人教版六年级数学下册第五单元鸽巢问题集体备课教案

合集下载

六年级数学下册教案《5 鸽巢问题》-人教版

六年级数学下册教案《5 鸽巢问题》-人教版

六年级数学下册教案《5 鸽巢问题》-人教版一. 教材分析《5 鸽巢问题》是人教版六年级数学下册的一章内容,主要让学生了解和掌握鸽巢问题的基本原理和解决方法。

本章内容通过生活中的实例,引出鸽巢问题的概念,然后通过学生的探究活动,让学生理解和掌握鸽巢问题的解题方法。

教材中包含了丰富的例题和练习题,供学生巩固所学知识。

二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于鸽巢问题这种比较抽象的问题,可能还有一定的困难。

因此,在教学过程中,教师需要根据学生的实际情况,逐步引导学生理解和掌握鸽巢问题的解题方法。

三. 教学目标1.让学生了解和理解鸽巢问题的概念和基本原理。

2.让学生掌握解决鸽巢问题的方法和步骤。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:鸽巢问题的概念和解决方法。

2.难点:如何引导学生理解和掌握鸽巢问题的解题方法。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解和掌握鸽巢问题的解题方法。

2.探究式教学法:通过学生的探究活动,让学生自主学习和掌握鸽巢问题的解题方法。

3.讲解法:教师通过讲解,让学生理解和掌握鸽巢问题的解题方法。

六. 教学准备1.教学课件:教师需要准备相关的教学课件,帮助学生理解和掌握鸽巢问题的解题方法。

2.练习题:教师需要准备一些练习题,供学生巩固所学知识。

七. 教学过程1.导入(5分钟)教师可以通过一个生活中的实例,如“如果有5只鸽子,需要准备几个鸽巢?”来引导学生思考和引入鸽巢问题的概念。

2.呈现(10分钟)教师通过课件呈现鸽巢问题的相关内容,让学生了解和理解鸽巢问题的基本原理和解决方法。

3.操练(10分钟)教师可以让学生做一些练习题,巩固所学知识。

例如,让学生解决一些具体的鸽巢问题,如“如果有8只鸽子,需要准备几个鸽巢?”4.巩固(10分钟)教师可以通过一些游戏或活动,让学生进一步巩固所学知识。

例如,教师可以准备一些卡片,卡片上写有不同的数字和鸽子数量,让学生通过配对的方式,巩固鸽巢问题的解题方法。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

人教版小学数学六年级下册五单元《《鸽巢问题》》集体备课主讲稿

人教版小学数学六年级下册五单元《《鸽巢问题》》集体备课主讲稿

第五单元《鸽巢问题》单元备课《数学广角—鸽巢问题》教案教学目标1、知识与技能知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。

2、过程与方法通过探究“鸽巢问题”的解决过程,掌握数形结合的学习思想。

3、情感态度和价值观通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,培养学生独立思考问题的能力。

教学重难点把具体问题转化成“鸽巢问题”并总结“鸽巢问题”解决的方法。

教学用具多媒体课件教学过程一、情景引入(课件展示)我给大家变一个“魔术”:一副扑克牌,抽掉大小王之后还有52张牌,现在你们5个人每人随意抽一张,我知道至少有两张牌是同花色的,你相信我吗?二、导入新课例1、把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生动手操作:方法一:把各种情况都摆出来。

(列举法)方法二:把4分解成3个数。

(分解法)例1提出的问题就是“鸽巢问题”,4支铅笔就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

例2、把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。

为什么呢?如果有8本书会怎样呢?10本书呢?方法一:把7本书放进3个抽屉里,共有8种情况,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

方法二:如果每个抽屉最多放2本,那么3个抽屉最多放6本,可是题目要求放7本,那么剩下的那本书要放在3个抽屉中的其中一个中。

所以7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

8÷3=2余2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本;放进其中一个抽屉里,这个抽屉就变成4本。

六年级数学下册教案-5鸽巢问题-人教版

六年级数学下册教案-5鸽巢问题-人教版

六年级数学下册教案5 鸽巢问题人教版今天我要为大家分享的是六年级数学下册的教案,第五单元的内容——鸽巢问题。

人教版教材在这一单元中引导学生探究鸽巢问题的规律,提高他们的逻辑思维能力。

一、教学内容我们使用的教材是六年级数学下册,人教版。

本节课的主要内容是第五单元的鸽巢问题。

在这一部分,学生们将学习到鸽巢问题的基本概念,掌握求解鸽巢问题的方法,并能够运用这一方法解决实际问题。

二、教学目标1. 理解鸽巢问题的含义,掌握求解鸽巢问题的基本方法。

2. 能够运用鸽巢问题的方法解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点本节课的重点是让学生理解鸽巢问题的含义,掌握求解鸽巢问题的基本方法。

难点是让学生能够运用这一方法解决实际问题。

四、教具与学具准备为了帮助学生更好地理解和掌握鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、多媒体教具以及一些实际的物品,如鸽子模型等。

五、教学过程1. 实践情景引入:我会先给学生展示一个实际的情景,比如有10只鸽子要放在5个鸽巢里,让学生观察和思考。

2. 讲解鸽巢问题的定义和基本方法:然后我会向学生解释鸽巢问题的定义,并讲解求解鸽巢问题的基本方法。

4. 随堂练习:在讲解完例题后,我会给学生一些随堂练习题,让学生自己动手解决实际问题。

5. 学生展示和讨论:在学生完成随堂练习后,我会让学生展示他们的解题过程和答案,并进行讨论。

六、板书设计在教学过程中,我会利用黑板和粉笔进行板书,将鸽巢问题的定义、基本方法和求解步骤等内容展示给学生。

七、作业设计作业题目:1. 有8只鸽子要放在3个鸽巢里,每个鸽巢至少要放几只鸽子?2. 有12只鸽子要放在4个鸽巢里,每个鸽巢至少要放几只鸽子?答案:1. 每个鸽巢至少要放3只鸽子。

2. 每个鸽巢至少要放3只鸽子。

八、课后反思及拓展延伸通过本节课的学习,学生们对鸽巢问题有了更深入的了解和掌握。

在教学过程中,我发现学生们对鸽巢问题的求解方法掌握得比较好,但在解决实际问题时,有些学生还缺乏一定的逻辑思维能力。

六年级数学下册教案《5 数学广角——鸽巢问题》(人教版) (1)

六年级数学下册教案《5 数学广角——鸽巢问题》(人教版) (1)

六年级数学下册教案《5 数学广角——鸽巢问题》(人教版)
一、教学目标
1.理解鸽巢问题的基本概念。

2.掌握解决鸽巢问题的基本方法。

3.培养学生的逻辑思维能力和解决问题的能力。

二、教学重点和难点
重点:
1.理解鸽巢问题的定义。

2.学会应用鸽巢问题解决实际问题。

难点:
1.运用鸽巢问题解决复杂问题。

2.将鸽巢问题与实际情境结合。

三、教学内容
本节课将重点介绍鸽巢问题的基本概念和解决方法。

四、教学过程
1. 导入(5分钟)
讲师通过一个生动的小故事或例子引入鸽巢问题,激发学生的学习兴趣。

2. 学习(20分钟)
1.讲解鸽巢问题的定义和基本概念。

2.示范解决一些简单的鸽巢问题,引导学生思考求解方法。

3. 练习(15分钟)
组织学生进行一些练习题,巩固所学知识。

4. 拓展(10分钟)
引导学生思考如何将鸽巢问题应用到实际生活中,讨论一些相关的案例。

5. 总结(5分钟)
对本节课学习的内容进行总结,并强调重点和难点。

五、教学反馈
布置一些作业题目,检查学生对鸽巢问题的理解和应用能力。

六、教学资源
1.课本《数学广角》第5课内容。

2.黑板、粉笔、教具等。

七、教学评价
根据学生在课堂上的表现和作业情况进行评价,及时调整教学方法,提高教学效果。

以上就是本节课的教学计划,希望能够帮助学生更好地理解和掌握鸽巢问题,提升数学能力。

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。

教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门实行反复推理。

教学准备:课件。

教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。

2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。

3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。

4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。

二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备纸杯、吸管、多媒体课件。

四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

(二)探索新知(1)初步感知。

把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。

(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。

(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。

六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)

六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)

六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)一、教学目标1.知识与能力:–学生能够理解“鸽巢问题”的概念;–学生能够运用排除法解决“鸽巢问题”相关问题;–学生能够在实际生活中应用“鸽巢问题”解决问题。

2.过程与方法:–引导学生积极思考,提高解决问题的能力;–利用小组合作,培养学生的合作意识和团队精神;–结合情境讨论,激发学生学习兴趣。

3.情感态度与价值观:–培养学生细心观察问题、逻辑思维和创新能力;–培养学生团队合作精神,培养学生积极探究、创造的态度。

二、教学重难点1.教学重点:–学习掌握“鸽巢问题”的概念;–学生能够灵活应用排除法解决问题。

2.教学难点:–学生能够在实际问题中应用“鸽巢问题”解决问题。

三、教学准备1.教师准备:–教案、多媒体课件、草稿纸等。

2.学生准备:–铅笔、橡皮、教科书等。

四、教学过程1.导入(5分钟)–引导学生回顾上一堂课的内容,为本节课的学习做铺垫。

2.新课呈现(15分钟)–通过多媒体课件或教科书引入“鸽巢问题”的概念,呈现问题情境,激发学生兴趣。

3.讲解与示范(20分钟)–针对“鸽巢问题”展开讲解,解释相关概念,通过示范进行解题演示,引导学生理解解题思路。

4.练习与讨论(30分钟)–分组进行练习,让学生通过小组合作解决问题,在讨论中发现解题方法的不同之处,运用排除法思维解决问题。

5.拓展应用(15分钟)–老师引导学生思考真实生活中可能遇到的“鸽巢问题”,激发学生对数学的实际应用兴趣,提高解决问题的能力。

6.总结与作业布置(5分钟)–总结本节课的重点内容,布置相关作业,巩固学生对“鸽巢问题”的理解和应用能力。

五、教学板书•鸽巢问题–概念:一个有限的集合如果要被划分成许多个部分,但是部分的总数比集合的总数还要多,那么必然存在至少一个部分包含了2个以上的元素;–解题方法:排除法。

六、教学反思通过本节课的教学,学生对“鸽巢问题”有了更深入的理解。

但在教学过程中,发现部分学生在排除法应用上存在困难,需要在后续课程中加强相关训练。

(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计

(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计

(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计一. 教材分析新人教版六年级数学下册第五单元“数学广角——鸽巢问题”,主要让学生理解并掌握鸽巢问题的原理及应用。

本节课通过生活中的实例,引导学生探究和发现规律,培养学生的逻辑思维能力和解决实际问题的能力。

二. 学情分析六年级的学生已经具备了一定的数学基础,思维活跃,具有较强的探究欲望。

但在解决实际问题时,部分学生可能会受到生活经验的影响,难以把握问题的本质。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们逐步理解和掌握鸽巢问题的解决方法。

三. 教学目标1.让学生理解鸽巢问题的概念,掌握鸽巢问题的解决方法。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生合作交流、积极思考的良好学习习惯。

四. 教学重难点1.重点:理解鸽巢问题的原理,学会用鸽巢问题解决实际问题。

2.难点:如何引导学生发现生活中的鸽巢问题,并运用所学知识解决。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现和提出问题,激发学生学习兴趣。

2.启发式教学法:引导学生独立思考、合作交流,培养学生解决问题的能力。

3.实践操作法:让学生在实际操作中感受和理解鸽巢问题的应用,提高学生的动手能力。

六. 教学准备1.准备相关的生活实例和问题,以便在教学中引导学生探究。

2.准备课件和教学素材,以便进行生动的教学展示。

3.准备鸽巢问题的相关练习题,以便进行课堂巩固和拓展。

七. 教学过程1.导入(5分钟)利用一个生活实例,如公园里的鸽子巢穴,引出鸽巢问题。

提问:“如果有10只鸽子,而只有5个巢穴,那么至少有一个巢穴里有2只或以上的鸽子吗?”让学生思考并回答。

2.呈现(10分钟)呈现更多的鸽巢问题实例,引导学生观察和分析问题。

如:“一个班级有30个学生,如果有5个小组,那么至少有一个小组有7个或以上的学生吗?”学生进行讨论,让学生尝试找出问题的规律。

3.操练(10分钟)让学生分组进行练习,运用所学知识解决实际问题。

六年级数学下册教案《5 鸽巢问题》-人教版(1)

六年级数学下册教案《5 鸽巢问题》-人教版(1)

六年级数学下册教案《5 鸽巢问题》-人教版(1)一. 教材分析《5 鸽巢问题》是人教版六年级数学下册的一章内容,主要讲述了鸽巢问题的解决方法。

本章内容通过引入鸽巢问题,使学生了解和掌握鸽巢问题的基本概念和解决方法,培养学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了简单的数学运算和逻辑思维能力。

但是,对于鸽巢问题的解决方法,学生可能比较陌生,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.使学生了解和掌握鸽巢问题的基本概念和解决方法。

2.培养学生解决实际问题的能力。

3.培养学生的逻辑思维和数学表达能力。

四. 教学重难点1.鸽巢问题的基本概念和解决方法。

2.如何将实际问题转化为鸽巢问题,并运用解决方法。

五. 教学方法1.实例教学:通过具体的例子,使学生了解和理解鸽巢问题的基本概念和解决方法。

2.练习教学:通过大量的练习,使学生熟练掌握解决鸽巢问题的方法。

3.小组合作:让学生分组讨论和解决实际问题,培养学生的合作能力和解决实际问题的能力。

六. 教学准备1.教学课件:制作相关的教学课件,帮助学生更好地理解和掌握鸽巢问题的解决方法。

2.练习题:准备一些相关的练习题,用于巩固学生的学习成果。

七. 教学过程1.导入(5分钟)通过一个具体的实例,引出鸽巢问题,使学生了解和理解鸽巢问题的基本概念。

2.呈现(10分钟)通过教学课件,呈现鸽巢问题的解决方法,使学生了解和掌握解决鸽巢问题的方法。

3.操练(10分钟)让学生进行一些相关的练习题,巩固学生对鸽巢问题解决方法的掌握。

4.巩固(10分钟)让学生分组讨论和解决一些实际问题,培养学生解决实际问题的能力。

5.拓展(10分钟)通过一些拓展练习题,使学生进一步理解和掌握鸽巢问题的解决方法。

6.小结(5分钟)对本节课的内容进行小结,使学生巩固所学知识。

7.家庭作业(5分钟)布置一些相关的家庭作业,巩固学生的学习成果。

8.板书(5分钟)在黑板上板书本节课的主要内容和解决方法,供学生课后复习。

人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计

人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计
单元整体教学设计
年 级
六年级
单元名称
人教版六年级下册第五单元
《数学广角——鸽巢问题》
一、单元教学设计说明
教材分析
教材编排的“抽屉原理”涉及三种基本的形式:第一种,只要物体的数量比抽屉多,那么一定有一个抽屉放进了至少两个物体。第二种,即是“把多于kn(k是正整数)个元素放入n个集合,总有一个集合里至少有(k+1)元素”。若k为1,就是第一种情况,可见第一种情形实际是第二种情形的特例。第三种情况是把无限多个物体(如红球、蓝球各4个)放进有限多个抽屉(两种颜色),那么一定有一个抽屉放进了无限多个物体(至少2个同色的球)。
在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍可在学生学习过程中用直观的方式进行就事论事的探讨。在学习中,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。
(二)有意识地培养学生模型思想
抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能否解决该问题的范畴。建议在活动思考过程中,引导渗透如何寻找隐藏在背后的抽屉问题的一般模型。
(三)要恰当把握教学要求
抽屉原理的应用广泛并且灵活多变,因此,用抽屉原理来解决实际问题时,有时要找到实际问题与抽屉问题之间的联系并不容易。因此学习时,不必过于追求学生说理的严密性,只能结合具体问题把大致意思说出来就可以了,更允许学生借助实物操作等直观方式进行猜想验证。
三、单元整体教学思路
单元结构图及课时安排
课标要求
《义务教育数学课程标准(2022年版)》在“课程目标”的“第三学段”中提出:“尝试在真实的情境中发现和提出问题,探索运用基本的数量关系,以及几何直观、逻辑推理和其他学科的知识、方法分析和解决问题,形成模型意识和初步的应用意识、创新意识。”“对数学具有好奇心和求知欲,主动参与数学学习活动。在解决问题的过程中,体验成功的乐趣,相信自己能够学好数学,感受数学的价值,体验并欣赏数学美”。

人教版小学数学六年级下册《鸽巢问题》公开课教学设计

人教版小学数学六年级下册《鸽巢问题》公开课教学设计

人教版小学数学六年级下册《鸽巢问题》教学设计【学习内容】人教版小学数学六年级下册第五单元第68--69页《数学广角---鸽巢问题》例1、例2。

【课程标准描述】结合实际情境,体验发现和提出问题、分析和解决问题的过程;通过应用和反思,进一步理解所用知识和方法,了解所学知识之间的联系,获得数学活动经验。

【学习目标】1、经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

通过猜测、验证、操作、观察、分析等数学活动,建立数学模型,发现规律,渗透“建模”思想。

2、通过从具体到抽象的探究过程,提高有根据、有条理地进行思考和推理的能力。

3、通过“鸽巢原理”的灵活应用,提高解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

【学习重点】经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

【学习难点】理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

【学习过程】一、游戏引入,激发兴趣从52张(取出大小王)扑克牌中任意抽5张。

观察5张牌的花色,你有什么发现?无论抽出的是哪5张牌,至少有2张牌是同花色的。

想一个你熟悉的手机号码,看看这11个数字,你又有什么发现?号码中一定会出现相同的数字。

生活中还有很多像这样有意思的现象,里面蕴含着共同的数学原理,今天我们一起学习。

二、探究新知,感悟“鸽巢原理”(一)理解含义,规范表达1、理解关键词“总有”。

请你拿出1支铅笔,放进3个笔筒中的任意一个。

我猜,不管怎么放,总有一个笔筒里有1支铅笔。

我猜的对吗?提问:哪个关键词保证了不管怎么放,我的猜测一定是正确的? 小结:“总有”这个词表示一定有、肯定有。

1支铅笔放进3个笔筒中的任意一个,无论放进左、中、右哪个笔筒,一定有一个笔筒里有1支铅笔,与铅笔出现的位置无关,所以无论放进哪个笔筒,都可以视为同一种情况,这时我们用“总有”这个词来表达。

2.理解关键词“至少”。

请你拿出2支铅笔,放进3个笔筒中。

我猜,不管怎么放,总有一个笔筒里至少有1支铅笔。

人教版数学六下第五单元《数学广角 鸽巢问题》教学设计

人教版数学六下第五单元《数学广角 鸽巢问题》教学设计

人教版数学六下第五单元《数学广角鸽巢问题》教学设计一. 教材分析《数学广角鸽巢问题》是人教版数学六下第五单元的教学内容。

本节课主要通过鸽巢问题引导学生理解并掌握数学中的组合知识,培养学生的逻辑思维能力和问题解决能力。

教材以生活中的实例引入,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。

通过探究、交流、合作等活动,让学生在实际操作中理解鸽巢问题的本质,掌握解决类似问题的方法。

二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和问题解决能力,他们对数学知识有一定的了解和掌握。

但学生在解决实际问题时,往往还停留在表面,不能深入挖掘问题的本质。

因此,在教学过程中,教师要关注学生的认知水平,引导学生从实际问题中抽象出数学模型,培养学生解决问题的能力。

三. 教学目标1.让学生理解鸽巢问题的概念,掌握解决鸽巢问题的方法。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.重点:理解鸽巢问题的概念,掌握解决鸽巢问题的方法。

2.难点:如何引导学生从实际问题中抽象出数学模型,运用数学知识解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生感受数学与生活的紧密联系。

2.探究式学习:引导学生分组讨论,自主探究鸽巢问题的解决方法。

3.案例教学法:分析实际问题,引导学生抽象出数学模型,解决问题。

4.小组合作学习:培养学生团队协作能力,提高解决问题的能力。

六. 教学准备1.教学课件:制作多媒体课件,展示生活实例和教学内容。

2.教学素材:准备相关的生活案例,供学生探讨和分析。

3.教学用具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例引入鸽巢问题,激发学生学习兴趣。

例如,讲述一个关于鸽巢问题的故事,让学生思考如何解决。

2.呈现(10分钟)展示鸽巢问题的相关图片和实例,引导学生关注问题的本质。

同时,让学生尝试用数学语言描述鸽巢问题,为后续解决问题打下基础。

人教版六年级数学下册第五单元集体备课-数学广角-鸽巢问题教学计划及教学设计

人教版六年级数学下册第五单元集体备课-数学广角-鸽巢问题教学计划及教学设计

第五单元数学广角《鸽巢问题》单元计划一、教材分析:本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。

和以往的义务教育教材相比,这部分内容是新增的内容。

本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。

在数学问题中,有一类与“存在性”有关的问题。

在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。

这类问题依据的理论我们称之为“抽屉原理”。

“但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。

“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。

教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。

能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。

所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。

六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。

教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

二、教学目标:1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:(1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

(2)学会与人合作,并能与人交流思维过程和结果。

3、情感态度与价值观:(1)积极参与探索活动,体验数学活动充满着探索与创造。

(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体验学数学、用数学的乐趣。

(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。

设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。

“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。

怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。

通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。

学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。

所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。

我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。

在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。

这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。

它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。

呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。

教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。

这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。

学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。

学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。

但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。

设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、微视频、合作探究作业纸。

教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。

你们信吗?2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。

二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。

请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。

2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。

再提问:这句话对吗?组织小组活动,进行验证。

总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。

两种方法都能验证这句话是正确的。

在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。

活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。

提问:这句话对吗?为什么?组织小组活动,进行探究。

总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。

追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。

学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。

引出鸽巢问题又叫抽屉问题。

3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。

5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。

六年级下册数学教案《5《数学广角—鸽巢问题》人教版

六年级下册数学教案《5《数学广角—鸽巢问题》人教版

六年级下册数学教案《5《数学广角—鸽巢问题》人教版一、教案背景本节课将围绕数学广角中的鸽巢问题展开教学。

鸽巢问题是数学中一个经典的组合数学问题,通过这个问题的讲解,可以帮助学生理解组合数学的基本概念。

二、教学目标1.理解鸽巢问题的基本概念。

2.能够运用组合数学的知识解决实际问题。

3.培养学生的逻辑思维和数学建模能力。

三、教学重点1.理解鸽巢问题的描述。

2.运用组合数学的方法求解相关问题。

四、教学内容1. 什么是鸽巢问题鸽巢问题是指有n个鸽子和m个巢,如果n个鸽子全部进入m个巢,必然有至少一个巢内有超过一个鸽子。

这个问题可以通过组合数学的方法进行求解。

2. 解决鸽巢问题具体解决鸽巢问题的方法是采用反证法。

假设所有的m个巢中都只有一个鸽子,那么至少需要m个巢。

但是鸽子的数量大于m,所以必然存在至少一个巢内有超过一个鸽子。

五、教学过程1.引入问题:老师给出一个生活中的例子,引出鸽巢问题。

2.学生思考:让学生思考如果有5只鸽子和3个巢,是否存在至少一个巢有两只鸽子。

3.学生讨论:学生们在小组内讨论并给出自己的答案。

4.知识梳理:老师讲解鸽巢问题的解决方法,引导学生理解反证法的应用。

5.练习:布置一些练习题让学生巩固所学知识。

6.总结:对本节课的内容进行总结,强调鸽巢问题的重要性和实际应用。

六、教学反馈1.在课堂中观察学生对鸽巢问题的理解情况。

2.收集学生的练习作业并进行评价,及时纠正学生的错误。

七、拓展延伸1.鸽巢问题的变形:让学生尝试解决更复杂的鸽巢问题,如n个鸽子和m个巢的情况。

2.探究组合数学的其他应用:带领学生探索组合数学在其他领域的应用,如排列组合问题等。

通过本节课的学习,相信学生们能够更好地理解鸽巢问题的精髓,并将组合数学的方法运用到实际问题中去,为他们的数学学习打下坚实的基础。

《鸽巢问题》(教案)六年级下册数学人教版

《鸽巢问题》(教案)六年级下册数学人教版

《鸽巢问题》(教案)六年级下册数学人教版鸽巢问题(教案)一、教学内容本节课的教学内容选自人教版六年级下册数学教材,主要涉及“总复习”章节中的“鸽巢问题”。

具体内容包括鸽巢原理的基本概念、应用及解决方法。

二、教学目标通过本节课的学习,使学生了解并掌握鸽巢问题的基本概念及解决方法,能够运用鸽巢原理解决实际问题,培养学生的逻辑思维能力和解决实际问题的能力。

三、教学难点与重点重点:掌握鸽巢问题的基本概念和解决方法。

难点:如何引导学生运用鸽巢原理解决实际问题。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:笔记本、练习本、文具。

五、教学过程1. 实践情景引入通过一个实际问题引入本节课的学习:“某小区有10栋楼,现有15户居民要入住,请问至少有一栋楼里有3户居民的情况出现吗?”2. 例题讲解(1)讲解鸽巢问题的基本概念:将问题中的“楼”比作“鸽巢”,将问题中的“居民”比作“鸽子”,通过这个比喻引导学生理解鸽巢问题的本质。

(2)引导学生运用鸽巢原理解决问题:通过画图、讨论等方式,引导学生得出结论:至少有一栋楼里有3户居民。

3. 随堂练习(1)请学生独立解决引入问题。

4. 讲解解答过程5. 板书设计鸽巢问题:n个鸽巢,m个鸽子,总有至少一个鸽巢里有k个鸽子(k为整数)。

六、作业设计(1)某小区有5栋楼,现有8户居民要入住,请问至少有一栋楼里有3户居民的情况出现吗?(2)某班级有40名学生,现有30个座位,请问至少有5名学生无法坐在座位上的情况出现吗?2. 答案:(1)至少有一栋楼里有3户居民。

(2)至少有5名学生无法坐在座位上。

七、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解并掌握了鸽巢问题的基本概念和解决方法。

在教学过程中,注重引导学生运用鸽巢原理解决实际问题,培养了学生的逻辑思维能力和解决实际问题的能力。

2. 拓展延伸:引导学生思考鸽巢问题在现实生活中的应用,如安排活动场地、分配资源等,进一步拓展学生的知识视野。

人教版数学六年级下册鸽巢问题教案与反思推荐3篇

人教版数学六年级下册鸽巢问题教案与反思推荐3篇

人教版数学六年级下册鸽巢问题教案与反思推荐3篇〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗教材分析:“鸽巢问题”是人教版小学数学六年级下册第五单元数学广角的内容。

“鸽巢问题”是一类较为抽象的数学问题,难度较大。

“鸽巢问题”实际上是解决生活中某一类数学问题的模型,本课的目的是让学生经历数学化的过程,初步建立“鸽巢问题”的一般模型思想。

教材以学生熟悉的和感兴趣的材料作为学习素材,提高学生学习的积极性,缓解学习难度带来的压力,例题的编排关注细节,循序渐进,培养学生的思维能力和模型思想。

学生分析:经过六年的学习,学生具备了基本的推理能力和语言表达能力,敢于积极的思考和大胆的表达,学生自学能力和小组合作能力较强。

教学目标:1.使学生理解“鸽巢问题”的基本形式,并能初步运用“鸽巢问题”解决相关的实际问题或解释相关的现象。

2.通过操作,观察,比较,说理等数学活动,使学生经历“鸽巢问题”的形成过程,体会和掌握逻辑推理思想和模型思想,提高数学学习的兴趣和信心。

教学重点:在操作中理解“鸽巢问题”的模型。

教学难点:理解并建立“鸽巢问题”的模型。

课前准备:扑克牌,课件。

教学过程一、精彩导入出示刘谦的照片师:同学们,你们见过他吗?做什么的?喜欢看他玩魔术吗?老师也会玩魔术,你信吗?这是一幅扑克牌,取出大王和小王以及花牌,还剩下52张牌。

我请5位同学上来给我当助手,每人随意抽一张,不要把你的牌给我看。

你们抽的牌中,至少有两张牌是同花色的?信吗?这到底是巧合呢?还是隐藏了什么数学奥秘呢?我们今天就一起来研究研究。

我们先从比较小的同类问题开始研究。

【设计意图】通过玩“扑克牌”游戏,让学生体验不管怎么抽,总有同一花色的牌至少有2张,激起学生认识上的兴趣,趁机抓住他们的求知欲,作为新课的切入点,激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。

二、用列举和假设法,初步感知模型结构1.理解“总有”和“至少”两个词的含义(1)师:把3支笔放到2个铅笔盒里,有哪些放法?师:“不管怎么放,总有一个铅笔盒里至少有2支笔”。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生思考——组内交流——汇报
教师:哪一组同学能把你们的想法汇报一下?
学生会说:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
教师:你能结合操作给大家演示一遍吗?(学生操作演示)
教师:同学们自己说说看,同桌之间边演示边说一说好吗?
教师:这种分法,实际就是先怎么分的?
学生:平均分。
教师:为什么要先平均分?(组织学生讨论)
学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在哪个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
这样分,只分一次就能确定总有一个盒子至少有几枝笔了?
教师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)
⑥总结归纳鸽巢问题的一般规律。
要把a个物体放进n个抽屉里,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。
【课堂作业】
教材第69页“做一做”。
(1)组织学生在小组中交流解答。
(2)指名学生汇报解答思路及过程。
答案:
(1)∵11÷4=2(只)……3(只) 2+1=3(只)
∴一定有一个鸽笼至少飞进3只鸽子。
板书:7本3
8本3个2本……余2本(总有一个抽屉里至少有3本书)
10本3个3本……余1本(总有一个抽屉里至少有4本书)
师:2本、3本、4本是怎么得到的?
生:完成除法算式。
7÷3=2本……1本(商加1)
8÷3=2本……2本(商加1)
10÷3=3本……1本(商加1)
教师:哪位同学能把你的想法汇报一下?
学生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?
生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……
③引导学生归纳鸽巢问题的一般规律。
a.提问:如果把10本书放进3个抽屉会怎样?13本呢?
b.学生列式回答。
c.教师板书算式:10÷3=3……1(总有一个抽屉至少放4本书)
13÷3=4……1(总有一个抽屉至少放5本书)
④观察特点,寻找规律。
提问:观察3组算式,你能发现什么规律?
引导学生总结归纳出:把某一数量(奇数)的书放进三个抽屉,只要用这个数除以3,总有一个抽屉至少放进书的本数比商多一。
学生汇报。
哪个小组愿意说说你们的方法?把你们的发现和大家一起分享,学生可能会有以下方法:
a.动手操作列举法。
学生:通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。
b.数的分解法。
把7分解成三个数,有(7,0),(6,1),(5,2),(4,3)四种情况。在任何一种情况下,总有一个数不小于3。
2.教学例2。
①出示题目:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请同学们小组合作探究。探究时,可以利用每组桌上的7本书。
活动要求:
a.每人限独立思考。b.把自己的想法和小组同学交流。c.如果需要动手操作,可以利用每桌上的7本书,要有分工,并要全面考虑问题。(谁分铅笔,谁当抽屉,谁记录等)d.在全班交流汇报。(师巡视了解各种情况)
教师讲《月黑风高穿袜子》的故事。
一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。你们知道最少拿几只袜子出去吗?
(请一个同学到盒子里摸一摸,并摸出一个给大家看)
师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?
请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。
教学过程
指名按猜测的不同情况逐一验证,说明理由。
摸2个球可能出现的情况:1红1蓝;2红;2蓝
教学过程
⑤提问:如果把8本书放进3个抽屉里会怎样,为什么?
8÷3=2……2
学生汇报。可能出现两种情况:一种认为总有一个抽屉至少放3本书;一种认为总有一个抽屉至少放4本书。
学生讨论。讨论后,学生明白:不是商加余数2,而是商加1。因为剩下两本,也可能分别放进两个抽屉里,一个抽屉一本,相当于数的分解(3,3,2)。所以,总有一个抽屉至少放3本书。
组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。
教师指名汇报。
学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。
教师:不妨将这种放法记为(4,0,0)。〔板书:(4,0,0)〕
教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。
教师:除了这种放法,还有其他的方法吗?教师再指名汇报。学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。教师板书。
提问:尽量把书平均分给各个抽屉,看每个抽屉能分到多少本书,你们能用什么方式表示这一平均的过程呢?
学生在练习本上列式:7÷3=2……1。
集体订正后提问:这个有余数的除法算式说明了什么问题?
生:把7本书平均放进3个抽屉,每个抽屉有两本书,还剩一本,把剩下的一本不管放进哪个抽屉,总有一个抽屉至少放三本书。
2.引导学生把具体问题转化为“鸽巢问题”。
教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“鸽巢问题”联系起来进行思考呢?
思考:
a.“摸球问题”与“鸽巢问题”有怎样的联系?
b.应该把什么看成“鸽巢”?有几个“鸽巢”?要分放的东西是什么?
c.得出什么结论?
学生讨论,汇报。
教师讲解:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
师:观察板书你能发现什么?
学生:“总有一个抽屉里的至少有3本”,只要用“商+1”就可以得到。
师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
教学过程
学生:“总有一个抽屉里至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
学生有可能会说:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
在学生猜测的基础上揭示课题。
教师:这节课我们利用鸽巢问题解决生活中的实际问题。
板书:“鸽巢问题”的具体应用。
【新课讲授】
1.教学例3。
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球?
(出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)
师:同学们,猜一猜老师在盒子里放了什么?
摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝
摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝
摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。
5÷2=2……1
7÷2=3……1
9÷2=4……1
要把a个物体放进n个抽屉里,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。
教学反思
人教版六年级数学下册集体备课教案
课题
“鸽巢问题”的具体应用(教材第70页例3)。
教学目标
1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。
教师:通过学习,你想解决哪些问题?
根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?
【新课讲授】
1.教师用投影仪展示例1的问题。
同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。
c.我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
教师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?
学生回答:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
教师:还有不同的放法吗?
教学过程
教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。)
教师:“总有”是什么意思?(一定有)
教师:“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝)
教师:就是不能少于2枝。(通过操作让学生充分体验感受)
教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说为什么?教师:把4枝笔放进3个盒子里,和把5枝笔放进4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作发现的这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?
2.培养学生有根据、有条理的进行思考和推理的能力。
3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教材分析
相关文档
最新文档