最新届高二文理分科考学生试卷学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

届高二文理分科考学

生试卷学

2013届高二文理分科考试试卷数学(五)

一.选择题:本大题共12小题,每小题

5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合}0103|{2<--∈=x x R x M ,}2|||{〈∈=x Z x N ,则M N 为

A.)2,2(-

B.)2,1(

C.{-1,0,1}

D.}2,1,0,1,2{--

2. 已知变量x ,y 满足125,31x y x y z x y x -≤⎧⎪

+≤=+⎨⎪≥⎩

则的最大值为

A .5

B .6

C .7

D .8

3. 下列函数中,在其定义域内既是奇函数又是减函数的是( )

A .x y 1=

B .1y x x =+

C .tan y x =

D . x

x y +-=11lg 4. )sin150cos150 = (A)

1

4

(B)624+ (C)514- (D)624-

5. 如图是一个几何体的三视图,则此三视图所描述几何体的 表面积为

A .π)3412(+

B .20π

C .π)3420(+

D .28π

6. 若01x y <<<,则

(A)33y x < (B)log 3log 3x y < (C)44log log x y < (D)11

()()44

x y <

7. 函数f(x)=1+log 2x 与g(x)=2-x+1在同一直角坐标系下的图像大致是

8. 将函数)

(3

cos π

+=x y 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向 左平移6

π

个单位,所得函数的最小正周期为 A .π

B .2π

C .4π

D .8π

9. 设0m >,则直

线

)10x y m +++=与圆22x y m +=的位置关系为

( )

A.相切

B.相交

C.相切或相离

D.相交或相切

10. ABC ∆中,三边之比4:3:2::=c b a ,则最大角的余弦值等于

A.

4

1 B.

8

7 C .2

1-

D.4

1-

11. 数列{}n a 中,352,1,a a ==如果数列1

{}1

n a +是等差数列,则11a =

A. 0

(B)

1

11

(C)1

13

-

(D)17-

12. 已知函数y= f (x) 的周期为2,当x ∈[]11,

-时 f (x) =x 2,那么函数y = f (x) 的图像与函数y =x lg 的图像的交点共有

(A )10个 (B )9个 (C )8个 (D )1个 二. 填空题:本大题共4小题,每小题4分。

13. 计算1

21

(lg lg 25)100=4

--÷ .

14. 已知向量),4,(),2,1(x =-=且,//则||+的值是__________.

15. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).

①1ab ≤;

≤; ③ 222a b +≥;

④333a b +≥; ⑤11

2a b

+≥.

16. 设函数f (x )=⎩⎨⎧≤,

>,,

,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是_____

三.解答题:解答应写出文字说明,证明过程或演算步骤。 17.已知函数()4cos sin()16f x x x π

=+-。

(Ⅰ)求()f x 的最小正周期:

(Ⅱ)求()f x 在区间,64ππ⎡⎤

-⎢⎥⎣⎦

上的最大值和最小值。

18.在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上

(Ⅰ)求圆C 的方程;

(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值。

19.已知数列{}n a 的前n 项和为n S ,且满足:a a =1)0(≠a ,

1n n a rS +=(n ∈N*,,1)r R r ∈≠-. (Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)若存在k ∈N*,使得1k S +,k S ,2k S +成等差数列,是判断:对于任意的

m ∈N*,且2m ≥,1m a +,m a ,2m a +是否成等差数列,并证明你的结论.

20.已知圆2

2

:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=,

()m R ∈。

(1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.

21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD , 底面ABCD 为正方形,PD=DC ,E ,F 分别是AB ,

PB 的中点.

(1)求证://EF 平面PAD ; (2)求证:EF CD ⊥;

(3)设PD=AD=a, 求三棱锥B-EFC 的体积.

22. 设数列{}n a 的前n 项和(1)n S na n n b =+-,(1,2,)n =,a 、b 是常数且0b ≠。

(1)证明:{}n a 是等差数列; (2)证明:以,1n n S a n ⎛⎫

- ⎪⎝⎭

为坐标的点n P ,(1,2,)n =落在同一直线上,并求直线方程。

(3)设1

1,2

a b ==

,C 是以(,)r r 为圆心,r 为半径的圆(0)r >,求使得点P 1、P 2、P 3都落在圆C 外时,r 的取值范围。

相关文档
最新文档