保险精算学人寿保险的精算现值

合集下载

第二章人寿保险的精算现值

第二章人寿保险的精算现值
第二ቤተ መጻሕፍቲ ባይዱ人寿保险的精算 现值
2020年4月23日星期四
人身保险是以人的寿命和身体为保险标的的保险。
人寿保险是人身保险的一种。
人寿保险转嫁的是被保险人的生存或者死亡的风险 。它起源于古代的互助团体,其原理是通过集合具 有同质风险的大量被保险人,通过在这些被保险人 之间进行风险分散——即由所有的被保险人共同出 资给遭遇风险的少数被保险人——来达到降低突发 风险事故对遭遇风险事故的个体造成的财务冲击。
2020/4/23
第二章 人寿保险的精算现值
• 解 : 设 Zj 表示第 j 个被保险人的死亡给付在投保时的现值随机变量 , 则
勇于开始,才能找到成 功的路
2020/4/23
第二章 人寿保险的精算现值
设该项基金在最初时的数额至少是 h 元 , 依题意 , 则
勇于开始,才能找到成 功的路
即该项基金在最初时的数额至少要有 449.35 元 , 比所收取的 建缴纯保费建立的初始基金 400(=100 × 4) 元多出 49.35 元 , 即超过歪缴纯保费基金的 12.34% 。这说明 , 最初基 金 需有风险附加费 ( 即安全附加费 ) 的存在 , 即该基金超过保费 总额的那部分 (49.35 元 ) 是 安全附加基金。
1. 按算术数列续年递增的终身寿险 按算术数列{n} 续年递增的连续型的终身寿险 , 可分
称现值函数随机变量Z的数学期望为保险的精算现值,也是趸缴纯保费额
于是
2020/4/23
第二章 人寿保险的精算现值
则连续型的保险金额为 1 个单位的 n 年定期寿险
现值随机变量 ZT 的方差是
勇于开始,才能找到成 功的路
2020/4/23
第二章 人寿保险的精算现值

人寿保险的精算现值趸缴纯保

人寿保险的精算现值趸缴纯保

第二章:人寿保险的精算现值(趸缴纯保费)
教学要求:
掌握各类寿险的保险金给付模型的建立方法。
掌握各类寿险的趸缴纯保费的计算。
掌握寿险的精算现值(趸缴纯保费)的定义。
** 寿险定价的基础 ***
0
第一节 离散型人寿保险模型
** 讨论保额固定的离散型人寿保险 ***
0
?1nn源自n0mm+n
0 n n-1 n-2 …………….. 2 1
1 1…...1 1…...1……1 1…...1……1……1 ……………………………………………... 1…...1……1……1……1………… 1……1
第五节 递推公式与换算函数
t
t
s
S=t
(2)
0 1 2 3 4 5 6……………….. 1 1 1………1………1………1….. 1 1 …… ..1………1………1….. 1………1………1………1….. ……… 1………1…… 1….. 1………1 . . 1
n
01
02
03
0
m
m+n
第二节 连续型人寿保险模型
** 讨论保额固定的连续型人寿保险 ***
第三节 连续模型与离散模型的精算现值的关系
在保险实务中,使用的是死亡即付的连续 模型,而死亡年末付的离散模型的计算更容易 和简便,以下讨论转换关系。
第四节 保额递增、递减型人寿保险
递推公式(讨论不同投保年龄的趸缴纯保费 的关系)
其它递推公式
二、换算函数(符号)
THANKS

第三章 人寿保险的精算现值

第三章 人寿保险的精算现值

(四)两全保险


两全保险是定期寿险与纯生存保险的组合 给付函数
bK 1 1, K 0,1, 2,

给付现值随机变量

趸缴净保费
v K 1 , K 0,1, , n 1 Z bK 1vK 1 n K n, n 1, v ,
1 x: n |
Ax:n| A
趸缴净保费
n 1
给付现值随机变量


k 1 1 1 ( DA)1 ( n k ) v p q A A k x xk x: n | x:1| x:2| k 0
A1 x: n |
一般变额寿险

给付现值随机变量
Z bK 1v

K 1
K 0,1, 2,
10000 vq40 v 2 1| q40 v3 2| q40 10000v 3 3 p40 1 1 1 10000 q40 p40 q41 p40 p41q42 2 3 (1 i ) (1 i) 1 i 1 10000 p40 p41 p42 3 (1 i) 49.28 8591.34 8640.62(元)
K 1

保险金给付在签单时的现值随机变量

v , K 0,1, , n 1 Z bK 1vK 1 0, K n, n 1, 趸缴净保费
A
1 x: n|
E (Z ) v
k 0
n 1
k 1
k | q x v
k 0
n 1
k 1
k p x q xk
n 1
n 1| A1 x :1|
(八)递减型寿险

第二章: 人寿保险的精算现值(趸缴纯保费)

第二章: 人寿保险的精算现值(趸缴纯保费)

fT
(t)
1(均匀分布) 70
A1 30:10
10 t
0
fT
(t)dt
10 (1 0.1)t 1 dt 1
0
70 70
10 (1.1)tdt 0.092099
0
A 2 1
(2) 30:10
10 2t
0
fT
(t)dt
1 70
10 (1.1)2tdt 0.063803
0
Var(Z) 2A1 (A1 )2 0.055321
A1 xm:n
A1 x:m
Ax
1 m:n
A1 x:m
A xm:n
例 3.设生存函数 s(x) 1 x , (0 x 100) ,年利率 i 0.1,保额 1。 100
计算:(1)
A1 30:10
(2)Var(Z )
解:(1)
fT
(t)
s(x t) s(x)
1 100
x
,
代入
x 30 ,
Ax E(T ) E( K S ) E( K 1S1)
E( K 1)E( S1) Ax E[(1 i)1S ]
S ~U (0,1) Ax
1(1 i)1s ds i
0
Ax
例1. 证明:在 UDD 假设下: A1 i A1
x:n
x:n
证明:
A1 x:n
n
t
0
t
px xt dt
(1)
m m px
n
t
0
t
pxmxmt dt
A1 x:m
A1 xm:n
A1
(2) m x:n
mn mn px
m m px n n pxm

第四章 人寿保险的精算现值(.3.27)共91页文档

第四章 人寿保险的精算现值(.3.27)共91页文档
已知未来给付的现值,再考虑该给付发生的概 率,就可以得出期望给付额
E(Zt)E(bK1vK1)= Zt.kqx E(Zt)E(bTvT) Zt.fT(t)dt
寿险精算
8
这个期望给付就等于被保险人的趸缴纯保费 也就是精算现值,即
精算现值= E ( Z t )
净均衡原理并不是指每个被保险人个人缴 纳的净保费恰好等于他个人得到的保险给 付金额。它的实质是把相同风险的人视作 一个总体,这个总体在统计意义上的收支 平衡
寿险精算
9
§4.1 死亡即付的人寿保险
• 死亡即刻赔付就是指如果被保险人在保障 期内发生保险责任范围内的死亡,保险公 司将在死亡事件发生之后,立刻给予保险 赔付。它是在实际应用场合,保险公司通 常采用的理赔方式。
• 由于死亡可能发生在被保险人投保之后的 任意时刻,所以死亡即刻赔付时刻是一个 连续随机变量,它距保单生效日的时期长 度就等于被保险人签约时的剩余寿命。
连续型寿险
寿险精算
10
主要险种的精算现值(趸缴纯保费)的厘定 1.n年定期保险 2.终身保险 3.生存保险 4.n年期两全保险 5.延期寿险 ——延期m年的终身保险 ——延期m年的n年定期保险 ——延期m年的n年期两全保险
寿险精算
11
一、n年定期保险的精算现值
1.定义——什么是定期保险
2.基础模型假定条件
寿险精算
5
• 为了解决以上问题,趸缴净保费的厘定给 出了以下三条假设:
假定一:同性别、同年龄、同时参保的被保 险人的剩余寿命独立同分布 假定二:被保险人的剩余寿命分布可以用经 验生命表进行拟合 假定三:保险人可以预测将来的投资收益
这三条假定将单个被保险人的风险事故转 化为一个同质总体的风险事故

保险精算学寿险精算现值

保险精算学寿险精算现值

K的概率分布函数为 : P K k k px qxk k qx.

Ax E Z vk 1 k qx .
k 0
在上式两边同乘lx , 得到lxBiblioteka Ax vk 1 d xk . k 0
给出直观解释.
引入转换函数:
D x v xlx, x岁 存 活 人 数 每 人 1单 位 元 在 0岁 的 现 值 ;
N x D x t , 从 x岁 起 到 生 命 最 大 值 1岁 上 存 活 t0
人 每 人 每 年1单 位 元 赔 付 在 0岁 的 现 值 。
Cx
v
x
1
d

x
x
x 1岁 死 亡 的 人 数 每 人 1 单 位 元 赔
付 在 0岁 的 现 值 ;
M x
C
x

t

x岁







4、延期n年的终身寿险
延期n年的终身寿险:用n Ax表示,某人x岁开始投保,延期n年 后死亡年末给付1单位元的延期终身寿险的现值。 现值随机变量为:
0 Z vK1
K 0,1,...,n1 K n,n1,.......
n Ax E
Z
vk1 k
kn
qx
Mxn Dx
或者
n
Ax
Ax
A1 x:n
证明:n Ax vn n pxAxn
1岁



t0
1单 位 元 赔 付 在 0岁 的 现 值 。

Ax
Mx Dx
对于赔付现值随机变量Z,计算方差:
VarZ EZ2 [EZ]2
2Ax E Z2 v2k1 k qx e2k1 k qx

人寿保险的精算现值-精选文档

人寿保险的精算现值-精选文档

3
引言
• 本章主要讨论各种人寿保险趸缴纯保 费的计算。将建立一系列的寿险模型, 在这些模型中保险金支付的数量是确 定的,给付时间是不确定的。我们把 保险金支付的时间和数量看成只依赖 于被保险人死亡的时间,模型是利用 T(x)和K(x)的定义建立的。
4
人寿保险的分类
根据不同的标准,人寿保险有不同的分类: (1)以被保险人的受益金额是否恒定进行划分, 可分为:定额受益保险,变额受益保险。 (2)以保障期是否有限进行划分,可分为:定 期寿险和终身寿险。 (3)以保单签约日和保障期是否同时进行划分, 可分为:非延期保险和延期保险。 (4)以保障标的进行划分,可分为:人寿保险 (狭义)、生存保险和两全保险。
7
趸缴纯保费的厘定假定条件
– 假定一:同性别、同年龄、同时参保的被保 险人的剩余寿命是独立同分布的。 – 假定二:被保险人的剩余寿命分布可以用经 验生命表进行拟合。 – 假定三:保险公司可以预测将来的投资收益 (即预定利率)。
8
纯保费厘定原理
保费净均衡原则
– 净均衡原则,即保费收入的期望现时值正好 等于将来的保险赔付金的期望现时值。它的 实质是在统计意义上的收支平衡。是在大数 场合下,收费期望现时值等于支出期望现时 值.

A
1 x :1

n 1
v k 1
k 0
k |
qx
自然保费,是根据每一保险年度,每一被保险人当年 年龄的预定死亡率计算出来的该年度的死亡保险费。
1 A c q x v x x : 1
18
• 例:55岁的男性投保5年期定期寿险,保险 金于死亡年末给付, 按中国保险业经验生 命表CL1(2000-2019)和利率6%, 计 算: • (1)保险金额为1000元的趸缴纯保费。 • (2)趸缴纯保费为1000元的保险金额。

保险精算中的人寿保险的精算现值的模型

保险精算中的人寿保险的精算现值的模型

保险精算中的人寿保险的精算现值的模型一、人寿保险简介保险精算学主要分为两大类:一个是所谓的人寿保险(寿险精算),另一个是非人寿保险。

前者主要以人的寿命、身体或健康为“保险标的”的保险。

非人身保险主要包括:汽车保险、屋主保险、运输保险、责任保险、信用保险、保证保险等。

而这次我们主要讨论人寿保险。

狭义的人寿保险是以被保险人在保障期是否死亡作为保险标的的一种保险。

广义的人寿保险是以被保险人的寿命作为保险标的的一种保险。

它包括以保障期内被保险人死亡为标的的狭义寿险,也包括以保障期内被保险人生存为标底的生存保险和两全保险。

人寿保险的分类根据不同的标准,人寿保险有不同的分类:(1)以被保险人的受益金额是否恒定进行划分,可分为:定额受益保险,变额受益保险。

(2)以保障期是否有限进行划分,可分为:定期寿险和终身寿险。

(3)以保单签约日和保障期是否同时进行划分分为:非延期保险和延期保险。

(4)以保障标的进行划分,可分为:人寿保险(狭义)、生存保险和两全保险。

人寿保险的特点1:保障的长期性这使得从投保到赔付期间的投资收益(利息)成为不容忽视的因素。

2:保险赔付金额和赔付时间的不确定性人寿保险的赔付金额和赔付时间依赖于被保险人的生命状况。

被保险人的死亡时间是一个随机变量。

这就意味着保险公司的赔付额也是一个随机变量,它依赖于被保险人剩余寿命分布。

3:被保障人群的大多数性保险公司可以依靠概率统计的原理计算出平均赔付并可预测将来的风险。

人寿保险趸缴纯保费厘定的原理1、假定传统的人寿保险产品的趸缴纯保费是在如下假定下厘定的:假定一:同性别、同年龄、同时参保的被保险人的剩余寿命独立同分布。

假定二:被保险人的剩余寿命分布可以用经验生命表进行拟合。

假定三:保险公司可以预测将来的投资受益(即预定利率)。

2、原理保险公司在上面三个假定条件下,按照净均衡的原则来厘定趸缴纯保费的数额。

而趸缴纯保费是指在保单生效日一次性支付将来保险赔付金的期望现时值。

保险精算 第4章2 人寿保险的精算现值

保险精算 第4章2 人寿保险的精算现值
k 0 n 1
例6
55岁的男性投保5年期的定期保险,保险金额为 1000元,保险金在死亡年末给付,按中国人寿保险 业 经验生命表 (2000-2003年)非养老业务男表和利率 6%计算趸缴纯保费。 4 d 55k 1 k 1 1000 v 解:A55: 5| l k 0
55
vd55 v d 56 v d 57 v d 58 v d 59 1000 l55
2 3 4 5
26.981485(元)
注:
令n 1, 在符号Ax1: n|中, Ax1: 1| 在人寿保险中又称为自然保费, 或记作符号 c x
根据每一保险年度,每一被保险人当年年龄的预 定死亡率计算出来的该年度的死亡纯保费。 1 dx cx vqx 1 i lx “均衡保费制”
n年定期寿险的趸缴纯保费
基本函数关系 记 K ( x) [T ] k 为被保险人的取整余命,则
保险金给付在签单时的现值随机变量为
v , Z bK vK 0,
K 1
K 0,1,, n 1 其他
A1 x:n 表示其趸缴纯保费。

E ( Z ) v k p x q xk
T v , T n 0, T n 其中Z1 , Z2 n 0, T n v , T n
Z1 Z 2 0
1 Var(Z ) Var(Z1 ) Var(Z2 ) A1 A x:n| x:n|
延期m年的n年期两全保险
定义 保险人对被保险人在投保m年后的n年期内发生保险 责任范围内的死亡,保险人即刻给付保险金;如果被保 险人再生存至n年期满,保险人在第n年末支付保险金 的保险。 假定(x)投保延期m年的n年期两全保险,保额1元。 基本函数关系 0, t m 0 , t m bt t 1, t m z b v v , m t m n

第三章 人寿保险的精算现值

第三章  人寿保险的精算现值
1

A 1 =E(Zt ) =v .n px =e .n px
n xn :
−δn
寿险精算
23
5.赔付现值变量的方差 赔付现值变量的方差
Var ( Z ) = E ( Z ) − [ E ( Z )] = E ( Z ) − ( A 1 )
2 2 2 x:n
2
E (Z ) = v .n px = e
x t

0 t T
t
=∫ v t pxµx+tdt
t 0

=∫ e t pxµx+tdt
−δt 0
寿险精算 19

5.赔付现值变量的方差 赔付现值变量的方差
Var ( Z ) = E ( Z ) − [ E ( Z )] = E ( Z ) − ( Ax )
2 2 2
2
E (Z ) =
2

∞ 0
z t2 f T ( t ) d t
= =
2 ∞
∫ ∫
∞ 0 ∞ 0
v 2t t p x µ x+t d t e −2δ t t p x µ x + t d t
记 Ax = ∫ e−2δ t t px µx+t dt ,则 0
Var(Z) = Ax −(Ax )
2
寿险精算
2
20
6.用替换函数表示趸缴纯保费 引入替换函数: 引入替换函数:
寿险精算 5
• 保费净均衡原理的思想很好理解,但在保 险经营过程中要落实这条原理,保险公司 必须要解决以下几个问题: 1.什么时候会发生索赔事件? 2.发生索赔的概率有多大? 3.发生的索赔额等于多少? 4.钱的时间价值如何测量?

保险精算-第4章1-人寿保险的精算现值

保险精算-第4章1-人寿保险的精算现值
例如, 一个26岁的人考虑用保险金支付他退休之后死亡时 的丧葬费用,于是,他投保了一份延期34年的终身 寿险。如果人在退休前死亡,他工作期间的丰厚收 入会解决其丧葬费用,如果在退休之后死亡,则保 险公司会为他的一个很体面的葬礼支付保险金。这 就是一份终身寿险,但延期了34年。
延期m年的终身寿险
定义 保险人对被保险人在投保m年后发生的保险责任 范围内的死亡均给付保险金的险种。
zt btvt vt , t 0
Z bv TT
vT
t0
Ax 表示终身寿险的趸缴纯保费。
Ax
E(Z)
z f (t)dt
0t
T
vt p dt e t p dt
0
tx
xt
0
tx
xt
方差为
Var(Z )
例2
设 (x)要投保终身寿险,保险金额1元,签单时其未
来寿命 T 的概率密度函数为
0
T
v e
1
A x:n
表示n年期死亡保险的精算现值。
方差公式:
Var(Z ) E(Z 2 ) [E(Z )]2 E(Z 2 ) (A1 )2 x: n|
E(Z 2 ) n z 2 f (t)dt 0t T
n
n
v2t f (t)dt e f 2 t (t)dt
0
T
0
T
记为
(相当于利息力翻倍以后求n年期寿险的趸缴保费)
f T
(t)
1 60

0
t
60
0, 其他
利息强度为 ( 0) ,在签单时的保险金给付现值随机
变量为 Z,试计算: (1) A x
(2)Var(Z )
(3)满足P(Z ) 0.9的 .

保险精算课件第3章寿险精算现值

保险精算课件第3章寿险精算现值

4.2 死亡即付的人寿保险
死亡即付就是指如果被保险人在保障 期内发生保险责任范围内的死亡 ,保险公 司将在死亡事件发生之后,立刻给予保险 赔付。
死亡即刻赔付时刻是一个连续型随机 变量,它距保单生效日的时期长度就等于 被保险人签约时的剩余寿命。
1.终身寿险 对(x) 的1单位元终身寿险,死亡即付现值 随机变量为
死亡时存活的整数年数,这时的变额寿险称为 标准递增的变额寿险。
标准递增的终身寿险
Z (K 1)vK 1, K 0,1, 2,

1

11

x x+1 x+2


1…
1
1…

1
1…
1
1…
x+n-1 x+n
其精算现值以 (IA)x 表示,有

(IA)x E(Z ) (k 1)vk1k qx k 0
k 0
qx

1 lx
x 1
d xk v k 1
k 0
●赔付现值随机变量的方差:
Var(Z ) E(Z 2 ) [E(Z )]2


E(Z 2)
v2(k1) k qx
e q 2 (k 1) kx
k 0
k 0
E(Z 2) 相当于以计算趸缴净保费利息力
Ax E(Z )
0
vt

t
px

x t dt


v k 1 t
k

t
px

x t dt
k 0


v1 sk
0
sk
px
xsk ds

保险精算课件 第3章寿险精算现值

保险精算课件  第3章寿险精算现值
0 k= 0 k=
ω−x− 1
ω−x− 1
延期m年的 延期 年的n 年的 年定期寿险 延期m年的 延期 年的 终身寿险 n年期两全 年期两全 保险
A =A m
1 xn :
1 xm n : +
−A
1 xm :
1 xm :
m
A = A −A x x
1 xn :
A: = A +A xn
1 xn :
死亡年末给付趸缴纯保费公式归纳 延期m年的 延期 年的n 年的 年期两全保险
k+ 1
(x) 的1单位元 年两全保险的精算现值为 单位元n年两全保险的精算现值为 单位元
A:n =∑ ⋅ k q +v ⋅ n p v x x x
k+ 1 n k= 0
n− 1
=A +A
1 x:n
1 x: n
其中 A 精算现值。 精算现值。
1 x: n
表示1单位元给付纯生存险的 表示 单位元给付纯生存险的 单位元给付
☆两全保险现值随机变量的方差 为两全保险现值随机变量, 设Z为两全保险现值随机变量,Z1为n年 为两全保险现值随机变量 年 定期现值随机变量, 定期现值随机变量,Z2为n年纯生存保险现值 年纯生存保险现值 随机变量, 不会同时发生, 随机变量,则Z1和Z2不会同时发生,我们有
V r(Z) =V r(Z +Z ) a a 1 2 =V r(Z )+V r(Z )−2E Z )⋅ E Z ) a 1 a 2 ( 1 ( 2
1. 终身寿险
对 (x 的1单位元死亡年末赔付终身寿 ) 表示。 险,其精算现值以 A 表示。 x 记 K(x) =k 为 x岁投保人的整值剩余寿命, 下面计算 A x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于赔付时刻都发生在死亡事件发生的当年年末, 所以死亡年末陪付时刻是一个离散随机变量,它 距保单生效日的时期长度就等于被保险人签约时 的整值剩余寿命加一。这正好可以使用以整值年 龄为刻度的生命表所提供的生命表函数。所以死 亡年末赔付方式是保险精算师在厘定趸缴保费时 通常先假定的理赔方式。
死亡年末给付的计算原理同死亡即刻给付 4.2.1 定期寿险 4.2.2 终身寿险 4.2.3 两全保险 4.2.4 延期寿险
4.1.5 生存保险与两全保险的趸缴纯保费 ➢ n 年定期生存保险
定义 被保险人投保后生存至n年期满时,保险人在第n年末 支付保险金的保险。
假定: (x)岁的人,保额1元,n年定期生存保险 基本函数关系
vt vn , t0
vn , tn
1, tn bt 0, tn
zt
btvt
0
,
tn
符号:
延期m年的终身寿险/延期m年的n年定期寿险 n年期生存保险 n年期两全保险
4.1.2 n年定期寿险
定义
保险人只对被保险人在投保后的n年内发生的保险责任范围内的死亡给付 保险金的险种,又称为n年死亡保险。
假定:( x )岁的人,保额1元n年定期寿险 基本函数关系
vt vt , t0
vt , tn
延期m年的终身寿险
延期m年的n年定期寿险 延期m年的n年两全保险
4.3 死亡即付人寿保险与死亡年末副人寿 保险的精算现值的关系
UDD假设下死亡即刻赔付净趸缴纯保费是死亡年 末赔付净趸缴纯保费的 i 倍。
4.4 递增型人寿保险与递减型人寿保险
4.4.1 递增型寿险
1.死亡时立即给付的递增型终身寿险的趸缴纯保费 一年递增一次: 一年递增m次:
tm tm
zt
btvt 0,
tm
符号: m A x
厘定:
m|Ax
vt
m
fT
t
dt
et
m
fT
t
dt
延期m年的n年定期寿险:
A m| x:n m mnvt fT t dt
e mn t
m
t
px
xtdt
(为常数时)
0 m n e ttp xx td t0 m e ttp xx td t
保险精算
第五章 年金的精算现值
第五章 年金的精算现值
5.1 生存年金的概念 5.2 连续给付型生存年金 5.3 离散型生存年金 5.4 每年给付数次的生存年金
5.1 生存年金的概念
5.1.1 生存年金的概念
生存年金是指在已知某人生存的条件下,按预先约定
的金额以连续方式或以一定的周期进行一系列给付的保险, 且每次年金给付必须以年金受领人生存为条件。
1, tn bt 0, tn
zt
btvt
0
,
tn
A 符号:
1 x :n
厘定:
1
n
Ax:n E(zt) 0 zt fT(t)dt
nvt 0
t
px
xtdt0nett px
xtdt
方差公式:
V ( z ta ) E ( r z t 2 ) E ( z t) 2 0 n e 2 tfT ( t) d E t ( z t) 2
一年递增无穷次(连续递增):
对于递增的n年定期寿险,只需将积分上限换成n即可。
2.死亡年度末给付的递增型终身寿险的趸缴纯保 费
相应地,对于n年定期保险,有
4.4.2 递减型寿险 1.立即给付型递减型寿险(n年定期寿险为例)
2. 死亡年末给付型递减型寿险(n年定期寿险为例)
4.4.3 两类精算现值的换算
vt vt , t0 bt 1, t0
zt btvt vt
,
t0
符号: A x
厘定:
Ax E(zt) 0 zt fT(t)dt
vt
0
t
px
xtdt
et
0
t
px
xtdt
方差公式
V a r ( z t) E ( z t 2 ) E ( z t) 2 0 e 2 tfT ( t) d t E ( z t) 2
5.1.2 生存年金精算现值的概念
又称为生存年金的趸缴纯保费,使依赖于剩余寿命确 定年金的数学期望值。
计算方法主要有两种:现时支付法、总额支付法
现时支付法是将时刻t的年金给付额折现至签单时的现值, 再将所有的现值相加或积分。

2A1 x:n
ne2t
0
fT(t)dt
(相当于利息力翻倍以后求n年期寿险的趸缴保费)
所以方差等价为
Va(ztr)2Ax1:n(Ax1:n)2
4.1.3 终身寿险
定义
保险人对被保险人在投保后任何时刻发生的保险责任范围内的死亡均给 付保险金的险种。
假定:( x )岁的人,保额1元终身寿险 基本函数关系
保险精算学人寿保险的精算现值
第四章 人寿保险的精算现值
4.1 死亡即付的人寿保险 4.2 死亡年末给付的人寿保险 4.3 死亡即付人寿保险与死亡年末付人寿保
险的精算现值的关系 4.4 递增型人寿保险与递减型人寿保险
主要险种的精算现值(趸缴纯保费)的厘定
n年期定期寿险 终身寿险 延期寿险
1
A x:n
趸缴纯保费厘定:
A x :1 n E (zt) v nnp x e nnp x
现值随机变量的方差:
Var(zt)v2nnpx (vnnpx)2
21
Ax:n
1
(Ax:n
)2
➢ n年定期两全保险
定义
被保险人投保后如果在n年期内发生保险责任范围内的死亡,保 险人即刻给付保险金;如果被保险人生存至n年期满,保险人在 第n年末支付保险金的保险。它等价于n年生存保险加上n年定期 寿险的组合。

2Ax
e2t
0
fT(t)dt
所以方差等价为
Va (zt)r2Ax(Ax)2
4.1.4 延期终身寿险源自义保险人对被保险人在投保m年后发生的保险责任范围内的死亡均 给付保险金的险种。
假定: (x)岁的人,保额1元,延期m年的终身寿险 基本函数关系
vt vt , t0
vt , tm
1 , bt 0,
假定(x)岁的人,保额1元,n年定期两全保险
基本函数关系
vt
vvtn
, ,
tn tn
bt 1, t0
zt btvt vvnt,,ttnn
符号及保费厘定:
A x:n
A1 x:n
Ax:1n
0nvttpx xtdtvnnpx
4.2 死亡年末给付的人寿保险
死亡年末赔付的含义
死亡年末陪付是指如果被保险人在保障期内发生 保险责任范围内的死亡 ,保险公司将在死亡事件 发生的当年年末给予保险赔付。
相关文档
最新文档