石灰石_石膏湿法烟气脱硫工艺的设计毕业设计
电厂烟气脱硫课程设计
中南民族大学大气污染控制工程课程设计书设计题目:某电厂脱硫工艺设计姓名:乔琪学院:资源与环境学院专业:环境工程学号: 2指导老师:汤迪勇设计日期:2015.12.15~2016.01.08目录第1章绪论 (3)1.1 石灰石—石膏湿法脱硫工艺 (3)1.1.1 工艺简介 (3)1.1.2 化学反应过程 (3)1.1.3 石灰石湿法烟气脱硫装置 (4)1.1.4 FGD运行主要控制参数 (6)第2章系统参数选择与计算 (7)2.1 工艺设计计算 (7)2.1.1 设计原始资料 (7)2.1.2 治理要求 (7)2.1.3 烟气量计算 (8)2.1.4 吸收塔设计计算 (9)2.1.5 配套设备选型 (12)2.2 结垢问题及解决办法 (13)2.2.1 脱硫系统中常出现的结垢及固体堆积现象 (13)2.2.2 结垢的原因 (13)2.2.3 结垢的防止措施 (15)2.3 总平面图设计 (15)2.3.1 一般规定 (15)2.3.2 总平面布置 (16)2.3.3 交通运输 (16)2.3.4 管线布置 (17)第3章特别说明 (17)3.1 课程设计体会 (17)3.2 致谢 (17)3.3 附件 (17)第1章绪论1.1 石灰石—石膏湿法脱硫工艺1.1.1 工艺简介石灰石—石膏湿法烟气脱硫工艺是目前世界上治理工业烟气脱硫工艺中应用最广泛的一种脱硫技术。
目前,其工艺技术完善、运行稳定、脱硫效率高、单塔出力大,脱硫剂—石灰石地理分布广,价格低廉,特别适合工业规模的应用。
石灰石—石膏湿法烟气脱硫工艺流程图如图1所示。
从锅炉引风机后烟道引出的烟气,通过增压风机升压,烟气换热器(GGH)降温后,进入吸收塔,在吸收塔内与雾状石灰石浆液逆流接触,将烟气脱硫净化,经除雾器除去水雾后,又经GGH升温至大于75℃,再进入净烟道经烟囱排放。
脱硫剂石灰石粉则由磨石粉厂破碎磨细成粉状,通过制浆系统制成一定浓度的石灰石浆液,运行时根据FGD处理的烟气量和SO2的浓度,由循环泵不断地把新鲜浆液补充到吸收塔内。
[石灰石石膏湿法脱硫工艺课程设计] 石灰石石膏湿法脱硫
[石灰石石膏湿法脱硫工艺课程设计] 石灰石石膏湿法脱硫成绩XXXXX大学课程设计说明书(论文)题目2x300MW石灰石/石膏湿法脱硫工艺课程名称脱硫脱硝技术课程设计院(系、部、中心)专业环境工程班级学生姓名学号设计地点指导教师设计起止时间:年月日至年月日目录一.前言2 二.工艺介绍2 三、工艺设计步骤3 3.1、烟气参数、煤质资料、吸收剂成份、脱硫效率;3 3.1.1已知参数:3 3.1.2设计条件:4 3.1.3设计内容:4 3.1.4煤质参数5 3.2、系统流程的确定;6 四.设计计算8 4.1.原始数据8 4.2燃料灰渣计算12 4.3 FGD进口烟气量的计算13 4.4石灰石与石膏耗量18 4.5除尘器出口飞灰浓度19 五.烟温和水平衡计算(有GGH计算结果示例)19 5.1、原烟气(增压风机前)19 5.2、原烟气(增压风机后)19 5.3、GGH原烟气出口20 5.4、吸收塔出口20 5.5、GGH净烟气出口21 5.6、氧化空气流量21 5.7、蒸发水量22 5.8、脱硫反应热22 5.9、吸收塔内放热22 5.10、水蒸气蒸发吸热23 5.11、余热比率23 5.12、水平衡23 5.13、石灰石用量(25~35%) 24 5.14、副产物的生成量(15~25%) 24 5.15、主要设备25 5.15.1、吸收塔25 5.15.2、氧化槽25 5.16、设计参数汇总(有GGH) 25 六.主要参考文献26 七.总结和心得26 2×300MW石灰石/石膏湿法脱硫工艺参数设计(有GGH)一.前言我国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长的时间内不会改变。
火电厂以煤作为主要燃料进行发电,煤直接燃烧开释出大量SO2,造成大气环境污染,且随着装机容量的递增,SO2的排放量也在不断增加,加大火电厂SO2的控制力度就显得非常紧迫和必要。
SO2的控制途径有三个:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫即烟气脱硫(FGD),目前烟气脱硫被以为是控制SO2最行之有效的途径。
某电厂石灰石石膏湿法脱硫系统设计
某电厂石灰石石膏湿法脱硫系统设计XXXXX大学本科毕业设计说明书× 某电厂石灰石-石膏湿法脱硫系统设计专业环境工程班级环工学号学生姓名指导教师完成日期年月日× 某电厂石灰石-石膏湿法脱硫系统设计× 摘要:据统计,我国目前约有30万台中小型燃煤工业锅炉,耗煤量占全国原煤产量的1/3。
而这些锅炉中,部分没有安装脱硫设备,致使这些地区酸雨频频发生,严重危害了工农业生产和人体健康。
因此,烟气脱硫是当前环境保护的一项重要工作。
目前,世界上烟气脱硫工艺达数百种之多。
脱硫装置的分类有许多种,按脱硫产物的价值可分为回收法和抛弃法,按吸收剂和脱硫产物的状态可分为湿法、半干法和干法。
常见脱硫工艺有:氨法脱硫、石灰石-石膏法、炉内喷钙、旋转喷雾法、循环硫化床。
在这些脱硫工艺中,有的技术较为成熟,已经达到工业应用的水平,有的尚处于试验研究阶段。
在以上几种脱硫工艺中,以石灰石-石膏湿法脱硫工艺最为成熟、可靠,该技术目前在世界上也是应用最多的脱硫工艺。
本次设计主要设计的是一套除尘脱硫系统,该系统主要包括除尘系统、烟气系统、吸收系统、吸收剂浆液制备系统、石膏脱水系统以及废水处理系统,并重点对电除尘器、吸收系统、吸收剂浆液制备系统和石膏脱水系统中的主要设备进行计算设计选型。
关键词:湿法石灰石-石膏法;电除尘器;烟气脱硫;主体设备计算 Wet limestone gypsum flue gas desulphurization system design of the Power Plant Abstract: According to statistics, now china has about300,000 medium and small coal fired industrial boiler, coal consumption accountsfor the national coal production1/3、some of these boilers do not have to install desulphurization equipment resulting in these areas ofacid rain happens again and again, serious harm to the industrial and agricultural production and human health、Therefore, flue gas desulphurization is the current environmental protection an important work、 At present, the flue gas desulphurization process has many kinds、Desulphurization device classification has many kinds, according to the desulphurization products value can be divided into recycling method and abandonment method, according to the absorbent and desulphurization productsof the state can be divided into wet and dry, semi-dry、mon desulphurization process is: ammonia desulphurization, limestone-gypsum, spraying calcium inside furnace,rotating spray method, circulating fluidized bed、 In the above several desulphurization technologies, with wetlimestone gypsum flue gas desulphurization technology the most mature, reliable, the technology currently in the world, but also the application of most of the desulphurization process、 In the desulphurization process, the technology is more mature, have reached the level of industrial application, some are still at the stage of experimental study、 The design of my design is a set of dust removal and desulphurization system, this system mainly includes the dust removal system, flue gas system, the absorption system, the absorbent slurry preparation system, gypsum dewatering system and waste water treatment system, and focus on electric precipitator, absorption system, absorbent slurry preparation system and the gypsum dewatering system of main equipment calculation of the design type selection、Key words: wet limestone-gypsum method; electric dust collector; flue gas desulphurization; main equipment calculation 目录第一章文献综述11、1 烟气除尘脱硫的背景11、2 烟气脱硫的目的及意义11、3 课题研究的主要内容2第二章工程概况32、1 设计原始材料32、2 设计标准32、3 设计主要内容3第三章除尘选择43、1 各除尘器的简述43、1、1 离心式除尘器43、1、2 洗涤式除尘器43、1、3 袋式除尘器53、1、4 电除尘器53、1、5 旋风除尘器63、2 主要除尘器的选用73、2、1 除尘效率73、2、2 系统变化对除尘器的影响73、2、3 运行与管理93、2、4 设备投资93、2、5 运行维护费用10第四章烟气脱硫工艺的选择114、1 几种常见的脱硫工艺114、1、1 石灰石-石膏湿法脱硫工艺114、1、2 旋转喷雾半干法烟气脱硫工艺(LSD法)11 4、1、3 炉内喷钙加尾部增湿活化工艺(LIFAC法)12 4、1、4 烟气循环流化床脱硫(CFB)工艺134、2 脱硫工艺比较134、2、1 本设计采用的脱硫系统144、3 石灰石-石膏湿法烟气脱硫工艺系统154、3、1 烟气系统154、3、2 吸收系统154、3、3 石灰石浆液制备系统154、3、4 石膏脱水系统16第五章除尘脱硫系统物料平衡计算175、1 除尘工艺设计计算175、1、1 烟气量、烟尘和二氧化碳浓度的计算17 5、1、2 除尘器的选择195、1、3 系统管道管径的计算205、1、4 系统阻力的计算205、1、5 风机及电动机选择及计算22第六章脱硫工艺设计计算246、1 吸收塔的选择246、2 吸收塔尺寸设计计算256、2、1 吸收塔塔径252、2 吸收浆液量256、2、3 喷淋层256、2、4 氧化系统266、3 吸收塔附属设备的选型266、3、1 除雾器266、3、2 除雾器冲洗系统276、3、3 循环浆液泵276、3、4 吸收塔排浆泵276、4 吸收塔高度的计算276、4、1 烟气进口底部至浆液面的距离h2286、4、2 烟气进出口高度h3286、4、3 最上层喷浆管与第一段除雾器的高度差h4284、4 烟气出口距除雾器距除雾器最上端冲洗水管距离28 6、4、5 吸收塔附属部件设计286、5 浆液制备系统的设计计算296、5、1 浆液制备系统的选择296、5、2 主要设备的计算296、6 其他系统设备设计选择296、6、1 增压风机316、6、2 搅拌器316、6、3 石膏处置系统316、6、4 废水排放系统和处理系统326、6、5 浆液排放和回收系统326、6、6 工艺水耗量的计算32第七章烟囱的设计计算357、1 烟囱高度的确定357、1、1 烟囱直径的确定357、1、2 烟囱的抽力计算367、2 辅助设备设计计算367、2、1 烟气换热器的设计计算367、3 供剂管管径计算387、3、1脱硫塔供液管管径计算39第八章设备布置和预算398、1 总体布置398、2 工程概算408、2、1 除尘部分工程概算408、2、2 脱硫部分工程概算40第九章结论41 参考文献42 致谢……………………………………………………………………………、44第一章文献综述1、1 烟气除尘脱硫的背景当今世界上电力产量的60%是利用煤炭资源生产的,我国是世界上少数几个以煤炭为主要能源的国家之一[1]。
石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺
本文主要讲述了工业石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺,认真分析了该工艺的工艺路线(基本原理)、工艺系统、以及影响该工艺的具体因素和脱硫石膏的运用与发展。
①工艺路线(基本原理):CaCO3+SO2+1/2H2O=CaSO3·1/2H2O+CO2CaSO3·1/2H2O+SO2+1/2H2O=Ca(HSO3)22CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2OCa(HSO3)2+1/2O2+H2O=CaSO4·2H2O+SO2②工艺流程方框图如下:③工艺系统:主要分析了吸收剂制备系统、烟气及SO2吸收系统、石膏处理系统、FGD装置用水系统、脱硫废水处理系统、压缩空气系统等系统。
④影响因素:主要分析了吸收塔洗涤浆液的PH、吸收塔内的液气比、烟速和烟气温度、钙硫比、石灰石浆液颗粒细度、石膏过饱和度、浆液停留时间等影响因素。
⑤脱硫石膏的运用与发展:主要介绍了石膏在各方面在一些用途,以及石膏用于制硫酸的思路。
1.1前言二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。
削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。
目前,国内外处理低浓度二氧化硫烟气的方法有许多,如氨法、钙法、钠法、铝法、氧化法、吸附法、催化法及电子束法等。
但由于受到技术可靠性、经济合理性、及行业生产特点等限制,当前比较成熟且广泛运用的方法主要有三种,即氨法、钙法和钠法。
氨法是烟气脱硫方法中较传统的工艺,该法采用液氨或氨水作为吸收剂,吸收效率高、脱硫彻底。
钙法是采用石灰水或石灰乳洗涤含二氧化硫的烟气,技术成熟,生产成本低,但吸收速率慢、吸收能力小、装置运行周期短。
钠法是使用碳酸钠或氢氧化钠等碱性物质吸收含二氧化硫的烟气,具有吸收能力大、吸收速率快、脱硫效率高、设备简单、操作方便等优势,但最大的问题是原料钠碱较贵,生产成本高。
脱硫脱硝技术课程设计--石灰石石膏湿法脱硫技术工艺参数设计
课程设计说明书设计题目:2×440MW石灰石/石膏湿法脱硫技术工艺参数设计课程名称:烟气脱硫与脱硝技术院(系、部):环境工程系专业:环境工程班级:姓名:起止日期:指导教师:➢设计说明:一、工艺介绍本课程设计采用的工艺为石灰石-石膏湿法全烟气脱硫工艺,吸收塔采用单回路喷淋塔工艺,含有氧化空气管道的浆池布置在吸收塔底部,氧化空气空压机(1用1备)安装独立风机房内,用以向吸收塔浆池提供足够的氧气和/或空气,以便亚硫酸钙进一步氧化成硫酸钙,形成石膏。
塔内上部烟气区设置四层喷淋。
4台吸收塔离心式循环浆泵(3运1备)每个泵对应于各自的一层喷淋层。
塔内喷淋层采用FRP管,浆液循环管道采用法兰联结的碳钢衬胶管。
喷嘴采用耐磨性能极佳的进口产品。
吸收塔循环泵将净化浆液输送到喷嘴,通过喷嘴将浆液细密地喷淋到烟气区。
从锅炉来的100%原烟气中所含的SO2通过石灰石浆液的吸收在吸收塔内进行脱硫反应,生成的亚硫酸钙悬浮颗粒通过强制氧化在吸收塔浆池中生成石膏颗粒。
其他同样有害的物质如飞灰,SO3,HCI和HF大部分含量也得到去除。
吸收塔内置两级除雾器,烟气在含液滴量低于100mg/Nm3(干态)。
除雾器的冲洗由程序控制,冲洗方式为脉冲式。
石膏浆液通过石膏排出泵(1用1备)从吸收塔浆液池抽出,输送至至石膏浆液缓冲箱,经过石膏旋流站一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行过滤脱水。
溢流含3~5%的细小固体微粒在重力作用下流入滤液箱,最终返回到吸收塔。
旋流器的溢流被输送到废水旋流站进一步分离处理。
石膏被脱水后含水量降到10%以下。
在第二级脱水系统中还对石膏滤饼进行冲洗以去除氯化物,保证成品石膏中氯化物含量低于100ppm,以保证生成石膏板或用作生产水泥填加料(掺合物)优质原料(石膏处理系统共用)。
二、课程设计的目的通过课题设计进一步巩固本课程所学的内容,培养学生运用所学理论知识进行湿法烟气脱硫设计的初步能力,使所学的知识系统化。
烟气脱硫设计方案
烟气脱硫设计方案烟气脱硫是对燃煤发电机组或其他工业锅炉废气中的二氧化硫进行净化处理的工艺,以达到环保排放要求。
下面是一个烟气脱硫设计方案的简单示范,总字数大约为700字。
设计方案:1. 工艺选型本方案采用石灰-石膏湿法烟气脱硫工艺,即将石灰石与水反应生成石灰浆,然后与烟气接触反应,生成石膏,从而去除烟气中的二氧化硫。
2. 处理单元该方案包括石灰石破碎、石灰浆制备、烟气处理和石膏固液分离四个处理单元。
(1)石灰石破碎:将原料石灰石通过破碎设备破碎成合适的颗粒大小,以便于后续的制备工艺。
(2)石灰浆制备:将破碎后的石灰石与适量的水混合,通过搅拌设备搅拌均匀,生成石灰浆。
(3)烟气处理:将石灰浆通过喷射装置喷入烟气,与烟气中的二氧化硫进行接触反应。
反应生成的石膏颗粒会与烟气中的其它固体颗粒一同被捕集。
(4)石膏固液分离:将带有石膏颗粒的污水通过固液分离设备进行分离处理,固体石膏颗粒被收集,液体部分再进行后续处理或回收利用。
3. 设备选型根据处理规模和效果要求,选择适当规格的破碎机、搅拌设备、喷射装置和固液分离设备。
同时,还需要选择适合的管道、泵等辅助设备,以确保工艺的正常运行。
4. 运行参数根据实际情况和环保要求,确定工艺的运行参数,包括石灰石的投加量、石灰浆浓度、石灰浆与烟气的接触时间和温度等。
通过合理的调整这些参数,以达到二氧化硫的净化效果。
5. 管道布局和设备安装根据工艺流程,合理布局各个处理单元之间的管道连接,以实现石灰石破碎、石灰浆制备、烟气处理和固液分离等功能的连续运行。
同时,确保设备安装稳固可靠,并且容易进行维修和维护。
6. 控制系统设计设计适当的控制系统,监测并控制石灰石投加量、石灰浆浓度、喷射装置运行状态等参数,以保证工艺的稳定运行和净化效果的达标排放。
以上是一个简要的烟气脱硫设计方案示范,具体方案需要根据实际工程情况进行详细设计和调整。
此外,还需要符合相关法律法规的要求,并且可以根据不同地区和大气环境的变化进行优化调整。
石灰石石膏湿法脱硫的工艺
石灰石石膏湿法脱硫的工艺【石灰石石膏湿法脱硫的工艺】导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧化硫。
本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相关问题。
一、工艺原理1. 石灰石石膏湿法脱硫原理:石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。
主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO22. 脱硫反应的特点:该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆液浓度下进行。
反应速率受碱性、反应温度、质量浓度等因素的影响。
二、工艺步骤1. 石灰石石膏湿法脱硫的基本步骤:(1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其活性和反应速率。
(2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。
为了提高脱硫效果,还可加入一定量的添加剂。
(3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。
(4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。
2. 工艺改进:为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面的改进。
例如引入喷雾器、增加反应塔数目、采用高效填料等,以增加烟气与石灰石浆液的接触面积,加强反应效果。
三、工艺优势1. 脱硫效率高:石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质石膏产物,脱硫效率可达到90%以上。
2. 石膏产物可回收利用:脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的循环利用。
3. 工艺成熟可靠:石灰石石膏湿法脱硫工艺经过多年的实践应用,技术成熟可靠,广泛应用于燃煤发电厂和工业锅炉等领域。
四、问题与挑战1. 石膏处理与排放:脱硫过程中生成的硬石膏需要进行后续的脱水、干燥等处理,同时还需要解决石膏产物的长期存储和排放问题。
(完整word版)石灰石-石膏湿法脱硫系统的设计计算
(完整word版)⽯灰⽯-⽯膏湿法脱硫系统的设计计算⽯灰⽯-⽯膏湿法脱硫系统设计(内部资料)编制:xxxxx环境保护有限公司2014年8⽉1.⽯灰⽯-⽯膏法主要特点(1)脱硫效率⾼,脱硫后烟⽓中⼆氧化硫、烟尘⼤⼤减少,脱硫效率⾼达95%以上。
(2)技术成熟,运⾏可靠性⾼。
国外⽕电⼚湿法脱硫装置的投资效率⼀般可达98%以上,特别是新建的⼤机组采⽤湿法脱硫⼯艺,使⽤寿命长,可取得良好的投资效益。
(3)对燃料变化的适应范围宽,煤种适应性强。
⽆论是含硫量⼤于3%的⾼硫燃料,还是含硫量⼩于1%的低硫燃料,湿法脱硫⼯艺都能适应。
(4)吸收剂资源丰富,价格便宜。
⽯灰⽯资源丰富,分布很⼴,价格也⽐其它吸收剂便宜。
(5)脱硫副产物便于综合利⽤。
副产物⽯膏的纯度可达到90%,是很好的建材原料。
(6)技术进步快。
近年来国外对⽯灰⽯-⽯膏湿法⼯艺进⾏了深⼊的研究与不断改进,可望使该⼯艺占地⾯积较⼤、造价较⾼的问题逐步得到妥善解决。
(7)占地⾯积⼤,⼀次性建设投资相对较⼤。
2.反应原理(1)吸收剂的反应购买回来⽯灰⽯粉(CaCO3)由⽯灰⽯粉仓投加到制浆池,⽯灰⽯粉与⽔结合⽣成脱硫浆液。
(2)吸收反应烟⽓与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收⼤部分SO2,反应如下:SO2(⽓)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应⼀部分HSO3-在吸收塔喷淋区被烟⽓中的氧所氧化,其它的HSO3-在反应池中被氧化空⽓完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO4+2H2O→CaSO4·2H2O(结晶)(4)其他污染物烟⽓中的其他污染物如SO 3、Cl -、F -和尘都被循环浆液吸收和捕集。
[小学教育]湿式石灰石-石膏法烟气脱硫 设计方法及过程共84页文档
d1
8000 ×4000
烟气进口
d2 接
e1-6 管
f1-32 表
g1-5
8000 ×4000 DN600 PN1.6 DN150 PN1.6
突面 突面
HG20593-97 HG20593-97
烟气出口 循环浆液入口 除雾器冲洗水入口 人孔
h1-3 DN100 PN1.6 突面 HG20593-97 浆液回流口
b1-3 DN900 PN1.6 突面 HG20593-97 循环浆液出口
c DN250 PN1.0 突面 HG20593-97 溢流口
d1
8000 ×4000
烟气进口
d2 接
e1-6 管
f1-32 表
g1-5
8000 ×4000 DN600 PN1.6 DN150 PN1.6
突面 突面
HG20593-97 HG20593-97
清华同方股份有限公司
能源环境公司
专业
工艺
工艺数据表
山西古交电厂烟气脱硫项目
阶段
初设
版 次 A / 2001.09.30
图 号M0102-PR01.03.30-0
张 数 共3 张第 2 张
设备位号 T201
T301
数 量 2套
名称型号 脱硫塔
制造厂
符号 DN
PN 法兰面 标 准
用途
a DN150 PN1.6 突面 HG20593-97 放净口
j1-2 DN100 PN1.6 突面 HG20593-97 出料口
k1-n DN100 PN1.6 突面 HG20593-97 氧化风进口
m1-3 DN80 PN1.6 突面 HG20593-97 仪表接口
脱硫系统设计-石灰石 - 石膏湿法脱硫
脱硫系统设计---- 石灰石 - 石膏湿法脱硫1 脱硫系统设计的初始条件在进行脱硫系统设计时,所需要的初始条件一般有以下几个:(1)处理烟气量,单位:m3/h或Nm3/h;(2)进气温度,单位:℃;(3)SO2初始浓度,单位:mg/m3或mg/Nm3;(4)SO2排放浓度, 单位:mg/m3或mg/Nm3;2 初始条件参数的确定2.1 处理风量的确定处理烟气量的大小是设计脱硫系统的关键,一般处理烟气量由业主方给出或从除尘器尾部引风机风量大小去确定。
处理风量还存在标况状态(Nm3/h)和工况状态(m3/h)的换算,换算采用理想气体状态方程:PV = nRT(P、n、R均为定值)V1/T1=V2/T2V1: mg/Nm3,T1:273K; V2: mg/m3,T2:t+273K(t为进气温度);怀化骏泰提供的是工况烟气量是300000m3/h,烟气温度150℃,经上述公式转换得出标况烟气量193600 Nm3/h(液气比计算用标况烟气量)2.2 进气温度的确定进气温度为经过除尘后进入脱硫塔的烟气温度值,进气温度大小关系到脱硫系统烟气量的换算和初始SO2浓度换算。
2.3 SO2初始浓度的确定SO2初始浓度一般由业主方给出,并且由此计算脱硫系统中各项设备参数,也是系统选择液气比的重要依据。
SO2初始量计算公式如下:S+O2→SO232 64C SO2=2×B×S ar/100×ηso2/100×109C SO2-SO2初始量,mg; B-锅炉BMCR负荷时的燃煤量,t/h;S ar-燃料的含S率,%;ηso2-煤中S变成SO2的转化率,%,一般取0.85;怀化骏泰提供的是4000 mg/Nm32.4 SO2排放浓度的确定一般根据所在地区环保标准确定。
二氧化硫排放限值与烧煤、油、气有关,与新建或改造锅炉有关,与地区有关,设计之前需要查看当地环保排放标准。
按照国家标准,污染物排放浓度需按公式折算为基准氧含量排放浓度,所以实测的排放浓度还需要经过折算,燃煤锅炉按基准含氧量O2=6%进行折算,c = c’× (21 - O2) / (21 - O2’)式中c –大气污染物基准氧含量排放浓度 , mg/m3;c’—实测的大气污染物排放浓度, mg/m3; 38 mg/m3O2’-- 实测的含氧量 ,%; 15%O2 -- 基准含氧量 ,%; 6%计算: SO2浓度(6%O2)=38×(21-6)/(21-15)=95mg/m3,结果也是与在线监测值相符根据在线监测电脑上显示实测的大气污染物排放浓度, 实测的含氧量,我们可以自己计算出折算值.当然电脑上也给我们自动折算并且给出了折算值,但是这个值怎么来的,我们需要知道,怀化骏泰的排放浓度是100mg/ m3,折算值,不是实测值,3 脱硫系统的设计计算3.1 参数定义(1)液气比(L/G ):即单位时间内浆液喷淋量和单位时间内流经吸收塔的烟气量之比.单位为L/m3;)/3()/(h m h L 的湿烟气体积流量单位时间内吸收塔入口单位时间内浆液喷淋量液气比石灰石法液气比范围在8l/m3-25l/m3之间,一般认为12.2就可以了(液气比超过某个值后,脱硫效率的提高非常缓慢,而且提高液气比将使浆液循环泵的流量增大,增加循环泵的设备费用,塔釜的体积增大.增大脱硫塔制造成本,同时还会提高吸收塔的压降,加大增压风机的功率及设备费用)通过液气比可以计算出循环浆液量Q 循 = 12.2 × 193600 / 1000 = 2362 m3/h(2)钙硫比(Ca/S ):理论上脱除1mol 的S 需要1mol 的Ca ,但在实际反应设备中,反应条件并不处于理想状态,一般需要增加脱硫剂的量来保证一定的脱硫效率,因此引入了Ca/S 的概念。
石膏湿法烟气治理方案的设计毕业设计
石膏湿法烟气治理方案的设计毕业设计
简介
本文档旨在探讨石灰石_石膏湿法烟气治理方案的设计,以解
决烟气污染问题。
在设计方案中,将重点考虑石灰石_石膏湿法烟
气治理的原理、设备选择、操作条件及工艺流程。
方案设计
原理
石灰石_石膏湿法烟气治理是一种常见的烟气治理方法。
其原
理主要包括两个步骤:烟气脱硫和石膏生成。
石灰石作为脱硫剂与
烟气中的二氧化硫反应生成石膏,从而达到减少烟气中二氧化硫浓
度的目的。
设备选择
在石灰石_石膏湿法烟气治理方案中,需要选择合适的设备来
完成脱硫和石膏生成的过程。
常用的设备包括烟气脱硫塔、搅拌槽、沉淀池等。
在选择设备时,需要考虑设备的脱硫效率、操作稳定性、耐久性等因素。
操作条件
在进行石灰石_石膏湿法烟气治理时,需要控制一些操作条件
以确保治理效果。
常见的操作条件包括石灰石投加量、液气比、反
应温度等。
选定适当的操作条件能够提高石灰石_石膏湿法烟气治
理的效果。
工艺流程
根据石灰石_石膏湿法烟气治理的原理、设备选择和操作条件,可以设计一套合理的工艺流程。
典型的工艺流程包括烟气进入脱硫
塔进行脱硫反应、与石灰石悬浮液充分接触、生成石膏固体后经过
分离装置进行石膏的回收等。
结论
通过石灰石_石膏湿法烟气治理方案的设计,可以有效地减少
烟气中的二氧化硫浓度,降低烟气污染对环境的影响。
在实施方案时,需要根据具体情况进行调整和优化,以达到更好的治理效果。
石灰石湿法烟气脱硫控制系统毕业设计详解
河南机电职业学院毕业论文(毕业设计)题目:火电厂石灰石湿法脱硫控制技术所属系部:电子工程系专业班级:电气自动化技术12-1学生姓名:王霄飞指导教师:苗国耀2015 年06月11 日毕业论文(实习报告)任务书指导教师签字:教研室主任签字: 年月日年月日毕业论文(毕业设计)评审表目录1 绪论 (1)1.1 选题背景及意义 (1)2 火电厂脱硫系统的工艺原理 (2)2.1石灰石-石膏湿法脱硫工艺流程 (2)2.2 吸收系统 (3)2.2.2工艺水系统和排放系统 (8)2.3脱硫系统运行控制方式 (9)2.3.1 启动 (10)2.3.2停运 (11)2.3.3 紧急停运 (13)2.3.4 变负荷运行 (14)2.3.5 装置和设备保护措施 (15)3 FGD系统的DCS控制系统的设计 (16)3.1烟气系统控制 (16)3.2石灰石浆液制备系统控制 (17)3.3 石灰石浆液浓度控制 (18)3.4石灰石浆液箱液位控制 (19)3.5石膏脱水系统控制 (20)3.6 FGD系统仪表选型及影响因素 (21)3.7 流程总图 (23)3.8 MACSV系统组态设计 (24)3.8.1数据库总控工程建立 (24)3.9本章小结 (27)4结论 (28)参考文献 (29)摘要:石灰石湿法烟气脱硫是目前工艺较为成熟、应用最广泛的脱硫工艺,其脱硫过程是气液反应,反应速度快、脱硫效率高,综合经济性能较好,在国内电厂脱硫工艺中被广泛应用。
在烟气脱硫系统中,控制系统的设计非常重要,控制系统设计是否恰当直接影响脱硫系统的运行,甚至影响主机系统的长期安全稳定运行。
本文设计的脱硫控制系统有完善的热工模拟量控制,并且各项功能在DCS系统中统一实现。
首先简要介绍了石灰石-石膏湿法烟气脱硫技术及其控制系统的现状、发展趋势、主要工艺设备、工艺流程及原理。
接着对脱硫控制系统的控制方案进行了详细设计和研究,主要包括自动调节系统设计、联锁保护条件设计等。
石灰石_石膏法烟气脱硫系统设计
烟尘治理石灰石-石膏法烟气脱硫系统设计惠远峰(吉林化工学院环境与生物工程学院 吉林吉林132022) 摘 要 针对2×125MW 机组的烟气量和烟气中含硫量,结合我国烟气脱硫的技术现状设计出1套较完备的烟气脱硫系统。
设计的主要内容:吸收塔的类型,流程,确定了工艺中选用各子系统的处理流程、装置和设备。
对所设计的烟气脱硫工艺进行了技术经济分析,最后得出总的结论,并提出了工艺中存在的主要问题和几点建议。
关键词 湿式石灰石-石膏法 烟气脱硫 吸收塔 技术经济分析Design of F lue G as Desulpherization System in Limestone -gypsum Wet MethedHUI Y uan -feng(Environmental and Biological Engineering Institute ,Jilin Institute o f Chemical Technology Jilin ,Jilin 132022)Abstract According to the am ount of the flue gas and the desurfurization request of 2×125MW unit ,a set of adequate FG D systems is de 2signed ,combined with the existed FG D technical status in our nation.The design mainly includes the type and flow of the abs orber and it als o introduces the main equipment of the desurfurization ,and the type and the diagram flow of all systems.M eanwhile the econom ic and technical analysis of the FG D system is conducted.Finally it is concluded and the main problems existed and s ome suggestions are raised.K eyw ords limestone -gypsum wet method flue gas desulpherization abs orber technical and econom ic analysis 随着我国经济的快速发展,煤炭消耗量不断增加,S O 2的排放量也日趋增多,造成S O 2污染和酸雨的严重危害。
浅析石灰石石膏湿法烟气脱硫吸收塔选型及设计
1、工艺流程优化:通过对现有工艺流程的改进,可以提高吸收塔的脱硫效 率,降低能耗和成本。例如,采用更高效的液体分布器,优化液体喷淋方式等。
2、新型设备材料的研发:随着科技的不断进步,新型的设备材料将不断涌 现。未来可以进一步研发具有更高耐腐蚀性、耐磨性和抗压强度的新型设备材料, 以提高吸收塔的使用寿命和性能稳定性。
3、液气比:通过比较实际液气比与设计液气比,可以判断吸收塔的工作状 态。实际液气比大于设计液气比时,说明可能存在过度喷淋现象;实际液气比小 于设计液气比时,说明可能存在液体分布不均或反应不完全等问题。
四、吸收塔的未来发展
随着环保要求的不断提高和技术的不断进步,石灰石石膏湿法烟气脱硫吸收 塔未来将面临更多的挑战和机遇。以下是几个可能的改进和发展方向:
4、开展工业示范项目,通过实际应用案例展示该技术的优势和应用效果。
5、积极开展国际技术交流与合作,引进国外先进技术,促进该技术的国际 推广和应用。
五、结论
本次演示介绍了石灰石石膏湿法烟气脱硫实验装置的研制过程、性能测试及 应用推广。该实验装置在降低烟气中的二氧化硫浓度、提高废液处理效率等方面 表现出良好的性能。通过实际应用案例展示了该技术的优势和应用效果,并提出 了推广方案。该技术的推广应用将对工业烟气治理产生积极的影响,为改善环境 质量做出贡献。
总之,石灰石石膏湿法烟气脱硫吸收塔作为控制烟气污染的关键设备之一, 其选型、设计和性能评估对环境保护具有重要意义。未来随着技术的不断进步和 应用需求的增加,吸收塔将不断发展和改进,为实现更高效、更环保的烟气脱硫 提供有力支持。
参考内容
一、引言
随着工业的快速发展,烟气污染问题日益严重。为了有效地控制烟气污染, 各种烟气脱硫技术应运而生。其中,石灰石石膏湿法烟气脱硫技术因其高效、经 济、适用范围广等优点而备受。为了深入研究和优化这项技术,本次演示将介绍 一种石灰石石膏湿法烟气脱硫实验装置的研制过程。
石灰石脱硫工艺毕业设计
重庆电力高等专科学校毕业设计说明书设计题目:火电厂石灰石脱硫控制系统分析专业:工业热工控制技术班级:热控0812班学号:02040234姓名:吴俊指导教师:向贤兵重庆电力高等专科学校动力工程系二〇一一年六月目录毕业设计(论文)任务书 (1)引言 (2)1 二氧化硫排放及标准 (3)1.1国内外烟气脱硫技术的发展与现状 (3)1.2 二氧化硫国内外环境政策及其排放标准 (4)1.3石灰石湿法烟气脱硫技术的应用概况及发展前景 (4)2 火电厂烟气脱硫工艺简介 (6)2.1简易湿法 (6)2.2海水脱硫法 (6)2.3氨水洗涤法脱硫工艺 (7)2.4干法、半干法脱硫工艺 (8)3 火电厂石灰石湿法脱硫工艺流程 (8)3.1 S02吸收系统 (8)3.2 烟气系统 (10)3.3 石膏脱水系统 (11)3.4公用系统和废水处理系统 (12)4 石灰石湿法烟气脱硫装置的运行参数检测 (13)4.1脱硫装置运行参数检测的特点 (13)4.2 主要参数的检测 (13)4.3 主要检测参数的测点布置 (14)5 脱硫装置的运行的主要控制系统 (14)5.1 增压风机入口压力控制 (15)5.2 吸收塔PH值及塔出口SO2浓度控制 (15)5.3 吸收塔液位控制 (18)5.4 石膏浆液排出量控制 (19)5.5石灰石浆液箱的液位与浓度控制 (20)5.6 真空皮带脱水机石膏层厚度控制 (20)6 烟气脱硫装置的顺序控制、保护与连锁 (20)6.1 烟气脱硫主要SCS功能组 (20)6.2 烟气脱硫装置的保护连锁 (20)7 结论 (21)工作小结 (22)致谢 (23)参考文献 (23)毕业设计(论文)任务书一、毕业设计(论文)任务的具体内容与要求(一)设计任务火力发电机组采用大容量和超(超)临界参数是提高发电机组经济性的有效途径,已经被世界先进国家所广泛采用,我国也将超(超)临界机组作为今后一个时期火电机组建设的重点之一。
石灰石-石膏法烟气脱硫湿法系统设计
石灰石-石膏法烟气脱硫湿法系统设计2008年12月目录1.概述 (1)2.典型的系统构成 (1)3反应原理 (2)4 系统描述 (5)5.FGD系统设计条件的确认 (14)6.物料平衡计算、热平衡计算 (19)1.概述石灰石-石膏法烟气脱硫技术已经有几十年的发展历史,技术成熟可靠,适用范围广泛,据有关资料介绍,该工艺市场占有率已经达到85%以上。
由于反应原理大同小异,本设计总结了一些通用的规律和设计准则,基本适用于目前市场上常用的各种石灰石-石膏法烟气脱硫技术,包括喷淋塔、鼓泡塔、液柱塔等。
2.典型的系统构成典型的石灰石/石灰-石膏湿法烟气脱硫工艺流程如图2-1所示,实际运用的脱硫装置的范围根据工程具体情况有所差异。
图2-13反应原理3.1 吸收原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。
这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl 、HF被吸收。
SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。
为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。
3.2 化学过程强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2+H2O→H2SO3(溶解)H 2SO3⇋H++HSO3-(电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数)强化吸收反应的措施:a)提高SO2在气相中的分压力(浓度),提高气相传质动力。
b)采用逆流传质,增加吸收区平均传质动力。
c)增加气相与液相的流速,高的Re数改变了气膜和液膜的界面,从而引起强烈的传质。
火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程
火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程石灰石-石膏湿法烟气脱硫系统是目前常用的一种烟气脱硫技术,可广泛用于火力发电、冶金、化工等行业。
它主要是通过将烟气中的二氧化硫与乳液中的石灰石和石膏反应,将二氧化硫转化为不易挥发的硫酸钙,从而达到烟气脱硫的目的。
下面,我们将介绍一些石灰石-石膏湿法烟气脱硫系统设计的规程。
一、设计参数在设计石灰石-石膏湿法烟气脱硫系统时,应根据烟气中二氧化硫的含量、烟气温度、湿度、氧气含量等因素,合理确定设计参数,包括乳液配比、喷雾器布置、吸收塔容积、循环泵流量、石膏循环比、烟囱高度等。
同时,在系统设计中还应考虑石灰石、石膏的储存、输送、卸料和废水处理等问题。
二、设备选型石灰石-石膏湿法烟气脱硫系统设备选型应根据工况需求、设备性能及准确可靠性、运行成本等方面进行评估,包括喷雾器、吸收塔、循环泵、废水处理设备、石灰石输送设备等。
三、工艺流程石灰石-石膏湿法烟气脱硫系统的工艺流程包括乳液配制、喷淋、吸收、过渡、沉淀、脱水等过程。
其中,乳液配制要求石灰石、水、石膏的稳定性及浓度符合要求;喷淋过程应保证石灰石和石膏的均匀喷淋,以增加反应面积;吸收过程要求吸收塔内二氧化硫与乳液中的石灰石与石膏充分反应,形成硫酸钙;脱水过程要求对沉淀后的硫酸钙进行充分脱水,以达到质量要求。
四、安全措施在石灰石-石膏湿法烟气脱硫系统运行过程中,应加强安全管理,确保操作人员安全。
特别在石灰石、石膏的储存、输送、卸料和废水处理等环节,应制定完善的安全操作规程,有效防范意外事故的发生。
五、设备维护和管理石灰石-石膏湿法烟气脱硫系统设备需要定期检修和保养,特别是对喷雾器、吸收塔内设备、循环泵、废水处理设备的维护更为重要。
此外,应加强设备的管理,建立完善的设备档案,及时处理设备的运行问题,确保系统的稳定运行。
总之,石灰石-石膏湿法烟气脱硫系统是一种有效的烟气脱硫技术,但在设计、选型、工艺流程、安全措施和设备维护方面需要严格按照规程进行,以确保系统的安全、高效、稳定运行。
石灰石_石膏湿式法烟气脱硫课程设计
目录第一章绪论 (1)1.1设计背景及意义 (1)1.2国内外研究现状 (1)1.2.1国内研究现状 (1)1.2.2国外烟气脱硫发展状况 (2)1.3课程设计任务及采用技术 (3)1.3.1设计任务与目的 (3)1.3.2脱硫技术简介 (3)第二章脱硫工艺 (4)2.1湿式石灰石石膏脱硫工艺介绍 (4)2.1.1烟气脱硫原理 (4)2.1.2空塔喷淋脱硫工艺 (6)2.1.3脱硫设备说明 (6)2.2物料衡算 (6)2.2.1二氧化硫产生量 (6)2.2.2脱硫量 (10)2.2.3吸收塔的硫平衡 (10)2.2.4系统总钙平衡................ (10)2.2.5副产物和脱硫渣量产生量 (10)2.2.6系统的水平衡 (11)第三章工程内容 (11)3.1主要内容 (11)3.1.1烟气系统 (11)3.1.1.1界面设计 (11)3.1.1.2实际氧化空气的计算 (11)3.1.1.3增压风机的设计 (13)3.1.2SO2吸收系统(喷淋吸收空塔主要工艺设计参数) (13)3.1.2.1烟气流速 (13)3.1.2.2喷淋塔吸收区高度(h1) (13)3.1.2.3喷淋塔除雾区高度(h2) (15)3.1.2.4喷淋塔浆液池高度设计(h3) (17)3.1.2.5喷淋塔烟气进口高度设计(h4) (19)3.1.2.6喷淋塔的直径设计 (19)3.1.2.7喷淋层喷嘴的设计 (20)3.1.2.8喷淋塔的壁厚设计 (21)3.1.2.9氧化风机和氧化吸收池搅拌机设计 (22)3.1.2.10人孔及手孔的设计 (23)3.1.2.11吸收塔喷淋系统的设计 (23)3.1.3管道的保温及防腐 (24)3.1.4脱硫液循环系统 (25)3.1.5吸收剂制备及供给系统 (25)3.1.6石膏脱水系统 (26)3.1.7废水处理系统 (27)3.1.8工艺水系统 (28)3.1.9电气系统 (29)3.1.10监测系统 (29)第四章效益评估 (30)4.1运行费用估算 (30)4.1.1电费 (30)4.1.2水费 (30)4.1.3脱硫剂费用 (31)4.1.4人工费 (31)4.1.5运行费用 (31)4.2环境效益及社会效益 (31)参考文献 (35)结束语 (36)附录第一章绪论1.1 设计背景及意义我国空气污染问题的形成与二氧化硫排放总量居高不下密切相关。
石灰石-石膏法设计计算
石灰石——石膏湿法烟气脱硫计算模块一、 设计输入参数:烟气流量、入口烟气SO 2浓度、烟气温度、烟气烟尘浓度、HCl 、HF 、SO 3、含氧量、含水率等。
1、烟气流量Q :(工况,全烟气)m 3/h :用于烟道尺寸、吸收塔径的计算 (标况,干基,实际氧气)m 3/h :液气比计算 (标况,湿基,实际氧气)m 3/h :液气比计算 (标况,干基,6%O 2)m 3/h :SO 2浓度计算 (标况,湿基,6%O 2)m 3/h 2、SO2浓度C SO2计算:SO2SO2M C Q=3、 液气比L/G :3L GV 10L /G V ⨯=V L :循环浆液体积 V G :烟气体积(标态)石灰石洗涤塔的液气比一般在8~25之间。
4、Ca/S=耗钙基的摩尔数/脱除的SO 2摩尔数 典型范围:1.01~1.10石灰石CaCO 3含量超过90%时,Ca/S 不超过1.03。
5、 吸收区烟气流速u :一般为2.5~3.8m/s6、 烟气停留时间t :4s7、 氧化倍率O 2/SO 2:取2.5 二、 烟气量计算 1、完全燃烧产生的烟气量理论干烟气量(mg/Nm 3):d a r a r a r V 1.866C 0.70S 0.80N 0.79V=+++1kg 燃料完全燃烧所需理论空气量V a :a a r a r a r V 8.882C 26.46H 3.332S O=++(-) 理论湿烟气量(mg/Nm 3):w d H2O d ar a a ar V V V V 11.12H 1.24V d M ==+++(+) M ar :燃料收到基中水分的质量分率。
d a :燃料的含湿率。
实际烟气量:d1d aw1w a aV V (1)V V V 111.24d V αα==∙+-+(-)(+)各成分的体积:C O 2a r S O 2a rN 2aa r O 2aH 2O a ra a a r V 1.866C V 0.700S V 0.79V 0.80NV 0.211VV 11.12H 1.24V dM α=====+(-)+(+)烟气密度:ar aw11A 1.293V V ρ=(-)+A ar :灰分 2、不知道煤具体组分状况下的计算:(1)确定燃煤热值H u 、全厂效率η、含硫量(若是发电机组,确定机组功率P )(2)选择合适设计参数1kg 煤燃烧产生的湿烟气量V 含水量η1 c o a lu 3600PM H η=∙ V wet = M coal ·V V dry =V w ·(1-η1)V water =V wet ·η1 (3)水蒸汽密度ρ水蒸气:w a t e rw a t e rm V ρ=水蒸汽 PV=nRTmn M=所以:PMRTρ=水蒸汽 P :标准大气压 101350PaM 水蒸汽的摩尔质量 18 R :阿伏伽德罗常数 8.31 T :标准大气压下温度 273.15K 水蒸汽的质量:m water =ρ水蒸汽 ·V water (4) 烟气密度gas ρ =1.35kg/Nm 3 (5) 烟气质量流量flue gas dry gas dry flue gas wet gas wetm V m V ρρ=∙=∙三、 SO 2相关计算(1) 确定参数:脱硫率:95%;煤种S 含量ηS ;燃煤量m coal (2) SO 2燃烧生成量:coal S SO2SO2Sm M mM η=(3)SO 2浓度C SO2S O 2S O 2d r ymC V = (4)SO 2在6% O 2下浓度C SO2 O2 6% 确定干烟气中O 2含量C O2 dry gas则 S O 2O 2a i r S O 2 O 2 6%O 2 a i r O 2 d r y g a s C (C 6%)C C C ∙=-- 四、 吸收塔计算1、除尘器出口温度T 1,GGH 出口温度T 22、干烟气中水含量计算water1flue gas drym Xm =根据除尘器出口温度及干烟气中水含量计算,在h-x 图上,求出X 1、T 2处的焓,沿等焓线到饱和线可得到饱和温度T 3和x 2蒸发水的质量m water vapourised =(x 2-x 1)m flue gas dry蒸发水体积water vapourisedwater saturation waterm V ρ=(水蒸汽密度)3、 吸收塔出口净烟气烟气含水体积:water1water saturation water V V V =+(燃烧过程中烟气含水量) 出口净烟气量:clean gas wet dry water1V V V =+ 五、 石灰石消耗/石膏产量计算23224221S O C a C O 2H O OC a S O 2C O2H O +++→∙+SO 2=64 [g/mol] CaCO 3=100 [g/mol] H 2O=18 [g/mol] CO 2 =44 [g/mol] O 2=32 [g/mol]CaSO 4·2H 2O=172 [g/mol] (石膏)脱除1t SO 2生成副产物石膏2.69t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:14083400792 毕业设计(论文)题目:50000Nm3/h石灰石-石膏湿法烟气脱硫工艺的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日摘要本设计选择石灰石—石膏湿法脱硫工艺,脱硫能力为50000Nm3/h(标干烟气).该工艺系统共有六大系统,分别是:除尘系统、烟气系统、吸收系统、吸收剂浆液制备系统、石膏脱水系统以及废水处理系统。
吸收系统,石膏脱水系统,除尘系统主要涉及系统工艺设计计算。
除尘系统采用电除尘器法,吸收系统采用的是喷淋塔。
关键字:烟气脱硫;石灰石—石膏湿法;吸收塔AbstractThis design choice limestone - gypsum wet FGD process, desulfurization capacity for 50000Nm3 / h (standard dry flue gas). The process a total of six systems are: dust removal system, flue gas system, absorption system absorbent slurry preparation systemgypsum dewatering system and wastewater treatment systems. Absorption system, gypsum dewatering system, dedusting system, mainly related to the system process design calculations. The dust removal system using the ESP method, the absorption system is used in the spray tower.Keywords:flue gas desulfurization; wet limestone - gypsum; absorber目录第一章绪论 (1)1.1 烟气脱硫的背景 (1)1.2我国烟气脱硫技术现状 (1)1.3烟气脱硫的目的及意义 (2)第二章烟气脱硫工艺的选择 (3)2.1 烟气脱硫方法分类 (3)2.2 几种常见的脱硫工艺 (3)2.2.1 MgO湿法烟气脱硫工艺 (3)2.2.2 氨法脱硫工艺 (3)2.2.3 石灰石-石膏湿法脱硫工艺 (4)2.3脱硫工艺的确定 (5)2.3.1 石灰石(石灰)/石膏湿法脱硫主要优点 (5)2.3.2 MgO湿法烟气脱硫发主要优点 (5)2.3.3氨法脱硫的主要优缺点 (6)2.4本设计采用的脱硫系统 (6)2.5石灰石-石膏湿法烟气脱硫工艺系统的介绍 (7)2.5.1烟气系统 (7)2.5.2 SO2吸收系统 (7)2.5.3石灰石浆液制备系统 (7)2.5.4 石膏脱水系统 (8)2.5.5供水系统 (8)2.5.6 排放系统 (8)第三章湿法烟气脱硫存在的问题及解决 (8)3.1烟气的预处理 (9)3.2烟气的预冷却 (9)3.3净化后气体再加热 (10)3.4除雾 (10)3.5富液的处理 (11)3.6结垢与堵塞 (11)3.7脱硫装置各腐蚀区域的腐蚀分析 (12)3.7.1 烟气输送机热交换系统腐蚀特点分析 (12)3.7.2 SO2吸收及氧化系统腐蚀特点分析 (14)3.7.3 吸收剂(石灰石浆液)传输及回收系统腐蚀特点分析 (15)第四章物料平衡的计算 (16)4.1《锅炉大气污染物排放标准》 (16)4.2各种设计参数的确定 (17)4.3脱硫效率的计算 (18)4.4吸收剂消耗量的计算 (18)4.4.1 净烟气中SO2浓度 (18)4.4.2 石灰石消耗量 (18)第五章主要设备尺寸及规格的计算 (20)5.1 除尘器 (20)5.1.1 各种除尘器的比较 (20)5.1.2 袋式除尘器的特点 (20)5.1.3 电除尘器的特点 (21)5.1.4 除尘器选择结论 (21)5.2 烟气系统 (22)5.2.1 旁路烟道 (22)5.2.2 FGD入口烟道 (22)5.2.3 FGD出口烟道 (22)5.2.4 烟气换热器 (22)5.3 SO2吸收系统 (23)5.3.1 吸收塔的选择 (23)5.3.2 吸收塔尺寸设计计算 (24)5.3.3 吸收塔附属设备的选型 (26)5.3.4 吸收塔高度的计算 (27)5.3.5 吸收塔附属部件设计 (28)5.4 浆液制备系统的设计计算 (28)5.4.1 浆液制备系统的选择 (28)5.4.2 主要设备的计算 (29)5.5 其他系统设备设计选择 (30)5.5.1 增压风机 (30)5.5.2 搅拌器 (31)5.5.3 石膏处置系统 (32)5.5.4 废水排放系统和处理系统 (32)5.5.5 浆液排放与回收系统 (32)5.5.6 工艺水耗量的计算 (32)第六章工艺布置 (34)6.1 脱硫装置的平面布置 (34)6.2 浆液管道布置要求 (34)6.3 设备一览表 (35)参考文献 (36)谢辞 (37)附录 (39)第一章 绪论1.1 烟气脱硫的背景当今世界上电力产量的60%是利用煤炭资源生产的,我国是世界上少数几个以煤炭为主要能源的国家之一。
在80年代之前,我国燃煤工业锅炉烟气脱硫的研究及开发,基本上处于停滞阶段。
到了80年代末或90年代初,由于我国大气2SO 污染及酸雨污染日趋严重,研究与开发燃煤工业锅炉烟气脱硫技术便应运而生。
许多部门着手研究及开发燃煤工业锅炉烟气脱硫技术。
1995年8月,我国修改后的《中华人民共和国大气污染防治法》的正式出台,2SO 在法规上定义为我国重要的必须治理的大气污染物,2SO 污染防治及酸雨污染防治纳入法律条文,以法规形式确保2SO 污染防治和酸雨污染防治。
随着《中华人民共和国大气污染防治法》的贯彻和执行,在很大程度上促进了燃煤工业锅炉烟气脱硫的研究与开发。
我国相当多的高等院校,中国科学院的院所,各部委的科研机构,地区的科研部门,环保局的科研院所,以及民营科研机构等,对燃煤工业锅炉烟气脱硫技术纷纷进行研究与开发。
参加研究与开发的单位之广,人数之多,时间之长,在我国历史上实属罕见。
燃煤工业锅炉烟气脱硫以其存在问题多,治理难度大,而成为我国当今令人关注的热点。
由中国环境科学学会发起和主办的三届务实和卓有成效的“全国燃煤锅炉烟气脱硫技术交流会”,把我国燃煤工业锅炉烟气脱硫技术研究与开发,从引进、学习、消化、模拟阶段推进到独立自行研究与开发阶段,进一步推进到富有独创的研究与开发阶段。
三届技术交流会,极大地促进了科研单位之间烟气脱硫技术的交流与学习,沟通了科研单位和用户之间的产销关系,促进了烟气脱硫技术及设备进入燃煤工业锅护的市场。
1.2我国烟气脱硫技术现状在90年代不到10年内,我国研究与开发的烟气脱硫技术多达50种以上。
时间短,种类多,技术广,在人类烟气脱硫研究与开发历史上也不多见。
在研究与开发的50多种燃煤工业锅炉烟气脱硫技术中,包括炉内直接喷石灰/石灰石、沸腾床石灰石和喷雾干燥法等干法烟气脱硫,钙碱法、氨碱法、钠碱法及镁碱法等湿法烟气脱硫。
湿法烟气脱硫占95%左右,干法烟气脱硫占5%左右。
目前,干法烟气脱硫除个别方法外,仍处于研究及中试阶段,尚未工业化,近期内很难推广应用。
湿法烟气脱硫趋于成熟,正处于工业化应用,是当前可行的脱硫技术。
湿法又分为除尘脱硫组合—体化设备,和除尘与脱硫分体组合式设备。
在研究与开发的50多种烟气脱硫技术中,运行稳定、安全可靠的烟气脱硫技术大约有10种左右,其脱硫效率均能达到国家允许的排放标准。
其性能为脱硫效率较高(70~90%),无二次污染,液气及灰水分离良好,防腐、耐磨,无结垢、无堵塞、运转效率高(>90%),使用寿命长(10年以上),能耗低,价格低廉,工艺过程及设备结构简单,操作方便,占地面积小。
不到10年内,在烟气脱硫研究及开发中,一向被人们认为难以解决的腐蚀、磨损、结垢及堵塞等棘手的问题,取得突破性的解决,脱硫设备的使用寿命在10年以上,运转效率在90%以上。
相当—部分关键技术,如防腐、耐磨、防结垢、防堵塞、灰水分离、液气分离等,达到或接近国际的先进技术。
1.3烟气脱硫的目的及意义锅炉燃料中的硫在燃烧过程中与O2反应生成氧化物(主要是SO2和SO3),脱硫工艺所要脱除的就是锅炉尾气中的有害气体SO2和SO3。
采用湿法烟气脱硫工艺之后,排放的大气污染物(2SO、烟尘)排放量及排放浓度均明显减小,从而降低了电厂大气污染物对当地环境的影响程度,将极大地改善区域大气环境质量,环境效益十分显著。
同时根据国务院《排污费征收使用管理条例》(国务院令第369号)及《排污费征收标准管理办法》(国家计委、财政部、国家环保局、国家经贸委令第31号),实施烟气脱硫后每年可减少大气中二氧化硫的排放量,这对人类可持续发展十分有利。
因此本课题主要研究目的为根据设计所给参数对50000m3/h的烟气脱硫除尘系统进行系统的设计,使排放烟气中的SO2及烟尘达到国家排放标准,有效地控制当地空气污染物,改善空气质量,提高居民生活质量,该课题是具有实际意义和具有一定必要性的。