15讲-狄拉克符号连续谱
4-1 狄拉克符号
,
F
根据内积的性质
x
Fy x Fx x Fy x ,
aFx x aFx x
(13)
Fx x Fy x x, x y, x x y, x Fx y x
将(19)式定义的泛函记为 Fx ,并将所有 Fx 的集合记为 B X
。根据 Riesz 定理,
B X
包括了希尔伯特空间上所有的连续线性泛函,按照(2)式定义的加法和数乘成为
X 的对偶空间,记为 X ,即
X Fx x X
按照加法和数乘的定义(2), x X , (20)
4-1 狄拉克符号
~6~
线性子空间, 但 C a, b 根据由内积导出的度量不完备, 因此不是希尔伯特空间。 将 L2 a, b 中的泛函的定义域限制在 C a, b 上,确实可以得到新的泛函。比如,考虑如下分段函数
i 1
n
(12)
n
这是一个将
n
的映射,由内积的性质 Fx x 可知它是
上的线性泛函。将所有这样
n
的线性泛函的集合记为 B
n
。同样,我们很快会知道,B
n
包含了
n
n
上所
有的连续线性泛函。因此, B
按照(2)式定义的加法和数乘成为
n
的对偶空间。
按照加法和数乘的定义(2), x
(17)
n
或写为 T x Fx 。与 线性的
的情况不同,根据(16)式可知这个映射不是线性的,而是复共轭
T ax by Faxby a Fx b Fy
狄拉克算符
又 因此
n n n n
n n
n
n
n 1
比如 引入算符
dx x x 1
ˆ Pn n n
因为
P n n n n n
m
a
m
m
m am n n m
m
am n nm an n
显然,该算符对任何矢量的运算,相当于把这个矢量投影到基矢 n
n n
kj
i
ˆ H t ˆ F n n
i
ˆ x H x t ˆ F x n x n
(F
j
kj )a j 0
m
k
j
ˆ F j kj j 0
nm
u ( x)u
* n
( x)dx nm
n m nm
这就是薛定格方程的狄拉克符号表示。 定态薛定格方程 在 Q 表象下
ˆ H E
ˆ n H E n
ˆ nHm
m
m E n
ቤተ መጻሕፍቲ ባይዱ
即
H
m
nm
am Ean
六、平均值公式的狄拉克符号表示
在 Q 表象下
* ˆ ˆ F F m m F n n am Fmn an
定一组基矢,即选定表象后,态矢量可以用在这组基矢
上的投影(即矢量的分量)表示,这就是波函数。与数 学中表示一个矢量可以不引入坐标系不用它的分量而直
接用矢量表示相似,在量子力学中表示一个量子态也可
以不引进具体的表象,直接用矢量符号表示。这就是狄 拉克符号(Dirac bracket notation)。
a an
第8章狄拉克(Dirac)函数
第8章狄拉克(Dirac) 函数1.数理方程的定解问题:uu12.点源:3.连续分布的源所产生的场:注意:238.1 一维函数的定义和性质一、一维函数的定义l线电荷密度总电量4把定义在区间上,满足上述这两个要求的函数称为函数,并记作,即5时, ,所以(6)函数后,位于 处、电量为q 的点电荷的线电荷密度2m 的质点的质量线密度为:说明:1.2.67二、 函数的性质 1f(x)00())()f x x x dx f x δ+∞-∞-=(乘上f (x )f (x ) 挑选性(把f (x )在 )在 时为零,0000())())x x f x x x dx f x x x dx εεδδ+∞+-∞--=-((时,,且时,说明:也可作为函数的定义,f(x)892.(对称性)00与 在积分号下对任一连续函数x )3. )()()()(000x x x f x x x f -=-δδ确切含义:在等式左右两边乘上任意连续函数x 积分相等104.f (x ),均有:0()()()(0)[()]0x x x f x dx xf x x dx xf x δδ∞∞=-∞=-==⎰ f (x )3中令f (x )=x ,则,则只有单根,则k个单根的区间内,。
备忘:有,则11时,有,则1213,把的每个扩大积分区间:14说明:若有重根,则上式不成立。
15三、 函数的几个常用表达式 1.—积分形式(1)(2)第12章证明:在173. —— 极限形式(1) 当 时,令 ,且有在区间的积分值:由函数定义可知:P92, 例4.2.8说明:因为函数并不是给出普通的数值之间的对应关系,所以函数也不象普通的函数那样具有唯一确定的表达式。
19207. 又因为:21四、 函数导数的定义 1.f (x )00()()()f x x x dx f x δ∞-∞''-=-称为 的导数,并记作说明: 函数的导数可按通常的导数公式进行运算222. 函数n 阶导数的定义:f (x )称为 函数的n 阶导数,并记作:23五、函数导数的性质 1是对-x 是偶函数,2f (x )乘上式左边后对x 从 到 积分,得:在积分号下对任意连续函数f (x )的运算性质相同24六、三维函数25 3. 用拉普拉斯算符表示:时, 、代入,保留对r 求的定义得:4. 正交归一完备系 的完备性条件26证明:27。
量子力学之狄拉克符号系统与表象
Dirac 符号系统与表象一、Dirac 符号1. 引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的 力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式 A 来表示一个矢量,而不用具体坐标系中的分量(A x , A y , A z )表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描 述方法是由 Dirac 首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为 Dirac 符号。
2. 态矢量(1). 右矢空间力学量本征态构成完备系,所以本征函数所对应的右矢空间中的右矢也组成该空间的完备右矢(或基组),即右矢空间中的完备的基本矢量(简称基矢)。
右矢空间的任一矢量 |ψ> 可按该空间的某一完备基矢展开。
例如:=n na n ψ∑(2). 左矢空间右矢空间中的每一个右矢量在左矢空间都有一个相对应的左矢量,记为 < |。
右矢空间和左矢空间称为伴空间或对偶空间,<ψ | 和 |ψ> 称为伴矢量。
<p ’ |, <x ’ |, <Q n | 组成左矢空间的完备基组,任一左矢量可按其展开,即左矢空间的任一矢量可按左矢空间的完备基矢展开。
(3). 伴矢量<ψ | 和 |ψ>的关系 |ψ >按 Q 的左基矢 |Q n > 展开:|ψ > = a 1 |Q 1> + a 2 |Q 2> + ... + a 3 |Q 3 > + ...展开系数即相当于 Q 表象中的表示:12n a a a ψ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭<ψ| 按 Q 的左基矢 <Q n | 展开:<ψ| = a*1 <Q 1 | + a*2 <Q 2 | + ... + a*n <Q n | + ...展开系数即相当于 Q 表象中的表示:ψ+= (a*1, a*2, ..., a*n , ... )同理 某一左矢量 <φ| 亦可按 Q 的左基矢展开:<φ| = b*1 <Q 1 | + b*2 <Q 2 | +... + b*n <Q n | + ... 定义|ψ>和 <φ|的标积为:*n n nb a ϕψ=∑。
狄拉克符号
= b*j j k k b*j jk ak
jk
jk
= bk*ak
k
(4.5.15)
4.5 狄拉克符号
③ 算符的狄拉克符号表示
算符 Fµ作用在态矢量 中,得出另一个态矢量
Fµ
(4.5.16)
现在在 Q 表象中将算符 Fµ用狄拉克符号表示,由
bk k k Fµ k Fµ j j Fkja j (4.5.17)
B A anbn*
n
(4.5.1)
显然,标积满足: B A * A B
(4.5.2)
若 B A 0,则称态矢量 A 和 B 正交。归一条件为
A A 1
(4.5.3)
4.5 狄拉克符号
若 A 、 B 为某一线性厄米算符Fµ对应于本征值 i和 j的
本征态,将 A 和 B 分别记为 i 和 j ,则其正交归一条
ak k
k
展开系数 ak 为 ak k
代入(4.5.7)式得: k k
k
(4.5.7) (4.5.8) (4.5.9)
定义算符 Pk 为 Pk k k
(4.5.10)
4.5 狄拉克符号
它对任何矢量的运算,相当于把这个矢量投影到基矢 k 上 去,使它变成在基矢 k 方向上的分量,即
Fµ
薛定谔方程
一般表示
(x)
Fµ(x, ih ) (x) (x)
x
狄拉克符号表示
x
Fµ x Fµ x
ih (x) Hµ (x)
t
ih
Hµ
t
ih x x Hµ
Dirac符号
Dirac符号
8
例如, 例如,在中心力场中能量的本征波函数为 unr lm ( r ) 可表示它为 nr lm
ˆ,L ˆ2 , L ˆ ) 的共同本征函数。 它是 ( H 的共同本征函数。 z
ˆ n r lm = E n l n r lm H r ˆ2 n lm = l ( l + 1) h 2 n lm L r r ˆ n lm = m h n lm L z r r
右矢和左矢的关系
1
展开系数即相当于 Q 表象中的表示: 表象中的表示: ψ + = (a*1, a*2, ..., a*n, ... )
1
2
2
n
n
* 定义|ψ>和 <φ| 的标积为 标积为: < φ |ψ >= ∑ bn an (4.5-1)式 n (4.5-2)式 显然 <φ|ψ >* = <ψ |φ> * 符号表示的 由标积定义得: <ψ |ψ >= ∑anan = 1 用Dirac符号表示的 波函数归一化条件 波函数归一化条件 11 n Dirac符号
Dirac符号
4
§4-5-1 量子态、 量子态、Ket矢,Bra矢(Bracket)
量子力学中的状态, 量子力学中的状态,可以看作某线性空间中的一个矢 量,量子体系的状态用态矢量代表。 代表。 态矢量有两种: 态矢量有两种:Ket矢,右矢, 右矢,刃矢, 刃矢,刃,|> Bra矢,左矢, 左矢,刁矢, 刁矢,刁,<| 右矢空间 一个状态通过一组力学量完全集的测量( 一个状态通过一组力学量完全集的测量( 完全测量) 完全测量 )来 确定, 确定,通常用所测得的力学量的量子数来确定。 通常用所测得的力学量的量子数来确定。
狄拉克δ-函数及有关应用
第40卷第7期大 学 物 理Vol.40No.72021年7月COLLEGE PHYSICSJuly2021 收稿日期:202-10-10;修回日期:2020-11-05 基金项目:国家自然科学基金(12071021);北京交通大学研究生课程建设项目(134869522)资助 作者简介:郑神州(1965—),男,浙江临海人,北京交通大学理学院教授,博士,博士生导师,主要从事偏微分方程理论和应用研究.狄拉克δ-函数及有关应用郑神州1,康秀英2(1.北京交通大学理学院,北京 100044;2.北京师范大学物理系,北京 100875)摘要:狄拉克δ-函数实际上是离散情况下的Kroneckerδ-函数的连续化,它在数学和物理中都有重要的应用.基于广义函数概念引入狄拉克δ-函数的精确定义,证实狄拉克δ-函数不是通常Lebesgue局部可积意义下的普通函数;文中分别以单位矩形脉冲函数、高斯函数、钟形函数和Sinc函数的序列在弱极限意义下来逼近狄拉克δ-函数.另外,验证了狄拉克δ-函数可以作为Heaviside函数的广义导数,以及其高价广义导数,并给出狄拉克δ-函数的卷积性质、伸缩性质、复合变换性质、正交性和狄拉克梳函数,最后引入了狄拉克δ-函数与广义傅里叶变换的关系,以及其在泊松方程Dirichlet边值问题求解中的应用.关键词:狄拉克δ-函数,广义函数,弱极限,广义傅里叶变换格林函数中图分类号:O4-1 文献标识码:A 文章编号:1000 0712(2021)07 0025 05【DOI】10.16854/j.cnki.1000 0712.200456狄拉克δ-函数是一类“奇怪”的函数,有广泛应用.它按照通常古典的函数定义方式是无法做到,实际上它是非通常意义下的“函数”,更准确地称为“广义函数、Schwarz分布函数或泛函”,它是以英国理论物理学家狄拉克名字命名的,在数学和物理中有着独特的地位[1,2].狄拉克δ-函数可以用来描写物理学中一切点量,如:点质量、点电荷、瞬时源等;数学上可以进行微分和积分变换,为处理数学物理问题带来极大的方便.尤其它在偏微分方程、数学物理方程、傅立叶分析和概率论等领域都离不开这个函数的应用[3-7],有了狄拉克δ-函数,傅立叶变换就不受绝对可积条件限制,通常称为广义傅立叶变换.狄拉克δ-函数具有悠久的历史,这得从Krone ckerδ-函数讲起,Kroneckerδ-函数非常简单:δij=1,i=j0,i≠jp (1)对于一列数{ai},i=1,2,...有 jδijaj=ai,并满足规范化 jδij=1,对称化δij=δji.将离散的序列{ai}转化为连续的函数f(x),将以上式子类似地写成积分式:∫∞-∞f(x)δ(x-x0)dx=f(x0)(2)(简记:(f δ)(x)=f(x),f(x)δ(x)=f(0)δ(x))∫∞-∞δ(x-x0)dx=1(3)δ(x-x0)=δ(x0-x)(4)从离散过渡到连续,自然地从求和过渡到积分;这看起来两种δ-函数很雷同了.所以狄拉克δ-函数就达到类似于Kroneckerδ-函数的选择器效果,对于δ-函数的选择器作用是泊松先提出的,后来Cauchy利用它的选择器性质研究了许多应用问题,进一步地傅里叶给出了其无穷级数表示,在此基础上狄拉克对研究量子力学时发现了连续型的δ-函数重要作用.物理上看,狄拉克δ-函数可以看成一些通常意义下函数列的逼近,但严格的数学理论表明:这不是通常意义下的极限(这是泛函意义下的极限,或称“弱收敛”).事实上,其真正严格意义下的定义方式是在Schwarz分布函数[2](广义函数或泛函)基础上才有的,这表明从此物理上广泛实用的狄拉克δ-函数可做数学严谨的推理了.在物理和工程技术中,常常会碰到单位脉冲函数(狄拉克δ-函数)[3],如:在电学中,要研究线性电路受具有脉冲性质的电势作用后产生的电流;在力学中,要研究机械系统受冲击力作用后的运动情况.像这种常用来表示为集中在一点上单位量的质点、点电荷、瞬时力等的密度分布就是狄拉克δ-函数应用的实际背景;其特点是该函数在除了零以外的点取值都等于零,而其在整个定义域上的积分等26 大 学 物 理 第40卷于1.这种对又窄又高的尖峰函数的逼近(脉冲)有着特殊的应用,如:球棒撞击棒球接触的瞬间力作用,其密度分布函数δ(x).物理和工程上的狄拉克δ-函数通常是这样来引入的:δ(x)=∞ x=00 x≠0p ,∫∞-∞δ(x)dx=1,但这种方式定义在数学上有着明显的缺陷,是无法进行严格推理的.实际上,这不能用通常的函数来理解,严格说狄拉克δ-函数不算是一个普通函数;由于它集中在一点上的值为无穷大(无穷大的任意倍数还是无穷大),其通常函数在一点上的积分为0(没有面积).本论述从数学严格的狄拉克δ-函数定义出发,综述其基本性质,以及考虑其在数学和物理学科中的重要应用[3-7];这起抛砖引玉作用,也为狄拉克δ-函数的进一步应用建立起数学理论基础.1 狄拉克δ-函数作为广义函数定义1)广义函数[2,5]:δ-函数的准确定义需要从广义函数有关概念出发:设函数列φ(x),φn(x)∈C∞0(R)(无穷光滑的且具有紧支集),若存在M>0使得|x|>M时对任意自然数n有φ(x)=0,φn(x)=0且对k=0,1,2,..满足limn→∞supx∈[-M,M]φ(k)n(x)-φ(k)(x)=0(5)其中φ(k)(x)表示k阶导数,k=0表示原函数.则称序列φn(x)收敛于φ(x),此时称C∞0(R)为基本空间,记作函数D(R);φ(x)∈D(R)称为试验函数.若f是D(R)上的连续线性泛函,称f是D(R)上的广义函数.对于试验函数φ(x)∈D(R),用〈f,φ〉表示它所对应的泛函值,称为对偶积.D(R)上广义函数全体记成D′(R).2)狄拉克δ-函数定义[1,5]〈δ,φ〉=φ(0), φ∈D(R)(6)它是广义函数.事实上:①δ(x)是线性的:对于任意的α、β∈R以及φ1(x)、φ2(x)∈D(R),有〈δ,αφ1+βφ2〉=αφ1(0)+βφ2(0)=α〈δ,φ1〉+β〈δ,φ2〉(7)②δ(x)是连续泛函:对于φn(x)∈D(R),若limn→∞φn(x)=φ(x),有limn→∞〈δ,φn〉=limn→∞φn(0)=φ(0)=〈δ,φ〉(8)这里要强调的广义函数收敛性一定要在试验函数作用下收敛的,泛函分析中称为弱收敛.3)狄拉克δ-函数不是通常意义下“函数”.首先,普通意义下的函数一定是广义函数,作为一般Lebesgue意义下的局部可积函数可以等同于广义函数.事实上,实轴上局部可积函数Lloc(R)对任意的闭区间[a,b],有∫ba|f(x)|dx<∞.定义对偶积为〈F,φ〉=∫∞-∞f(x)φ(x)dx(9)简单的验证:这是一个线性连续泛函.任一个局部可积函数按以上做法都有唯一的广义函数与之对应,且可证明:不同的局部可积函数对应于不同的广义函数,并保持线性运算不变;这样可以将局部可积函数f等同于与其对应的广义函数F.反之,狄拉克δ-函数不是通常函数,没有局部可积函数与之对应[1,5].事实上,反证法:若存在这样的局部可积函数f(x),有〈f,φ〉=∫∞-∞f(x)φ(x)dx=〈δ,φ〉=φ(0), φ∈D(R)(10)特别地取特殊的试验函数为φ(x)=e-11-x2+1,x≤10,x>1p (11)则φ(nx)∈D(R),且 ∫∞-∞f(x)φ(nx)dx=φ(0)=1, n∈N(12)但另一方面∫∞-∞f(x)φ(nx)dx=∫1n-1nf(x)φ(nx)dx≤∫1n-1nf(x)dx→0, (n→∞)(13)这是一个矛盾,所以狄拉克δ-函数没有局部可积函数与之对应.2 狄拉克δ-函数的逼近方式上面定义的广义函数有点抽象,下面我们从物理直观上,用各种函数列逼近的方式来理解狄拉克δ-函数,这种逼近也不是通常意义下的极限,而是泛函意义下的逼近,是一种弱形式的极限[1,2,5].例如:1)用一个积分值为1矩形脉冲函数序列{Hn(t)}序列的弱极限来逼近.从直观上看,函数序列{Hn(t)}是在区间-1n,1ny r 上一系列均匀地放置单位质量所产生的质量分布密度,当n趋向无穷时,其广义极限(弱极限)就是在原点上放置单位质量第7期郑神州,等:狄拉克δ-函数及有关应用27 所产生的质量分布密度.因此,狄拉克δ-函数就是在原点上放置单位质量所产生的分布密度.数学推导:对任意正整数n,在-1n,1ny r 上均匀地放置单位质量的分布密度Hn(t)=n2,t<1n0,t>1n(14)显然Hn(t)∈Lloc(R)(积分值不超过1).对任意φ(x)∈D(R),有〈Hn,φ〉=∫∞-∞Hn(x)φ(x)dx=n2∫1n-1nφ(x)dx(15)用积分中值定理于φ(x)∈D(R)得到limn→∞〈Hn,φ〉=φ(0)=〈δ,φ〉.所以δ(x)是Hn(t)弱极限.同理可以得到逼近δ(x)的其它常用函数列.2)对于任意φ(x)∈D(R),有:对ρt(x)=12aπ槡te-x24a2t(高斯函数,或称正态分布密度函数), limt→0+〈ρt(x),φ〉=limt→0+∫∞-∞12aπ槡te-x24a2tφ(x)dx=δ(0)=〈δ,φ〉.3)对ρa(x)=aπa2+x2C o (钟形函数),lima→0〈ρa(x),φ〉=〈δ,φ〉.4)ρn(x)=sinnxπx(Sinc函数), limn→∞〈ρa(x),φ〉=〈δ,φ〉.3 广义导数(弱导数)和狄拉克δ-函数先给出广义导数定义:对一个广义函数f∈D′(R),若存在f′使得〈f′,φ〉=-〈f,φ′〉, φ∈D(R)(16)则称为广义函数f有一阶广义导数,其广义导数为f′(见文献[1,2,5]).一般地,定义k-阶广义导数为;若有f(k)使得〈f(k),φ〉=(-1)k〈f,φ(k)〉, φ∈D(R)(17)称f(k)为广义函数f的k-阶广义导数,k=1,2,….注:通常意义下的导数一定是广义导数,其本质就是分部积分公式;反之不对,从定义得知:广义导数不是逐点定义的.例如:Heaviside函数H(x)=1,x≥00,x<0p (18)对于任意φ(x)∈D(R),则有〈H′,φ〉=-〈H,φ′〉=-∫∞-∞H(x)φ(x)dx=-∫∞0φ(x)dx=φ(0)=〈δ,φ〉(19)所以狄拉克δ-函数可看作是Heaviside函数的广义导数.考虑函数|x|的第m阶广义导数(m为不小于1自然数),有〈|x|′,φ〉=-〈|x|,φ′〉=-∫∞-∞|x|φ(x)dx=∫0-∞xφ(x)dx-∫∞0xφ(x)dx=-∫0-∞φ(x)dx+xφ∞0+∫∞0φ(x)dx-xφ0-∞=-∫0-∞φ(x)dx+∫∞0φ(x)dx=∫∞-∞g(x)φ(x)dx=〈g,φ〉(20)其中g(x)=1,x≥0-1,x<0p .所以|x|′=2H(x)-1.一般地|x|(m)=2δ(m-1), m≥2(21)4 狄拉克δ-函数性质和广义傅里叶变换[1,3,5]两个已知函数f1(t)、f2(t)卷积定义:f1(t) f2(t)=∫+∞-∞f1(τ)f2(t-τ)dτ(22)狄拉克δ(x)函数一些重要性质:1)卷积性质 ∫∞-∞f(x)δ(x)dx=f(0),∫∞-∞f(x-x0)δ(x)dx=f(x0)(23)这里若取f(x)=1,则有∫∞-∞δ(x)dx=1.更一般地,∫baf(x)δ(x-x0)dx=f(x0),x0∈(a,b)0,x0(a,b)p .2)积分下作一个变量代换得到伸缩变换:δ(ax)=1aδ(x)(a≠0).一般地,狄拉克δ(x)函数的复合:设an为连续函数f(x)的单零点(即:f(an)=0,f′(an)≠0),则有δ[f(x)]= nδ(x-an)f′(an).事实上,对于试验函数φ(x)∈D(R)和f(x)的单零点an,由于f(an)=0,f′(an)≠0,在每个an存28 大 学 物 理 第40卷在邻域都是一一对应,作局部的变量代换y=f(x)∫∞-∞φ(x)δ[f(x)]dx= i∫ai+εai-εφ(x)δ[f(x)]dx= i∫f(ai+ε)f(ai-ε)φ[f-1(y)]δ(y)dy|f′(x)|= iφ(ai)|f′(ai)|(24)从而δ[f(x)]= nδ(x-an)f′(an)(见[6]).由此f(x)=(x2-a2) δ(x2-a2)=12|a|δ(x-a)+δ(x+a)C o(25)3)正交性:设{ n(x)}是区间(a,b)上函数空间的一个完备正交基函数,n(x)为 n(x)的共轭函数,则对于(a,b)上任意两个内点x,x0∈(a,b),有: nn(x) n(x0)=δ(x-x0).事实上,由狄拉克δ(x)函数的卷积性质,对于任意的f(x)∈C∞0(a,b),所以只要证∫baf(x)nn(x) n(x0)C o dx=f(x0)即可.由于{ n(x)}是完备正交基,f(x)= mcmm(x),cm=∫bam(x)f(x)dx,则A=∫baf(x) nn(x) n(x0)C o dx= ∫bamcmm(x) nn(x) n(x0)C o dx= mcm n∫bam(x) n(x)dxC o n(x0)(26)考虑{ n(x)}是正交基∫bam(x) n(x)dx=δmnA= mcmnδmnn(x0)= mcmm(x0)=f(x0)(27)得证.4)狄拉克梳函数[1,8]:平移狄拉克δ(x)-函数的无穷级数Comba(x)= ∞m=-∞δ(x-ma)称为狄拉克梳函数(a≠0).对此,我们有F[Comba(x)]=Comb1a(ω)(28)即狄拉克梳函数的傅里叶变换仍是狄拉克梳函数.事实上,考虑函数列1a槡e-2πimx/ap i ∞-∞是周期为|a|单位正交基(三角函数正交系),狄拉克梳函数Comba(x)是以|a|为周期的函数,傅里叶级数展开:∞m=-∞δ(x-ma)=1a ∞n=-∞e-2πinx/a.所以,由傅里叶变换的平移性质:F[Comba(x)]=F[ ∞m=-∞δ(x-ma)]=∞m=-∞e-i2πmaω= ∞k=-∞δω-k1aC o=Comb1a(ω)(29)得证.5)三维狄拉克函数:δ(x,y,z)=δ(x)δ(y)δ(z),即:δ(x,y,z)=0, x2+y2+z2≠0∞, x2+y2+z2=0p ,∞-∞δ(x,y,z)dxdydz=1.类似于一维的性质:∞-∞f(x,y,z)δ(x-x0,y-y0,z-z0)dxdydz=f(x0,y0,z0), f(x,y,z)∈C(R3)常见的一些重要函数,如:常数函数,符号函数,单位阶跃函数以及正余弦函数等不满足傅里叶积分定理的绝对可积条件,即不满足条件∫ba|f(x)|dx<∞,所以一般的傅里叶变换不存在;但引入δ(x)-函数可以求它的广义傅里叶变换.按照经典数学函数的定义,功率信号(比如周期信号,最典型的是正弦余弦函数)的傅里叶变换是不存在的,但如果引入了广义函数概念,则可以求得功率信号的广义傅里叶变换,于是我们就可以方便地进行频谱分析了[1,5,8].例如:1)δ(x)函数的傅里叶变换为1,即:F[δ(x)]=1.事实上F[δ(t)]=∫+∞-∞δ(t)e-iωtdt=e-iωtt=0=1.2)Heaviside函数H(x)=1,x≥00,x<0p 定义在x轴上不是绝对可积的,但它却有广义傅里叶变换1iω+πδ(ω).3)又如求正弦函数f(t)=sinω0t的不是绝对可积的,但它的广义傅里叶变换F(ω)=F[f(t)]=∫+∞-∞e-iωtsinω0tdt=第7期郑神州,等:狄拉克δ-函数及有关应用29 12i∫+∞-∞(eiω0te-iωt-ei(-ω0)te-iωt)dt=12i2πδ(ω-ω0)-2πδ(ω+ω0)=iπδ(ω+ω0)-δ(ω-ω0)(30)一般地,不满足可积性条件函数的广义傅里叶变换,其像函数通常与狄拉克δ-函数有关[8].5 δ-函数在边值问题中的应用基本解和格林函数是由δ-函数来定义的.这里以拉普拉斯算子为例谈论其在线性偏微分方程中边值问题求解中的应用.若在3维空间中坐标原点放置一个单位正电荷,即电荷密度分布函数为δ-函数,这时电位满足方程-ΔΓ=δ(r),这里拉普拉斯算子Δ= 2x2+ 2y2+2z2;则其解(拉普拉斯方程的基本解)为Γ(x,y,z)=14πr,其中r=x2+y2+z槡2.事实上,对方程两边同时作傅里叶变换Γ(ρ)=F[Γ(r)]= R3Γ(r)e-iρ·rdr,则有ρ2Γ=1 Γ=1ρ2,其中ρ=|ρ|;再作傅里叶逆变换Γ(r)=F-1[Γ(ρ)]=18π3 R3Γ(ρ)eiρ·rdρ=14πr.于是对全空间具有电荷分布为f(r)的泊松方程-Δu=f(r),电位u的解为u(r)= R314π|r-r′|f(r′)dr′.而在一个区域Ω R3内放置一个单位正电荷,并保持边界值为零,即满足-ΔG=δ(r), r∈ΩGΩ=0, r∈ Ωp ,这样的解函数称为格林函数.格林函数在偏微分方程中有重要的作用,对于线性问题,不论外力项和边界值,该问题求解统一化为求只与区域形状有关的格林函数,当其区域比较特殊时,利用物理意义(如镜像法)可以解出其格林函数具体表达式.这时-Δu=f(r), r∈Ωu Ω=φ(r), r∈ Ωp 的解就可以表示为:对于任意r∈Ω,有u(r)= ΩG(r,r′)f(r′)dr′+ ΩnG(r,r′)φ(r′)dSr′(31)其中n为 Ω上的外单位法向向量.参考文献:[1] HoskinsRF.Deltafunctions:introductiontogeneralisedfunctions[M].2nded.WoodheadPublishingLimited,2010.[2] L施瓦兹.广义函数论[M].姚家燕,译.北京:高等教育出版社,2010.[3] 梁昆淼.数学物理方法[M].4版.北京:高等教育出版社,2010.[4] 库朗,希尔伯特.数学物理方法:1、2卷[M].北京:科学出版社,1981.[5] 姜礼尚,陈亚浙,刘西垣,等.数学物理方程讲义[M].3版.北京:高等教育出版社,2007.[6] 姜礼尚.偏微分方程选讲[M].北京:高等教出版社,1997.[7] 谷超豪,李大潜,陈恕行.数学物理方程[M].3版.北京:高等教育出版社,2012.[8] BradG.Osgood.LecturesontheFouriertransformanditsapplications[M].Providence,RhodeIsland:AmericanMathematicalSociety,2019,33.Diracδ-functionanditsrelatedapplicationsZHENGShen zhou,KANGXiu ying(1.CollegeofScience,BeijingJiaotongUniversity,Beijing100044,China;2.DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:ItisindicatedthatDiracδ-functionisacontinuationofthediscreteKroneckerδ-function,whichplaysanimportantroleinbothmathematicsandphysics.Inthispaper,theprecisedefinitionofDiracδ-functionisintroducedbasedontheconceptofgeneralizedfunctions,anditisprovedthattheDiracδ-functionisnotausualfunctionintheLebesguesenseoflocalintegrableone.Tothisend,theDiracδ-functionishereapproximatedinthesenseofweaklimitbymakinguseofthesequencesoftheunitrectangleimpulsefunctions,Gaussfunctions,Bell(下转77页)第7期胡 立:硬币“跳舞”的动力学分析77 同时,实验所测得的全过程时间比较短,这是因为实验过程中液膜破裂并不完全,瓶口与硬币的接触部分仍有一部分残留的液膜.倘若在理论模型中的液膜破裂后运动过程也加入部分表面张力,则理论模型的全过程时间会更接近实验测定值.图5 等差地改变放置误差Δx时H与t的理论关系曲线在图5中,等差地改变放置误差Δx,发现硬币所能达到的最大高度Hmax随着Δx的增大而增大.这与我们的物理直觉是相符的,放置误差越大,瓶内压强提供的向上支持力力臂(R+Δx)越大,硬币翘起的角加速度就越大,硬币更容易翘起且翘起更快,进而在液膜破裂时积累了更大的角速度,能够达到的最大高度Hmax也随之增大.3 结论本文通过提出“放置误差”这一重要概念,从动力学的角度,对硬币“跳舞”的过程进行了分析,推导出硬币运动的二阶常微分方程,通过数值计算发现硬币翘起的最大高度与转动全程时间都与放置误差存在密不可分的联系.放置误差越大,硬币翘起的最大高度就越大,转动全程所花的时间越少,并且通过实验验证了理论模型的正确性.参考文献:[1] 庆秉承,刘萍,袁识博,等.置于冷瓶口硬币的弹起现象研究[J].大学物理,2019,38(11):52 56.[2] 陶封邑,庄洋,黄敏,等.一个有趣的热力学问题:硬币何时“翩翩起舞”[J].大学物理,2019,38(12):58 61.[3] 漆安慎,杜婵英.普通物理学教程力学[M].北京:高等教育出版社,1997:201 207.DynamicanalysisofdancingcoinHULi(DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:Fromtheperspectiveofdynamics,thispaperconductsatheoreticalanalysisonthethirdproblemofthe2018InternationalYoungPhysicists’Tournament(IYPT2018),“DancingCoin”,andobtainsthechangeintheheightofthecoinovertimeduringasinglebeating.Atthesametime,theconceptof“placeerror”ispro posed,andtheinfluenceofcoinplaceerroronthecoin’stiltingheightisfurtherdiscussed.Itisfoundthatthegreatertheplaceerror,thefasterthecoinwillrotateandthegreaterthemaximumheightofthecoinwillbereached.Intheexperiment,theprocessofcoindancingunderdifferentplaceerrorswasrecordedwithahigh-speedcamera,andsoftwaretrackerwasusedtotrack.Thecomparisonbetweentheexperimentalresultsandthetheoreticalmodelverifiesthecorrectnessofthetheoreticalmodel.Keywords:dynamics;IYPT;dancingcoin;placeerror(上接29页)shapedfunctionsandSinc-functions,respectively.Inaddition,itischeckedthattheDiracδ-functionisobtainedasageneralizedderivativeoftheHeavisidefunction,anditshigherderivativeisalsoshown.Moreover,theconvolutions,scales,compoundtransformations,orthogonalityandCombDiracfunctionsarerecalled,respectively.Fi nally,therelationshipbetweenDiracδ-functionandgeneralizedFouriertransformisintroduced,andwepresentanapplicationtosolvetheDirichletboundaryvalueproblemofthePoissonequation.Keywords:Diracδ-function;generalizedfunction;weaklylimits;generalizedFouriertransform;Greenfunc tion。
狄拉克符号
分立谱 Fm Fn mn 或 m n mn
连续谱
F
F
/
如:坐标的本征矢: x x (x x) 动量的本征矢: p p ( p p)
三、在具体表象中的表示
1.态矢量的表示
取Q表象:
(1) Q的本征值为分立谱:基矢 Q或n n
对任意态矢量 A
A an n
• 量子力学可以不涉及具体表象来讨论粒子的状态 和运动规律。
采用狄拉克符号表述量子力学理论有两个优点: (1)运算简洁 (2)可毋需具体表象讨论问题。
二、狄拉克符号规定
1.右矢(ket)与左矢(bra)
在抽象表象中 Dirac 用右矢空间的一个矢量 | >与量子状态相对应,该矢量称
为右矢。 ① 量子态:→态矢量 → 右矢
*(x)F (x,
i
) (x
x
x) (x)dxdx
*(x)Fˆ (x)dx
四、表象变换
设 A表象:基矢为 n, 任一量子态 an n
n
B表象:基矢为 , 同一量子态 b
n
A表象 → B表象
量子态 an n
b
因为 b n n Snan
n
n
故 b Sa
| (t) Fˆ
Qm | Qn mn
(t) | (t) 1
q | q (q q)
| Qn Qn | 1
| q dq q | 1
| (t ) Fˆ | (t )
Fˆ | | F | Fˆ |
Fmn m | Fˆ | n i d | (t ) Hˆ | (t ) :
①设Q具有分立本征谱,则基矢 Qn 或 n
B n n B bn n
狄拉克(Dirac)符号
< n | F | ψ >=< n | ϕ > < n | ϕ >= ∑ < n | F | m >< m | ψ >= ∑ Fnm < m | ψ >
m m
∧
注意 : )式是抽象的算符方程 , ) )式是具体表象中的算符方程, 意: ( 24 24) 程, ( 25 25) , ( 26 26) < m | ψ >, < n | ϕ > 是算符作用前、后的态矢在 {| n >}表象中的分量, Fnm 也是具体表象中 的矩阵元。 1.4.2 连续谱 (1)算符作用在基矢 | λ > 上
(6)
n
这里 < B | A >=< A | B > * 1.2 基矢的狄拉克符号表示 1.2.1 离散谱
| n >, | λ > 仍为抽象的本征矢
力学量完全集的本征函数 {u n } 具有离散的本征值 {Qn }时,对应的本征矢 | 1 >, | 2 >,⋯ | n > 或 | nlm > 等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为 ⎛1⎞ ⎜ ⎟ ⎜0⎟ | 1 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛0⎞ ⎜ ⎟ ⎜1⎟ | 2 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛ 0⎞ ⎜ ⎟ ⎜⋮⎟ | n >= ⎜ 1 ⎟ ← 第 n 行 ⎜ ⎟ ⎜ 0⎟ ⎜⋮⎟ ⎝ ⎠ (8)
∧ ∧
) (29 29) (30 ) 30) ) (31 31)
< λ ′ | ϕ >=< λ ′ | F | ψ >
< λ ′ | ϕ >= ∫ | < λ ′ | F | λ > dλ < λ | ψ >= ∫ Fλ ′λ < λ | ψ > dλ 例如 < x ′ | ϕ >=< x ′ | F | ψ >= ∫ Fx′x < x | ψ > dx 即为 x 表象中方程
量子力学知识:量子力学与狄拉克符号
量子力学知识:量子力学与狄拉克符号这篇文章并不是关于费恩曼讲义书中任何一章的笔记,只是单独的一篇讲狄拉克符号含义和用法的文章。
我在看书的过程中对狄拉克这个简洁又多功能的符号产生过很多疑惑,今天就尝试将这些疑惑和自己找到的答案写出来,希望对其他同学有些许帮助。
如果大家有发现错误也希望可以进行批评指正。
狄拉克符号在量子力学中是一个很神奇的符号,它的外观非常的简洁、洋气,在量子力学中的作用就像路标对开车的作用一样重要,所以受到大量学习量子力学的人的喜爱。
其含义非常简单,最基本的狄拉克符号如下所示<状态2|状态1>狄拉克符号是从右往左看的,<状态2|状态1>表示的是从状态1到状态2的概率幅(关于概率幅的含义可以看我之前的推送量子力学笔记——电子在晶格中的传播)。
状态(state)在量子力学可以用来表示很多信息,比如一个粒子它处于某一位置可以称为处于某一状态,相应的它的特定的动量、角动量等信息都可以描述为状态(因为更多人直接称之为“态”,所以下文会直接简写为态)。
值得注意的是,态是矢量,具有方向性,<态2|为左矢量,|态1>为右矢量。
狄拉克符号还可以有各种“拆卸组装转换”的方法:1、狄拉克符号可以拆分成局部,比如:<态2|,或者|态1>拆分好处一来可以减少字数,二来空缺的那一部分要补充时可以填入任何态,增加使用的灵活性。
2、狄拉克符号还可以连着使用,比如:<态3|态2><态2|态1>表示为态1到态2,然后从态2再到态3的概率幅。
3、狄拉克符号转换前后位置时需要取复数共轭:<态2|态1> = <态1|态2>*(变换的原理会在下文讲到)4、狄拉克符号还可以量化两个状态跳转的过程:<态2|Q|态1>Q的含义为一个算符(operator),意思是态1经过算符变换到态2,这个算符可以是施加外力、旋转、使粒子穿过一个特殊设备、甚至静置一段时间,等等……对比一下同样表示概率幅的波函数,狄拉克符号没有像指数、复数这些复杂的东西,而且可以任意“拆分组装”,所以显得非常友好。
4.5狄拉克符号
狄拉克符号
优点: (1)运算简捷 (2)不用在具体表象中讨论问题 一.态的描述 1. 左矢(bra)与右矢(ket)
x表象
Q表象
无表象 右矢
左矢
本征态,常用本征值或相应量子数标记
完备性:
若: 2. 内积—— x表象 与
则
Q表象
无表象 是一个数
显然:
3.本征态的正交归一条件
例如:坐标的本征矢
动量表象
影算符,对任一矢量运算后,把该矢量 变为它的基矢 方向上的分矢量,或者说 的作
用是把任意态矢量在 4. 单位算符
方向上的分量挑选出来。 同理,连续谱:
迪拉克符号表示的本征矢 分立谱 连续谱
四、算符和态在具体表象中的表示
1.算符具体表象中的表示
无表象
Q表象,
而
——算符的狄拉克表示
2.任意态函数在具体表象中的狄拉克表示
例如:1. 坐标在自身表象中的本征函数 无表象
动量在坐标表象中的本征函数 动量在自身表象中的本征函数
坐标在动量表象中的本征函数
坐标表象 坐标算符 动量算符 对易式 坐标算符 本征函数 动量算符 本征函数
* u l ( x ' )u l ( x)dl = d ( x ' - x)
二、基本公式的狄拉克表示
1.本征方程
x表象 Q表象 无表象
2. 薛定谔方程
Q表象 无表象:
3.平均值公式 x表象 Q表象
无表象:
三、态矢量在具体表象中的狄拉克符号表示
1. 任意态矢量 由完备性:
分立谱
连续谱
狄拉克表示:
2. 展开系数
:
展开系数
是态矢在
上的分量。当所有的
§4-5狄拉克符号
态矢在Q 四、态矢在Q表象中投影 (1)Discrete Spectrum )
| Ψ >= ∑ a n un >
n
⇔ Ψ ( x,t) =
∑a
n
n
( t )un ( x )
上式左乘<m| 上式左乘
< m Ψ >=
=
∑a
n
n
< m n>
∑
n
a nδ m n
= am
所 以 , 态 矢 量 |ψ > 在 Q 表 象 中 投 影 为 : a m= < m Ψ > ( 离 散 谱 )
态矢(波函数) 二、态矢(波函数)的狄拉克表示
本征态矢量(本征函数) 2.本征态矢量(本征函数) 离散谱) (1)Discrete Spectrum (离散谱){un(x)} ) |un(x)> |n> 例如1 线性谐振子哈密顿算符的本征函数为 例如1:线性谐振子哈密顿算符的本征函数为ψn(x) 用狄拉克符号可以表示为: 用狄拉克符号可以表示为: |n> 例如2 氢原子哈密顿算符的本征函数为 例如2:氢原子哈密顿算符的本征函数为:ψnlm 用狄拉克符号可以表示为: 用狄拉克符号可以表示为: |nlm> |200>态 能量为E 如果氢原子处于 |200>态,能量为E2;角动 量为: 角动量L 量为:l(l+1)ħ=0;角动量Lz=mħ=0
< n n' > = δ nn' ⇔ ∫ u* um dx = δ nm n
本征函数正交归一化方程
例如:线性谐振子哈密顿算符的本征函数为 例如:线性谐振子哈密顿算符的本征函数为ψn(x) 则内积可以写为: 则内积可以写为:
量子力学教程第十四讲
2.薛定谔方程
ih Hˆ ih Hˆ
t
t
3.平均值公式
F * Fˆ dx * dx
F | Fˆ | |
若归一化,<|>=1
5.
4.正交归一方程
un*umdx mn n | m nm -离散谱
uq*uq'dx (q q ') q | q ' (q q ')-连续谱
(2) Q为 continuous spectrum
Fˆ 算符在Q表象中矩阵元狄拉克表示 Fqq/ q Fˆ q/
Fˆ 在Q表象中的矩阵元积分形式 Fqq/ uq*Fˆuq/ dx
七、常见量子力学公式的狄拉克表示 1.算符的本征方程
Fˆ Fˆ
x表象中 x | Fˆ | x |
q q' ( q q') u*qu'qdx ( q q')
连续谱本征函数正交归一化方程
例 坐标算符与动量算符的本征函数的内积 动量算符: pv pv' ( pv pv')
坐标算符: x x' ( x x')
四、态矢在Q表象中投影 (1)Discrete Spectrum
▲ 能量算符的本征态 En或 (n 为 En本征值Hˆ ) ▲ 角动量平方算符 Lˆ2和分量算符 L的ˆz共同本征态 l,, m
l(l 1)h和2 m为 和Lˆ2 本征Lˆz值。
三、态矢的内积(标积)
1.一般态矢的内积
A B a*nbn A+B a*nbn
n
n
A
( a1* ,a*2 L
aq q dq
aq q |
q dq q |
所以:连续谱基矢量封闭性方程为:
P四章第四讲狄拉克符号
狄拉克:
要这么复杂吗?我认为量子力学的波函数,算符和定律 等与具体表象无关。
1. 狄拉克(Dirac)符号
定义:左矢(bra)、右矢(ket) (源于词:bracket)
A *(rr )Aˆ (rr )drr ( , Aˆ ) Aˆ
t
ih m m Hˆ
t
m Hˆ 1
m Hˆ n n n
ih t am n Hmnan
平均值公式1的矩阵形式
F Fˆ 1 Fˆ 1
m m Fˆ n n mn
am* Fmnan mn
平均值公式2的的矩阵形式
( , ) 2 d 3r * d 3r 1
本征矢的正交归一化
x | x
x | x ' ( x', x ) (x x ') pr | pr ') ( pr ', pr ) ( pr ' pr )
n | n m n (um , un ) mn
量子力学与统计物理
Quantum mechanics and statistical physics
光电信息学院 李小飞
第四章:表象与矩阵力学
第四讲:狄拉克(Dirac)符号
引入:一对奇妙的组合
狄拉克:沉默寡 言,追求精确。
剑桥大学同事 定义了“一个小 时说一个字”为 一个“狄拉克” 单位
海森堡:活泼开 朗,喜唱歌跳舞, 是团队中的开心 果。
F | an |2 fn n n Fˆ n
狄拉克符号(Dirac)
狄拉克符号(Dirac )1狄拉克符号量子体系状态的描述,前述波动力学和矩阵力学两种方法,其共同特点是:与体系有关的所有信息都有波函数给出;极为重要的是波函数可以写成各类力学量的本征函数的线性组合,而展开系数模平方具有力学量概率的含义。
问题:能否不从单一角度描述体系,而用统一的方式全面概括体系的所有性质及概念?狄拉克从数学理论方面,构造了一个抽象的、一般矢量--态矢,并引进了一套“狄拉克符号”,简洁、灵活地描述量子力学体系的状态。
1.1狄拉克符号的引入 1.1.1 态空间任何力学量完全集的本征函数系{})(x u n 作为基矢构成希尔伯特空间(以离散谱为例),微观体系的状态波函数ψ作为该空间的一个态矢,有∑=nn n u a ψ (1)n a 即为态矢ψ在基矢n u 上的分量,态矢ψ在所有基矢{}n u 上的分量{}n a 构成了态矢在{}n u 这个表象中的表示(矩阵)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= n a a a 21ψ () ,,,,**2*1n a a a =+ψ (2) 微观体系所有可以实现的状态都与此空间中某个态矢相对应,故称该空间为态空间注意:(1)式中的n u 只是表示某力学量的本征态,而抛开其具体表象;(2)式的右方是ψ的{}n u表象1.1.2 态空间中内积(标积)的定义设态空间中两个任意态矢A ψ与B ψ在同一表象{}n u 中的分量表示各为{}n a 与{}n b ,则两态矢内积的定义为()∑=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+n n n n n B A b a b b b a a a *21**2*1,,,, ψψ (3)注意:A B B Aψψψψ++≠ 1.1.3狄拉克符号的引入态空间中的ψ与+ψ在形式上具有明显的不对称性,狄拉克认为它们应该分属于两个不同的空间⇒伴随空间 引入符号>,称为右矢 [Ket 矢,Bra 矢(Bracket 括号><)]微观体系的一个量子态ψ用>ψ表示,>ψ的集合构成右矢空间,>ψ在右矢空间中的分量表示可记为矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=> n a a a 21ψ (4)约定:右矢空间的态矢 ,,,B A ψψψ一律用字母 ,,,>>>B A ψψψ表示力学量的本征态矢一律用量子数 ,,,2,1>>>>nlm n ,或连续本征值>λ表示 引入符号 <,称为左矢 微观体系的一个量子态ψ也可用ψ<表示,但在同一表象中>ψ与ψ<的分量互为共轭复数(),,,,**2*1n a a a =<ψ (5)ψ<的集合构成左矢空间引入狄拉克符号后,任意两个态矢>>B A ,的内积定义为同一表象下伴随空间中相应分量之积的和∑=++>=<nn n n n b a b a b a A B ***11| (6)这里*||>>=<<B A A B >>λ|,|n 仍为抽象的本征矢1.2 基矢的狄拉克符号表示 1.2.1 离散谱力学量完全集的本征函数{}n u 具有离散的本征值{}n Q 时,对应的本征矢>>>n |,2|,1| 或>nlm |等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 0011| ⎪⎪⎪⎪⎪⎭⎫⎝⎛>= 0102| …… ←⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 010|n 第n 行 (7)(1)基矢具有正交归一性 mn n m δ>=<| (8) (2)展开定理 ∑>>=nn n a ||ψ (9)两边同时左乘|m <得∑∑==><>=<nm mn n nn a a n m a m δψ|| (10)说明展开系数是态矢在基矢上的分量 (3)封闭性 把>=<ψ|n a n 代入>ψ|中得,><>>=∑ψψ|||n n n所以1||=<>∑n n n(11)称为基矢的封闭性 ※狄拉克符号运算中非常重要的关系式 1.2.2 连续谱当力学量本征值构成连续谱λ时,对应的基矢记为{}>λ|(1)正交归一性 )(|λλδλλ'->='< (12) (2)展开定理 ⎰'>'>=λλψλd a || (13) >=<ψλλ|a (14) (3)封闭性 1||=<>⎰λλλd (15)注意: >>>λ|,|,|nlm n 只表示某力学量抽象的本征矢,例如>'x |只表示本征值为x '的力学量x 的本征矢,而具体的基矢形式为:x 表象中)()(|x x x u x x '-=>='<δ,动量表象中px ip e x u x p-=>=<2/1)2(1)(|π,同理 )(|x u n x n >=< )(|p u n p n >=< 1|>=<n n ),,(|ϕθψr nlm x nlm >=< px ie p x2/1)2(1|π>=<1.3 态矢在基矢下的形式 1.3.1 离散谱基矢为{}>n |,态矢记为>ψ|或 ,|,|>>B A ,用基矢展开><>>=⋅>=∑ψψψ|||1|n n n(16)展开系数>=<ψ|n a n 构成>ψ|在>n |表象中的分量,也可写成⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>=ψψψψ||2|1|21n a a a n (17) 相应的左矢 ∑><<=<nn n |||ψψ (18)()()><><><==<n a a a n |2|1||**2*1ψψψψ (19)1.3.2 连续谱⎰><>>=ψλλλψ|||d (20) 或 ⎰<><=<|||λλλψψd (21)1.3.3 注意:>ψ|只表示一个抽象的态矢,只有),(|t x x ψψ>=<为x 表象的波函数;n a n >=<ψ| 为>n |表象的波函数1.4 线性厄米算符的作用 1.4.1 离散谱(1)算符作用在基矢上∑∑>>=><>=∧∧nnnm n F m F n n m F ||||| (22)算符矩阵元 >=<∧m F n F nm || (23) (2)算符作用在态矢上(算符方程)>>=∧ϕψ||F (24) 即有 >>=<<∧ϕψ|||n F n (25) 或 ∑∑><>=><<>=<∧mmnm m F m m F n n ψψϕ||||| (26)注意:(24)式是抽象的算符方程,(25),(26)式是具体表象中的算符方程,><><ϕψ|,|n m 是算符作用前、后的态矢在{}>n |表象中的分量,nm F 也是具体表象中的矩阵元。
量子力学之狄拉克符号系统与表象
Dirac符号系统与表象一、Dirac符号1.引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式A来表示一个矢量,而不用具体坐标系中的分量(Ax ,Ay,Az)表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描述方法是由Dirac首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为Dirac 符号。
2.(1).(或基组)(2(3<ψ|按定义有:ψψa)在同一确定表象中,各分量互为复共轭;b)由于二者属于不同空间所以它们不能相加,只有同一空间的矢量才能相加;c)右矢空间任一右矢可以和左矢空间中任一左矢进行标积运算,其结果为一复数。
(4).本征函数的封闭性a)分立谱展开式:可得:因为|ψ>是任意态矢量,所以:b)连续谱对于连续谱|q>,q取连续值,任一状态|ψ>展开式为:因为|ψ>是任意态矢量,所以:这就是连续本征值的本征矢的封闭性。
c )投影算符|Q n ><Q n |或|q><q|的作用相当一个算符,它作用在任一态矢|ψ>上,相当于把|ψ>投影到左基矢|Q n >或|q>上,即作用的结果只是留下了该态矢在|Q n >上的分量<Q n |ψ>或<q|ψ>。
故称|Q n ><Q n |和|q><q|为投影算符。
因为|ψ>在X 表象的表示是ψ(x,t),所以显然有:在分立谱下:所以*(')()(')n n nu x u x x x δ=-∑。
在连续谱下:所以*(')()(')u ⎰。
3.(1X 即Q (2即有:4.到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写状态的波函数是坐标的函数。
量子力学教程 第二版 4.5 狄拉克符号
ˆ H n E n n ;没表象
ˆ x , x , t dx ;基本公式的通常写法 4 F x, t F i x ˆ x F x F x dx ; 表象的 Dirac 表示
ˆ F F ; 没表象
5 u m x u n x dx mn ;基本公式的通常写法
表示为 m ,其正交归一性为: , m ' , m ' ' mm'
4.封闭性 (a)连续谱情况:任何一态矢 A 在坐标表象中用波函数 x ' , t
描写, x ' , t x ' A 就是刃 A 在 x 表象中的分量。
ˆ 由于 x 在自身表象中的基矢 x ' x x ' 组成完全系,则 A
ˆ B m m B mFA
n
n
ˆ mFn
nA
ˆn nA m F n
ˆ ˆ A n n F m A F m
F
nm
Fmn
而 m 是任意的
ˆ 所以 B A F ˆ 此即为 B F A 的共轭式。
ˆ ˆ ˆ ˆ ˆ 注:当F 为厄米算符,即F F 时, B A F 写为 B A F 。
n n
解释:将刁矢 x 左乘、刃矢x '
右乘 n n 1 两边得:
n
n
x n n x' x x' x x'
即: u x ' u n x x x ' n
n
P(四章第四讲)狄拉克符号
ˆ (t ), H ˆ ˆ (t )] A 则 d A(t ) 1 [ A dt i t
(4)
上式称为Heisenberg方程。
3)狄拉克(Dirac)绘景与狄拉克方程 也称相互作用绘景(I绘景),他把哈密顿量 分解成两部分(比如:能精确求解的和含微扰的 哈密顿量;也称不含时的和含时的哈密顿量)
展开系数构成坐标矩阵
3、描述量子力学的波函数、算符和定律等在不同表象中虽具有 不同的矩阵形式,却可相互转换(幺正变换)
狄拉克:
要这么复杂吗?我认为量子力学的波函数,算符和定律 等与具体表象无关。
1. 狄拉克(Dirac)符号 定义: 左矢(bra)、右矢(ket) (源于词:bracket)
ˆ (r )dr ( , A ˆ) A ˆ A (r )A
定义波函数演化算符:
ˆ (t , t ) (t ) (t ) U 0 0
分析: ˆ (t , t ) I (1) U 0 0
(1)
作用于 t0 时刻的态 (t0 ) 得到t时刻的态 (t )
ˆ (t , t ) (t ) (t ), U 0 0 0 0
(2)求它的具体形式 ˆ (t ) i (t ) H t ˆ ˆ ˆ (t , t ) (t ) i U (t , t0 ) (t0 ) HU 0 0 t
*量子力学到经典力学的过渡
在海森堡绘景中,只是算符随时间深化,现考察自由粒子的位 置算符随时间的演化
现令t0=0
d 1 1 iHt / 2 iHt / r (t ) [ r (t ), H ] e [ r , p / 2 m]e dt i i p iHt / p iHt / e e m m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r r r 在直角坐标中,矢量 A = a1e1 + a 2 e2 + K = ∑ a k ek r r r r r r a k = ek ⋅ A = ek ⋅ ∑ a k e k = ek ⋅ ∑ a j e j
k j k
一、投影算符的意义(2) r
r r r r r r r r A = ∑ a k ek = ∑ e k ⋅ ∑ a j e j ek = ∑ e k e k ⋅ ∑ a j e j t r t r r r r r r r = ∑ ek ek ⋅ A → ∴ ∑ ek ek = ∑ Pk = I →Pk = ek ek → r r 并矢 , 作用是将 A 在 ek 方向上的分量挑选出来 : t r r r t r r r Pk ⋅ A = ek ek .∑ a j e j = ek a k = a k ek ,∴ Pk → 投影算符
8
例题2(2) 二、算符向左作用及应用(4) 例题 算符向左作用及应用
∴ ih(lˆx2 − lˆy2 ) = lˆy lˆx lˆz − lˆz lˆy lˆx ∴ ih(lˆx2 − lˆy2 ) =< lm | lˆy lˆxlˆz − lˆz lˆy lˆx | lm > =< lm | lˆy lˆx lˆz | lm > − < lm | lˆz lˆy lˆx | lm > = mh < lm | lˆy lˆx | lm > −mh < lm | lˆy lˆx | lm >= 0 ∴ l x2 = lˆy2
k k k k
5
二、算符向左作用及应用(1) 算符向左作用及应用
) L | ϕ >= λ | ϕ >, → ) < ϕ | L | ϕ >=< ϕ | λ | ϕ > → ) < ϕ | L =< ϕ | λ → ˆ <ϕ | L = λ <ϕ |
左矢<ϕ|和右矢|ϕ > 可以作为独立的个体参与运算.
1 11 2 10 3 1−1 z
表象中,lˆx的矩阵表示为 0 1 0 h Lx = 1 0 1 2 0 1 0 ˆ 2 , lˆ )表象中(lˆ 2 , lˆ )的共同本征函数φ。 求(l z x
15
例题3(1) 例题
【解】 设lˆx的本征值为λh,则本征方程为lˆxφ = λhφ , Lx a = λha ˆ 2 , lˆ )表象中的矩阵表示, 其中,a = (ak )是φ在(l z 表示成矩阵的形式
*
∴ψ ( x) =< x | ψ >= ∫ dx′δ ( x′ − x)ψ ( x′) = ψ ( x) ∴ x表象中任意态矢ψ 可以表示为ψ ( x) =< x | ψ >
13
三、连续谱下的狄拉克符号(5) 连续谱下的狄拉克符号 5、 x 表象中本征矢 δ ( x − x ′)的表示
ˆ 已知 δ ( x − x ′) 代表 x 表象中 x 的属于本征值 x ′ 的本征态,记为 ψ x ′ ( x ) = δ ( x − x ′), 则 ψ x ′ ( x ) = δ ( x − x ′) =< x | x ′ > Q< x |= δ ( x ′′ − x ) = δ ( x ′′ − x ), 其中, x ′′ → 自变量, x → 常量
3
亦即φ=∑ akψ k = a1ψ 1 + a2ψ 2 + a3ψ 3
k =1
其中,ψ 1 = Y11 ,ψ 2 = Y10 ,ψ 3 = Y1−1. 对矩阵方程 Lx a = λha →
16
0 1 0 h 对矩阵方程 Lx a = λ ha, Lx = Q 1 0 1 2 0 1 0 0 1 0 a1 a1 h ∴ 1 0 1 a 2 = λ h a 2 → 2 a 0 1 0 a 3 3 −λ 1 2 0 a1 1 2 − λ 1 2 a 2 = 0 0 1 2 − λ a 3
6
例题1 二、算符向左作用及应用(2) 例题 算符向左作用及应用 r ˆ ˆr ˆr ˆr 1、角动量算符l = l e + l e + l e , 证明:在lˆ 的
x x y y z z z
任何一个本征态下,lˆx 和lˆy的平均值都为0. 【证】lˆz的本征态为 | m >, 且lˆz | m >= mh | m >, < m | lˆ = mh < m |,Q ihlˆ = lˆ lˆ − lˆ lˆ ,
z x y z z y
∴ ihl x = ih < m | lˆx | m >=< m | lˆy lˆz − lˆz lˆy | m > =< m | lˆy lˆz | m > − < m | lˆz lˆy | m > =< m | lˆy mh | m > −mh < m | lˆy | m > = mh < m | lˆy | m > −mh < m | lˆy | m >= 0
*
| x ′ >= δ ( x ′′ − x ′), x ′′ → 自变量, x ′ → 常量 ∴< x | x ′ >= ∫ d x ′′δ ( x ′′ − x )δ ( x ′′ − x ′) = δ ( x − x ′)
14
例题3 例题
ˆ 2 , lˆ )的共同本征函数。当l = 1时, Ylm (θ , ϕ )是(l z m = 1,0,−1, 得到一组正交完备基矢(ψ k ), k = 1,2,3, ˆ 2 , lˆ ) 其中,ψ = Y ,ψ = Y ,ψ = Y 。已知在(l
11
三、连续谱下的狄拉克符号(3) 连续谱下的狄拉克符号
3、正交归一的表示 < 离散谱本征态:| ψ k >=| k > , k | j >= δ kj , 连续谱:δ ( x − x′) =| x′ > 则 < x′′ | x′ >= ? < x′′ | x′ >= ∫ δ ( x − x′′)δ ( x − x′)dx
9
三、连续谱下的狄拉克符号(1) 连续谱下的狄拉克符号
1、定义 | ψ >→ 右矢 → 代表量子态ψ ; < ψ |→ 左矢 → 量子态ψ 的共轭态ψ 对离散谱本征态,有 | ψ k >→| k > , k | j >= δ kj , < 对连续谱,将如何表示?
10
*
三、连续谱下的狄拉克符号(2) 连续谱下的狄拉克符号
k
有 | ψ >= ∑ < k | ψ > | k >= ∑ | k >< k | ψ > →
k k
∑ | k >< k |= I
k
或 ∑ Pk = I → 称为本征矢 | k > 的
k
封闭性,其中, Pk =| k >< K |→ 投影算符 → Pk | ψ >=| k >< k | ψ >=| k > a k = a k | k > ∴ Pk的作用是将 | ψ > 在 | k > 方向上的分量挑选出来
λ
−λ −λ −λ 1 2
=0→
− 2 λ ( λ 2 − 1 2 ) + λ 3 = 0 → λ ( λ 2 − 1) = 0
18
例题3(4) 例题
λ (λ2 − 1) = 0 → λ1 = 1, λ2 = 0, λ3 = −1
−λ 1 2 0 a1 λ1 = 1 → 1 2 − λ 1 2 a2 = 0 0 1 2 − λ a3 −1 1 2 − a1 + 1 2 a2 = 0 0 a1 1 2 − 1 1 2 a2 = 0 → 1 2a −a =0 0 1 2 − 1 a3 2 3 ∴ a1 = a3 = 1 2 a2
7
例题2 二、算符向左作用及应用(3) 例题 (1) 算符向左作用及应用
2、lm > 为(lˆ 2 , lˆz )的共同本征态,证明lˆx2和lˆy2的 | 平均值都为[l (l + 1) − m ]h 2。 ˆ 2 | lm >= l (l + 1)h 2 | lm >, lˆ | m >= mh | m >, 【证】l z < m | lˆ = mh < m |,Q ihlˆ = lˆ lˆ − lˆ lˆ
*
= δ ( x′′ − x′)
12
三、连续谱下的狄拉克符号(4) 连续谱下的狄拉克符号
4、x表象中任意态矢ψ 的表示 离散谱,ψ 用列向量a = (ak)表示,ak =< k | ψ > 对连续谱,ψ 用x的函数来表示, ψ ( x) =< x | ψ > ∴ Q< x |= δ ( x′ − x) = δ ( x′ − x), 视:x′ →自变量,x → 常量
2 2
Q lˆ 2 = lˆx2 + lˆy2 + lˆz2
2 2 2 2
∴ 2l x2 =< lm | lˆ 2 − lˆz2 | lm > = [l (l + 1)h − m h ] < lm | lm >= [l (l + 1)h − m h ]
2 ∴ l x2 = l y = [l (l + 1)h 2 − m 2 h 2 ] 2
17
例题3 例题 (2)
例题3(3) 例题
−λ 1 2 0 −λ 1 0 2 1 0 −λ 0 1 2 −λ 1 2 1 2 −λ 2 1 a1 1 2 a 2 = 0 → 久期方程 − λ a 3 0 0 2 = 0 → −λ −λ 1 2 −λ 1 −λ 2 1 2 −λ +