

D .(ab )2=ab 2

【答案】C

【解析】

试题解析:A.a 2与a 3不是同类项,故A 错误;

B.原式=a 5,故B 错误;

D.原式=a 2b 2,故D 错误;

故选C.

考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.

3.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )

A .7500

B .10000

C .12500

D .2500 【答案】A

【解析】

【分析】

用1至199的奇数的和减去1至99的奇数和即可.

【详解】

解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭

=1002﹣502,

=10000﹣2500,

=7500,

故选A .

本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.

4.下列运算,错误的是( ).

A .236()a a =

B .222()x y x y +=+

C .01)1=

D .61200 = 6.12×10 4 【答案】B

【解析】

【分析】

【详解】

A. ()326a a =正确,故此选项不合题意;

B.()222 x y x 2y xy +=++,故此选项符合题意;

C. )0

11=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;

故选B.

5.若352x y a b +与2425y x a b -是同类项.则( )

A .1,2x y =⎧⎨=⎩

B .2,1x y =⎧⎨=-⎩

C .0,2x y =⎧⎨=⎩

D .3,1x y =⎧⎨=⎩ 【答案】B

【解析】

【分析】

根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.

【详解】 由同类项的定义,得:

32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩

:. 故选B .

【点睛】

同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.

6.下列运算正确的是( )

A .2235a a a +=

B .22224a b a b +=+()

C .236

a a a ⋅=

D .2336()ab a b -=- 【答案】D

【分析】

根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.

【详解】

A. 235a a a +=,故A 选项错误;

B. 222244a b a ab b +=++(),故B 选项错误;

C. 235a a a ⋅=,故C 选项错误;

D. 2336()ab a b -=-,正确,

故选D.

【点睛】

本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.

7.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )

A .2()a b -

B .29b

C .29a

D .22a b -

【答案】B

【解析】

【分析】 根据图1可得出35a b =,即53

a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.

【详解】

解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +

∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-

∵35a b =,即53

a b = ∴阴影部分的面积为:2

22(2)()39

b b a b -=-=

【点睛】

本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.

8.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++

B .328421a a a +--

C .381a -

D .381a +

【答案】D

【解析】

【分析】

利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.

【详解】

解:根据题意,得:

S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,

故选:D .

【点睛】

本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.

9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种

方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为

,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )

A .

B .

C .

D .无法确定 【答案】A

【解析】

【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.

【详解】 =(AB-a )·a+(CD-b )(AD-a )

=(AB-a )·a+(AD-a )(AB-b )

=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a ) ∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )

=(AB-a )(AD-a-b)

相关文档
最新文档